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Abstract
In this paper, we introduce the concepts of Stone elements, central elements and
Birkhoof central elements of a doubleMS-algebra and study their related properties.
We observe that the center C(L) of a doubleMS -algebra L is precisely the Birkhoof
center BC(L) of L. A complete description of factor congruences on a double
MS-algebra is given by means of the central elements. A characterization of balanced
factor congruences of doubleMS-algebra is obtained. A one-to-one correspondence
between the class of all balanced factor congruences of a doubleMS-algebra L and the
central elements of L is obtained.
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Introduction
Blyth and Varlet [1] introduced MS-algebras as a generalization of both de Morgan alge-
bras and Stone algebras. Blyth and Varlet [2] characterized the subvarieties of the class
MS of allMS-algebras. Badawy, Guffova, and Haviar [3] introduced and characterized the
class of principal MS-algebras and the class of decomposable MS-algebras by means of
triples. Badawy [4] introduced and studied many properties of dL-filters of principalMS-
algebras. Also, Badawy and El-Fawal [5] considered homomorphisms and subalgebras of
decomposableMS-algebras.
Blyth and Varlet [6] introduced the class of doubleMS-algebras and showed that every

de Morgan algebra M can be represented non-trivially as the skeleton of the double MS-
algebra M[2] = {(a, b) ∈ M × M : a ≤ b}. The class of double MS-algebras satisfying
the complement property has been introduced by Congwen [7]. Haviar [8] studied affine
complete of double MS-algebras from the class K2, of all double K-algebras. Wang [9]
introduced the notion of congruence pairs of double K2-algebras. Recently, Badawy [10]
introduced and constructed the class of double MS-algebras satisfying the generalized
complement property that is containing the class of double MS -algebras satisfying the
complement property.
In this paper, we introduce the notion of Stone elements in doubleMS -algebras. Then,

we prove that the set of Stone elements of a doubleMS-algebra L forms the greatest Stone
subalgebra of L. We introduce the concept of central elements of a double MS-algebra L
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and we show that the set C(L) of all central elements forms the greatest Boolean subalge-
bra of L. For a principal ideal (a] (filter [ a)) of a doubleMS-algebra (L;◦ ,+ ), it is observed
that a relativized algebra (a]L = ((a] ;∨,∧,◦a ,+a , 0, a) ([ a)L = ([ a);∨,∧,◦a ,+a , a, 1)) is
a double MS-algebra if and only if a is a central element of L, where x◦a = x◦ ∧ a and
x+a = x+ ∧ a (x◦a = x◦ ∨ a and x+a = x+ ∨ a). Also, we introduce the Birkhoof center of
a double MS-algebra, then we showed that the Birokhoof center of a double MS-algebra
L can be identified with the center of L. Factor congruences of a double MS-algebra
are investigated by means of central elements. Finally, we study and characterize bal-
anced factor congruences of a double MS-algebra. There is one-to-one correspondence
between the class of balanced factor congruences of a doubleMS-algebra L and the center
C(L) of L.

Preliminaries
In this section, some definitions and results were introduced in [1, 2, 6, 11, 12].
A deMorgan algebra is an algebra (L;∨,∧,− , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1)

is a bounded distributive lattice and − the unary operation of involution satisfies:
x = x, (x ∨ y) = x ∧ y, (x ∧ y) = x ∨ y.
An MS-algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1) is a

bounded distributive lattice and a unary operation ° satisfies:
x ≤ x◦◦, (x ∧ y)◦ = x◦ ∨ y◦, 1◦ = 0.
The basic properties ofMS-algebras are given in the following theorem.

Theorem 1 (Blyth and Varlet [6]) For any two elements a, b of anMS-algebra L, we have
(1) 0◦◦ = 0 and 1◦◦ = 1,
(2) a ≤ b ⇒ b◦ ≤ a◦,
(3) a◦◦◦ = a◦,
(4) a◦◦◦◦ = a◦◦,
(5) (a ∨ b)◦ = a◦ ∧ b◦,
(6) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,
(7) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦.

A dual MS-algebra is an algebra (L;∨,∧,+ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1)
is a bounded distributive lattice and the unary operation + satisfies:
x ≥ x++, (x ∧ y)+ = x+ ∨ y+, 0+ = 1.

