Skip to main content

Table 1 Represents the values of the obtained analytical solutions using the large parameter method in the interval t \(\in\) [0, 300]

From: The periodic rotary motions of a rigid body in a new domain of angular velocity

t p2a γ2a xa = dp2a/dt ya = 2a/dt
0 1.88117E−15 1 0 0
10 1.52189E−15 0.809017 − 1.10572E−15 − 0.587785
20 5.81312E−16 0.309017 − 1.78909E−15 − 0.951057
30 − 5.81312E−16 − 0.309017 − 1.78909E−15 − 0.951056
40 − 1.5219E−15 − 0.809017 − 1.10572E−15 − 0.587785
50 − 1.88117E−15 − 1 − 2.84048E−22 − 1.50996E−07
60 − 1.52189E−15 − 0.809017 1.10572E−15 0.587785
70 − 5.81312E−16 − 0.309017 1.78909E−15 0.951056
80 5.81312E−16 0.309017 1.78909E−15 0.951056
90 1.5219E−15 0.809017 1.10572E−15 0.587785
100 1.88117E−15 1 5.68096E−22 3.01992E−07
110 1.52189E−15 0.809017 − 1.10572E−15 − 0.587785
120 5.81312E−16 0.309017 − 1.78909E−15 − 0.951057
130 − 5.81313E−16 − 0.309017 − 1.78909E−15 − 0.951056
140 − 1.52189E−15 − 0.809017 − 1.10572E−15 − 0.587785
150 − 1.88117E−15 − 1 4.48654E−23 2.38498E−08
160 − 1.52189E−15 − 0.809017 1.10572E−15 0.587785
170 − 5.81311E−16 − 0.309016 1.78909E−15 0.951057
180 5.81314E−16 0.309018 1.78909E−15 0.951056
190 1.5219E−15 0.809017 1.10572E−15 0.587785
200 1.88117E−15 1 1.13619E−21 6.03983E−07
210 1.5219E−15 0.809017 − 1.10572E−15 − 0.587785
220 5.81312E−16 0.309017 − 1.78909E−15 − 0.951056
230 − 5.81312E−16 − 0.309017 − 1.78909E−15 − 0.951056
240 − 1.5219E−15 − 0.809017 − 1.10572E−15 − 0.587785
250 − 1.88117E−15 − 1 1.27079E−21 6.75532E−07
260 − 1.52189E−15 − 0.809016 1.10572E−15 0.587786
270 − 5.81313E−16 − 0.309018 1.78909E−15 0.951056
280 5.81311E−16 0.309017 1.78909E−15 0.951057
290 1.52189E−15 0.809017 1.10572E−15 0.587785
300 1.88117E−15 1 − 8.97307E−23 − 4.76995E−08