Skip to main content

Table 1 Proof that \(\varvec{\varTheta }_{\mathcal {EW}}\) is identifiable

From: Analyzing and solving the identifiability problem in the exponentiated generalized Weibull distribution

Cases

Hypothesis: \(\varvec{\theta }_{i} \ne \varvec{\theta }_{j}\)

Implication for the thesis

1

\(b_{i} \ne b_{j}\), \(c_{i}=c_{j}\) and \(\beta _{i}=\beta _{j}\)

\(F_{EW}\left( t; \varvec{\theta }_{i}\right) \ne F_{EW}\left( t; \varvec{\theta }_{j}\right)\)

2

\(b_{i}=b_{j}\), \(c_{i}=c_{j}=c\) and \(\beta _{i} \ne \beta _{j}\)

\(\beta _{i} \ne \beta _{j} \Rightarrow \left( c t\right) ^{\beta _{i}} \ne \left( c t\right) ^{\beta _{j}}\)

3

\(b_{i}=b_{j}\), \(c_{i} \ne c_{j}\) and \(\beta _{i}=\beta _{j}=\beta\)

\(c_{i} \ne c_{j} \Rightarrow \left( c_{i} t\right) ^{\beta } \ne \left( c_{j} t\right) ^{\beta }\)

4

\(b_{i}=b_{j}\), \(c_{i} \ne c_{j}\) and \(\beta _{i} \ne \beta _{j}\)

\(c_{i} \ne c_{j} \Rightarrow \left( c_{i} t\right) ^{\beta _{i}} \ne \left( c_{j} t\right) ^{\beta _{j}}\)

5

\(b_{i} \ne b_{j}\), \(c_{i} \ne c_{j}\) and \(\beta _{i}=\beta _{j}=\beta\)

\(c_{i} \ne c_{j} \Rightarrow \left( c_{i} t\right) ^{\beta } \ne \left( c_{j} t\right) ^{\beta }\)

6

\(b_{i} \ne b_{j}\), \(c_{i}=c_{j}=c\) and \(\beta _{i} \ne \beta _{j}\)

\(c_{i}= c_{j} \Rightarrow \left( c t\right) ^{\beta _{i}} \ne \left( c t\right) ^{\beta _{j}}\)

7

\(b_{i} \ne b_{j}\), \(c_{i} \ne c_{j}\) and \(\beta _{i} \ne \beta _{j}\)

\(c_{i} \ne c_{j} \Rightarrow \left( c_{i} t\right) ^{\beta _{i}} \ne \left( c_{j} t\right) ^{\beta _{j}}\)