Proposition 1 For any two elements a, b of a dual MS-algebra (L;+ ), we have
(1) 0++ = 0 and 1++ = 1,
(2) a ≤ b ⇒ b+ ≤ a+,
(3) a+++ = a+,
(4) a++++ = a++,
(5) (a ∨ b)+ = a+ ∧ b+,
(6) (a ∨ b)++ = a++ ∨ b++,
(7) (a ∧ b)++ = a++ ∧ b++.

A double MS-algebra is an algebra (L;◦ ,+ ) such that (L;◦ ) is an MS-algebra, (L;+ ) is a
dualMS-algebra, and the unary operations ◦,+ are linked by the identities x+◦ = x++ and
x◦+ = x◦◦, for all x ∈ L.
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For any element x of a doubleMS-algebra L, it is clear that x++ ≤ x◦◦ and consequently
x◦ ≤ x ≤ x+.
Some subsets of a double MS-algebra play a significant role in the investigation, by the

skeleton L◦◦ of a doubleMS-algebra L we mean a de Morgan algebra
L◦◦ = {x ∈ L : x = x◦◦} = L++ = {x ∈ L : x = x++} = {x ∈ L : x◦ = x+}.
An equivalence relation θ on a lattice L is called a lattice congruence on L if (a, b) ∈ θ

and (c, d) ∈ θ implies (a ∨ c, b ∨ d) ∈ θ and (a ∧ c, b ∧ d) ∈ θ .

Theorem 2 (Blyth [12]) An equivalence relation on a lattice L is a lattice congruence on
L if and only if (a, b) ∈ θ implies (a ∨ z, b ∨ z) ∈ θ and (a ∧ z, b ∧ z) ∈ θ for all z ∈ L.

A lattice congruence θ on a double MS-algebra (L;◦ ,+ ) is called a congruence on L if
(a, b) ∈ θ implies (a◦, b◦) ∈ θ and (a+, b+) ∈ θ .
We use ∇ = L × L for the universal congruence on a lattice L and � = {(a, a) : a ∈ L}

for the equality congruence on L.
We say the congruences θ ,ψ on a lattice L are permutable if θ ◦ ψ = ψ ◦ θ , that is,

x ≡ y(θ) and y ≡ z(ψ) imply x ≡ r(ψ) and r ≡ z(θ) for some y, r ∈ L.

Center and Birkhoof center of a doubleMS-algebra
We introduce the concept of Stone elements of a double MS-algebra L. Then, we show
that the set LS of all Stone elements of L is the greatest Stone subalgebra of L.

Definition 1 An element x of a double MS-algebra L is called a Stone element of L if
x◦ ∨ x◦◦ = 1 and x+ ∧ x++ = 0. Let LS denote the set of all Stone elements of L, that is,
LS = {x ∈ L : x◦ ∨ x◦◦ = 1, x+ ∧ x++ = 0}.

Definition 2 Let L1 be a bounded sublattice of a doubleMS-algebra L . Then, L1 is called
a subalgebra of L if x◦, x+ ∈ L1 for every x ∈ L1.

Definition 3 A subalgebra L1 of a double MS-algebra L is called a Stone subalgebra if
x◦ ∨ x◦◦ = 1 and x+ ∧ x++ = 0, for all x ∈ L1.

Proposition 2 LS is the greatest Stone subalgebra of a double MS-algebra L.

Proof It is clear that 0, 1 ∈ LS. Let x, y ∈ LS. Then, x◦ ∨ x◦◦ = 1, x+ ∧ x++ = 0,
y◦ ∨ y◦◦ = 1, and y+ ∧ y++ = 0. Thus, we get

(x ∨ y)◦ ∨ (x ∨ y)◦◦ = (x◦ ∧ y◦) ∨ (x◦◦ ∨ y◦◦) by Theorem 1(5),(6)

= (x◦ ∨ x◦◦ ∨ y◦◦) ∧ (y◦ ∨ x◦◦ ∨ y◦◦) by distributivity of L
= 1 ∧ 1 = 1 as x◦ ∨ x◦◦ = 1, y◦ ∨ y◦◦ = 1,

(x ∨ y)+ ∧ (x ∨ y)++ = (x+ ∧ y+) ∧ (x++ ∨ y++) by Proposition 1(5),(6)

