Skip to main content

Table 1 Summary of results

From: An algorithm for solving the bi-objective median path-shaped facility on a tree network

 

Bi-objective location problem

 
 

Algorithm proposed in [23]

Algorithm proposed in this paper

Model

\(\min \limits _{P\in \mathcal {P}}(M^{1}(P),D^{2}(P)),\) where

\(\min \limits _{P\in \mathcal {P}}(D^{1}(P),D^{2}(P)),\) where

 

\(M^{1}(P)=\max \limits _{v_{j} \in V} w_{j}^{1}d(v_{j},P),\)

\(D^{1}(P)=\sum \limits _{v_{j} \in V} w_{j}^{1}d(v_{j},P),\)

 

\(D^{2}(P)=\sum \limits _{v_{j} \in V} w_{j}^{2}d(v_{j},P)\)

\(D^{2}(P)=\sum \limits _{v_{j} \in V} w_{j}^{2}d(v_{j},P)\)

Used approach

ε-constraint method

Two-phase method

Subproblems

Cent-dian problem of the form

For supported Pareto paths \(\mathcal {P}_{SE }\)

 

\(\begin {array}{c}\min \limits _{P \in \mathcal {P}} D^{2}(P) ~~~~~~ \\\text {s.t.} M^{1}(P)=\epsilon \end {array} \)

\(\min \limits _{P \in \mathcal {P}} \lambda D^{1}(P)+(1-\lambda)D^{2}(P)\)

  

For unsupported Pareto paths

  

\(\min \limits _{P\in \mathcal {P}\backslash \mathcal {P}_{SE }}\lambda D^{1}(P)+(1-\lambda)D^{2}(P)\)

Complexity

O(n logn)

O(n logn)