# Table 3 Show Individual residual square error and OHAM solutions convergence at various approximation orders when $$M = Pp = 1 = 2 = \beta = 1,Fs = \delta = \delta_{1} = \delta_{2} = 0.5,\hbar_{u} = - 0.82706,\hbar_{{\uptheta }} = - 0.75851,\hbar_{\phi } = - 0.96084$$

m $${\Delta }_{m}^{f}$$ $${\Delta }_{m}^{\theta }$$ $${\Delta }_{m}^{\phi }$$ $$f^{\prime \prime } \left( 0 \right)$$ $$- \theta {^{\prime}}\left( 0 \right)$$ $$- \phi {^{\prime}}\left( 0 \right)$$ CPU time (s)
2 $$1.79 \times 10^{ - 3}$$ $$2.64 \times 10^{ - 6}$$ $$2.68 \times 10^{ - 8}$$ 2.289542 0.137041 0.011381 0.3437448
4 $$2.54 \times 10^{ - 8}$$ $$1.65 \times 10^{ - 7}$$ $$1.14 \times 10^{ - 13}$$ 2.273865 0.13685 0.011487 0.7187314
6 $$2.35 \times 10^{ - 11}$$ 4.85 $$\times 10^{ - 11}$$ $$9.47 \times 10^{ - 15}$$ 2.274001 0.137146 0.011488 1.1405919
8 $$1.54 \times 10^{ - 12}$$ $$1.03 \times 10^{ - 13}$$ $$2.26 \times 10^{ - 17}$$ 2.274003 0.137151 0.011488 1.671824
10 $$8.95 \times 10^{ - 17}$$ $$4.03 \times 10^{ - 17}$$ $$6.25 \times 10^{ - 20}$$ 2.274004 0.137151 0.011488 2.3905487
12 $$9.20 \times 10^{ - 19}$$ $$3.19 \times 10^{ - 19}$$ $$5.55 \times 10^{ - 23}$$ 2.274004 0.137151 0.011488 3.3280166
14 $$2.09 \times 10^{ - 22}$$ $$4.05 \times 10^{ - 22}$$ $$1.32 \times 10^{ - 25}$$ 2.274004 0.137151 0.011488 3.7185883
20 $$7.76 \times 10^{ - 24}$$ $$1.41 \times 10^{ - 24}$$ $$2.63 \times 10^{ - 28}$$ 2.274004 0.137151 0.011488 12.1245886
26 $$6.19 \times 10^{ - 27}$$ $$1.60 \times 10^{ - 27}$$ $$8.66 \times 10^{ - 31}$$ 2.274004 0.137151 0.011488 18.2174761
30 $$2.46 \times 10^{ - 29}$$ $$5.56 \times 10^{ - 30}$$ $$1.37 \times 10^{ - 33}$$ 2.274004 0.137151 0.011488 22.3578236