= (x+ ∧ y+ ∧ x++) ∨ (x+ ∧ y+ ∧ y++) by distributivity of L

= 0 ∨ 0 = 0 as x+ ∧ x++ = 0, y+ ∧ y++ = 0.
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Then, x ∨ y ∈ LS. Using a similar way, we get x ∧ y ∈ LS. Therefore, (LS,∨,∧, 0, 1) is a
bounded distributive sublattice of L. Now, we prove that x+ ∈ LS for all x ∈ LS.

x+◦ ∨ x+◦◦ = x++ ∨ x+++as x+◦ = x++

= (x+ ∧ x++)+ by Proposition 1(5)

= 0+ = 1 as x+ ∧ x++ = 0,

x+◦ ∧ x+◦◦ = x++ ∧ x+++ as x+◦ = x++

= x++ ∧ x+ = 0 by Proposition 1(3).

Hence, x+ ∈ LS. Similarly, we can prove that x◦ ∈ LS for all x ∈ LS. Therefore, LS is a
subalgebra of a double MS-algebra L. Since x◦ ∨ x◦◦ = 1 and x+ ∧ x++ = 0 for every
x ∈ LS, then LS is a Stone subalgebra of L. To prove that LS is the greatest Stone subalgebra
of L, let S be any Stone subalgebra of L. Let x ∈ S. Then, x is a Stone element of L, and
hence, x ∈ LS. So S ⊆ LS as claimed.

On the following, we introduce the notion of central elements of a doubleMS-algebra L
and prove that the set C(L) of all central elements of L is the greatest Boolean subalgebra
of L. Also, the relationship among LS, C(L), and L◦◦ is investigated.

Definition 4 An element a of double MS-algebra L is called a central element if x∨x◦ =
1 and x∧x+ = 0. The set of all central elements of L is called the center of L and is denoted
by C(L), that is, C(L) = {x ∈ L : x ∨ x◦ = 1, x ∧ x+ = 0}.

Example 1 Consider the bounded distributive lattice L in Fig. 1. Define unary operations
◦,+ on L by

b◦ = x◦ = a, d◦ = y◦ = c, 1◦ = z◦ = 0, 0◦ = 1, c◦ = d, a◦ = b (1)

Fig. 1 L
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and

a+ = z+ = b, c+ = y+ = d, 0+ = x+ = 1, b+ = a, d+ = c, 1+ = 0. (2)

It is clear that (L;◦ ,+ ) is a double MS-algebra. Then, L◦◦, LS, and C(L) are given in
Figs. 2, 3, and 4, respectively.

Theorem 3 Let L be a double MS-algebra. Then
(1) C(L) = L◦◦ ∩ LS,
(2) C(L) is the greatest Boolean subalgebra of L, LS, and L◦◦,
(3) C(L) = C(LS) = C(L◦◦).

Proof (1). Let x ∈ C(L). Then, x ∨ x◦ = 1 and x ∧ x+ = 0. Then

x++ = x++ ∨ 0

= x++ ∨ (x ∧ x+)

= (x++ ∨ x) ∧ (x++ ∨ x+) by distributivity of L

= x ∧ (x+ ∧ x)+ as x ≥ x++

= x ∧ 0+ = x ∧ 1 = x.

Thus, x ∈ L◦◦. Also,

x++ ∧ x+ = x++ ∧ x+++ by Proposition 1(3)

= (x ∧ x+)++ by Proposition 1(7)

= 0++ = 0 by Proposition 1(1),

x◦◦ ∨ x◦ ≥ x ∨ x◦ as x◦◦ ≥ x

= 1.

Fig. 2 L◦◦
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Fig. 3 Ls

Then, x++∧x+ = 0 and x◦◦∨x◦ = 1 imply x ∈ LS. Therefore,C(L) ⊆ L◦◦∩LS. Conversely,
let x ∈ L◦◦ ∩ LS. Then, x = x◦◦ = x++, x◦ ∨ x◦◦ = 1, and x+ ∧ x++ = 0. Now,

x◦ ∨ x = x◦ ∨ x◦◦ = 1,

x ∧ x+ = x++ ∧ x+ = 0.

