Skip to main content

Table 2 represents the values of the numerical solutions using fourth-order Runge–Kutta method in the interval t \(\in\) [0, 300]

From: The periodic rotary motions of a rigid body in a new domain of angular velocity

t p2n γ2n xn = dp2n/dt yn = 2n/dt
0 1.8812E−15 1 0 0
10 1.5247E−15 0.809035 − 1.09756E−15 − 0.587738
20 5.9028E−16 0.309102 − 1.77911E−15 − 0.951001
30 − 5.6779E−16 − 0.308864 − 1.78633E−15 − 0.951064
40 − 1.5106E−15 − 0.808859 − 1.11651E−15 − 0.587913
50 − 1.8809E−15 − 0.999934 − 2.35325E−17 − 0.000245929
60 − 1.5383E−15 − 0.809126 1.07833E−15 0.5875
70 − 6.1263E−16 − 0.309316 1.77147E−15 0.950862
80 5.4519E−16 0.30861 1.79318E−15 0.951078
90 1.4963E−15 0.808661 1.13524E−15 0.588073
100 1.8803E−15 0.999868 4.70583E−17 0.000491738
110 1.5517E−15 0.809217 − 1.05894E−15 − 0.587262
120 6.3487E−16 0.309529 − 1.76355E−15 − 0.950724
130 − 5.225E−16 − 0.308356 − 1.79974E−15 − 0.951091
140 − 1.4818E−15 − 0.808463 − 1.1538E−15 − 0.588234
150 − 1.8795E−15 − 0.999802 − 7.05736E−17 − 0.000737578
160 − 1.5648E−15 − 0.809309 1.03937E−15 0.587025
170 − 6.5702E−16 − 0.309743 1.75536E−15 0.950585
180 4.9974E−16 0.308102 1.80602E−15 0.951104
190 1.4671E−15 0.808265 1.17217E−15 0.588394
200 1.8783E−15 0.999736 9.40748E−17 0.000983447
210 1.5777E−15 0.809399 − 1.01965E−15 − 0.586787
220 6.7906E−16 0.309956 − 1.74689E−15 − 0.950446
230 − 4.7689E−16 − 0.307848 − 1.81201E−15 − 0.951117
240 − 1.4521E−15 − 0.808067 − 1.19036E−15 − 0.588553
250 − 1.8769E−15 − 0.99967 − 1.17558E−16 − 0.00122914
260 − 1.5903E−15 − 0.80949 9.99769E−16 0.586549
270 − 7.0098E−16 − 0.310169 1.73814E−15 0.950307
280 4.5398E−16 0.307593 1.81772E−15 0.95113
290 1.4369E−15 0.807869 1.20835E−15 0.588713
300 1.8751E−15 0.999603 1.41019E−16 0.00147495