Skip to main content

Table 2 The upper bound for the number of edges of a graph with n vertices

From: Further results on Parity Combination Cordial Labeling

nOddupper boundodd in rowKnbin(n)sb(n)2sb(n)) − 2upper bound
Algorithm 2.7Conjecture 2.8
2010110101
3232311225
42506100105
549210101229
66132151102213
712196211113625
8122502810001025
9142923610012229
10163324510102233
11224565510113645
12244926611002249
13306167811013661
14367369111103673
1550101141051111414101
165010101201000010101
175210521361000122105
185410921531001022109
196012161711001136121
206212521901010022125
216813762101010136137
227414962311011036149
23881771425310111414177
249018122761100022181
259619363001100136193
2610220563251101036205
271162331435111011414233
2812224563781110036245
291362731440611101414273
301503011443511110414301
311803613046511111530361
32180361049610000010361
33182365252810000122365
34184369256110001022369
35190381659510001136381
36192385263010010022385
37198397666610010136397
38204409670310011036409
3921843714741100111414437
40220441278010100022441
41226453682010100136453
42232465686110101036465
4324649314903101011414493
44252505694610110036505
4526653314990101101414533
46280561141035101110414561
47310621301081101111530621
483126252112811000022625
493186376117611000136637
503246496122511001036649
51338677141275110011414677
523446896132611010036689
53358717141378110101414717
54372745141431110110414745
55402805301485110111530805
564088176154011100036817
57422845141596111001414845
58436873141653111010414873
59466933301711111011530933
60480961141770111100414961
6151010213018301111015301021
6254010813018911111105301081
6360212056219531111116621205
646021205020161000000101205
656041209220801000001221209
666061213221451000010221213
676121225622111000011361225
686141229222781000100221229
696201241623461000101361241
706261253624151000110361253
71640128114248510001114141281
726421285225561001000221285
736481297626281001001361297
746541309627011001010361309
75668133714277510010114141337
766741349628501001100361349
77688137714292610011014141377
78702140514300310011104141405
79732146530308110011115301465
807341469231601010000221469
817401481632401010001361481
827461493633211010010361493
83760152114340310100114141521
847661533634861010100361533
85780156114357010101014141561
86794158914365510101104141589
87824164930374110101115301649
888301661638281011000361661
89844168914391610110014141689
90858171714400510110104141717
91888177730409510110115301777
92902180514418610111004141805
93932186530427810111015301865
94962192530437110111105301925
951024204962446510111116622049
9610262053245601100000222053
9710322065646561100001362065
9810382077647531100010362077
991052210514485111000114142105
10010582117649501100100362117