Thus, x ∈ C(L), and hence, L◦◦ ∩ LS ⊆ C(L).

Fig. 4 C(L)
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(2) Clearly 0, 1 ∈ C(L). Let a, b ∈ C(L). Then, we have

(a ∨ b) ∨ (a ∨ b)◦ = a ∨ b ∨ (a◦ ∧ b◦) by Proposition 1(5)

= (a ∨ b ∨ a◦) ∧ (a ∨ b ∨ b◦) by distributivity of L
= 1 ∧ 1 = 1,

(a ∨ b) ∧ (a ∨ b)+ = (a ∨ b) ∧ (a+ ∧ b+) by Theorem 1(5)

= (a ∧ a+ ∧ a+) ∨ (b ∧ a+ ∧ b+) by distributivity of L

= 0 ∨ 0 = 0.

Then, a ∨ b ∈ C(L). Similarly a ∧ b ∈ C(L). Therefore, (C(L);∨,∧, 0, 1) is a bounded
sublattice of L. Now, we observe that a◦ ∈ C(L) for all a ∈ C(L),

a◦◦ ∨ a◦◦◦ = a ∨ a◦ as a◦◦ = a,∀a ∈ C(L) and a◦◦◦ = a◦

= 1,

a◦+ ∧ a◦++ = a◦◦ ∧ a◦◦◦ as a◦+ = a◦◦

= a◦◦ ∧ a◦ as a◦◦◦ = a◦

= (a◦ ∨ a)◦ = 1◦ = 0 by Theorem 1(5).

Since a◦ = a+ for all a ∈ C(L), then ° coincide with + on C(L). Therefore,
(C(L),∨,∧,◦ , 0, 1) is a subalgebra of L. Since a∨a◦ = 1 and a∧a◦ = a◦◦∧a◦ = (a◦∨a)◦ =
1◦ = 0 for all a ∈ C(L), then (C(L),∨,∧,◦ , 0, 1) is a Boolean subalgebra of L. Suppose that
B is any Boolean subalgebra of L and x ∈ B. Then, a ∨ a◦ = 1 and a ∧ a+ = a ∧ a◦ = 0.
Hence, a is a central element of L and a ∈ C(L). So, B ⊆ C(L) and C(L) is the great-
est Boolean subalgebra of L. Using similar agrement, we can show that C(L) is also the
greatest Boolean subalgebra of both LS and L◦◦.
(3) It follows (1) and (2).

The following theorem shows that the centers of isomorphic double MS-algebras are
isomorphic Boolean algebras.

Theorem 4 If L and M are isomorphic double MS-algebras, then their centers are
isomorphic.

Proof Let h : L → M be an isomorphism and a ∈ C(L). Then, a∨a◦ = 1 and a∧a+ = 0.
Hence, h(a∨a◦) = h(a)∨h(a◦) = h(a)∨(h(a))◦ = h(1) = 1 and h(a)∧(h(a))+ = h(0) =
0. Therefore, hC(L)(a) = h(a) ∈ C(M). It is clear that hC(L) is an injective (0,1) lattice
homomorphism. Let b ∈ C(M). Then, there exists b ∈ L such that b = h(a) = hC(L)(a)
as h is onto. It follows that b◦◦ = (h(a))◦◦ = h(a◦◦) = h(a) = hC(L)(a). Thus, hC(L)

is onto. Obviously, hC(L) preserves ° and +. Then, hC(L) is an isomorphism, and hence,
C(L) ∼= C(M).

For an MS-algebra (L,◦ ), it is proved in [3] that (a]L = ((a] ,◦a ) is an MS-algebra if and
only if a◦ ∈ C(L), where (a]= {x ∈ L : x ≤ a} =[ 0, a] is a principal ideal of L generated
by the element a of L, a unary operation ◦a is defined on (a] by x◦a = x◦ ∧ a for all x ∈ (a]
and C(L) = {x ∈ L : x ∨ x◦ = 1} is the center of L.
For a double MS-algebra (L;◦ ,+ ), the answer of the following question is given: Under

what conditions a principal ideal (a] , a ∈ L constructs a doubleMS-algebra?



