Skip to main content

Table 6 Different TR{Y}–L distributions

From: The TR {Y} power series family of probability distributions

Distributionscdf
TR{exponential}–L\( 1-\frac{\log \left(1-\theta \left(1-{F}_T\left(-\log \left(1-{F}_R(x)\right)\right)\right)\right)}{\log \left(1-\theta \right)},x\in \mathbb{R}. \)
TR{logistic}–L\( 1-\frac{\log \left(1-\theta \left(1-{F}_T\left(\log \left({F}_R(x)/\left(1-{F}_R(x)\right)\right)\right)\right)\right)}{\log \left(1-\theta \right)},x\in \mathbb{R}. \)
TR{extreme value}–L\( 1-\frac{\log \left(1-\theta \left(1-{F}_T\left(\log \left(-\log \left(1-{F}_R(x)\right)\right)\right)\right)\right)}{\log \left(1-\theta \right)},x\in \mathbb{R}. \)
TR{log logistic}–L\( 1-\frac{\log \left(1-\theta \left(1-{F}_T\left({F}_R(x)/\left(1-{F}_R(x)\right)\right)\right)\right)}{\log \left(1-\theta \right)},x\in \mathbb{R}. \)
TR{uniform}–L\( 1-\frac{\log \left(1-\theta \left(1-{F}_T\left({F}_R(x)\right)\right)\right)}{\log \left(1-\theta \right)},x\in \mathbb{R}. \)