Skip to main content

Table 4 Absolute errors for Example 2 given by \(\Vert y_e-y_a\Vert\) are

From: An efficient algorithm to solve damped forced oscillator problems by Bernoulli operational matrix of integration

t \(m=2\) \(m=3\) \(m=5\) \(m=7\) \(m=9\)
0.0 7.3937153 \(\times 10^{-3}\) 4.0027165 \(\times 10^{-3}\) 1.187872 \(\times 10^{-4}\) 2.2238 \(\times 10^{-6}\) 8.86\(\times 10^{-8}\)
0.1 1.7293718 \(\times 10^{-3}\) 1.2098059 \(\times 10^{-3}\) 3.90021\(\times 10^{-5}\) 2.310 \(\times 10^{-7}\) 2.72 \(\times 10^{-8}\)
0.2 3.4868805 \(\times 10^{-3}\) 1.5926434 \(\times 10^{-3}\) 3.66331 \(\times 10^{-5}\) 6.928 \(\times 10^{-7}\) 226\(\times 10^{-8}\)
0.3 1.5204341 \(\times 10^{-3}\) 3.54438\(\times 10^{-5}\) 2.05551 \(\times 10^{-5}\) 6.058 \(\times 10^{-7}\) 1.01 \(\times 10^{-8}\)
0.4 1.3499413 \(\times 10^{-3}\) 1.3937426 \(\times 10^{-3}\) 3.19347 \(\times 10^{-5}\) 3.540\(\times 10^{-7}\) 1.07\(\times 10^{-8}\)
0.5 3.3121303\(\times 10^{-3}\) 1.6347759 \(\times 10^{-3}\) 3.2789/2 \(\times 10^{-5}\) 7.238 \(\times 10^{-7}\) 2.25 \(\times 10^{-8}\)
0.6 3.5234170 \(\times 10^{-3}\) 5.969158 \(\times 10^{-4}\) 1.59145\(\times 10^{-5}\) 1.584 \(\times 10^{-7}\) 1.29 \(\times 10^{-8}\)
0.7 1.9275130 \(\times 10^{-3}\) 10241504 \(\times 10^{-5}\) 4.35670 \(\times 10^{-5}\) 7.774 \(\times 10^{-7}\) 7.7\(\times 10^{-9}\)
0.8 9.955869 \(\times 10^{-4}\) 1.9964523\(\times 10^{-3}\) 2.101 \(\times 10^{-7}\) 3.394 \(\times 10^{-7}\) 2.16 \(\times 10^{-8}\)
0.9 4.4842222 \(\times 10^{-3}\) 8.063536 \(\times 10^{-4}\) 5.23268 \(\times 10^{-5}\) 1.870\(\times 10^{-7}\) 2.68 \(\times 10^{-8}\)
1.0 7.7114050\(\times 10^{-3}\) 4.1251090 \(\times 10^{-3}\) 1.187330 \(\times 10^{-5}\) 2.2240 \(\times 10^{-6}\) 8.86 \(\times 10^{-8}\)