Badawy Journal of the EgyptianMathematical Society            (2019) 27:6 Page 8 of 15

Theorem 5 Let L be a double MS-algebra. Suppose that a ∈ C(L), then the relativized
algebra (a]L = ((a] ,∧,∨,◦a ,+a , a, 1) is a double MS-algebra, where x◦a = x◦ ∧ a and
x+a = x+ ∧ a. Conversely, if (a]L = ((a] ,∧,∨,◦a ,+a , a, 1) is a double MS-algebra, then
a ∈ LS.

Proof Assume that a ∈ C(L). Hence, a◦ ∈ C(L). Then, by ([13], Theorem 3.5),
((a] ,∨,∧,◦a , 0, a) is an MS-algebra, whenever x◦a = x◦ ∧ a. Now, we prove that
((a] ,∨,∧,+a , 0, a) is a dualMS-algebra, where x+a = x+ ∧ a for any x ∈ (a]. Let x ∈ (a],
we have

x+a◦+a ∨ x = (x+ ∧ a)+a ∨ x

= ((x+ ∧ a)+ ∧ a) ∨ x

= ((x++ ∨ a+) ∧ a) ∨ x

= (x++ ∧ a) ∨ (a+ ∧ a) ∨ x by distributivity of L

= (x++ ∧ a) ∨ x as a+ ∧ a = 0

= x as x ≥ x++ ≥ x++ ∧ a.

Then, x ≥ x+a+a . Let x, y ∈ (a]

(x ∧ y)+a = (x ∧ y)◦ ∧ a

= (x+ ∨ y◦+) ∧ a

= (x+ ∧ a) ∨ (y+ ∧ a) by distributivity of L

= x+a ∨ y+a ,

Also, 0+a = a. Now, for every x ∈ (a], we have

x◦a+a = (x◦ ∧ a)+a

= (x◦ ∧ a)+ ∧ a

= (x◦+ ∨ a+) ∧ a

= (x◦◦ ∨ a+) ∧ a

= (x◦◦ ∧ a) ∨ (a+ ∧ a)

= x◦◦ ∧ a as a+ ∧ a = 0,

x◦a◦a = (x◦ ∧ a)◦ ∧ a

= (x◦◦ ∨ a◦) ∧ a

= (x◦◦ ∧ a) ∨ (a◦ ∧ a) by distributivity

= x◦◦ ∧ a as a+ ∧ a = 0.

This deduce that x◦a+a = x◦◦. Also, we can get x+a◦a = x+a+a . Therefore, (a]L =
((a] ,∨,∧,◦a ,+a , 0, a) is a doubleMS-algebra.
Conversely, suppose that a ∈ L, (a]L = ((a] ,∨,∧,◦a ,+a , 0, a) is a doubleMS-algebra with
x◦a = x◦ ∧ a and x+a = x+ ∧ a. Since a is the greatest element of (a]L, then a+a = 0
and a◦a = 0. This gives a+ ∧ a = 0 and a◦ ∧ a = 0, respectively. Consequently,
a+ ∧ x++ = (a+ ∧ a)++ = 0++ = 0 and a◦◦ ∨ a◦ = (a◦ ∧ a)◦ = 0◦ = 1. Therefore, a is a
Stone element of L.
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Similarly for the principal filter [ a) of a double MS-algebra, we establish the following
result, where [ a) = {x ∈ L : x ≥ a} =[ a, 1].

Theorem 6 Let L be a double MS-algebra. If a ∈ C(L), then the relativized algebra
[ a)L = ([ a),∧,∨,◦a ,+a , a, 1) is a doubleMS-algebra, where x◦a = x◦∨a and x+a = x+∨a
. Conversely, if [ a)L = ([ a),∧,∨,◦a ,+a , a, 1) is a double MS-algebra, then a ∈ LS.

Let L1, L2 are doubleMS-algebras. Then, L1 × L2 is a doubleMS-algebra, where ° and +

are defined by (x, y)◦ = (x◦, y◦) and (x, y)+ = (x+, y+). Moreover, (L1 ×L1)◦◦ = L◦◦
1 ×L◦◦

2
and C(L1 × L2) = C(L1) × C(L2).
As a consequence of Theorem 5 and Theorem 6, we have

Theorem 7 Let L be a doubleMS-algebra. If a ∈ C(L), then ((a]L ×[ a)L,◦ ,+ ) is a double
MS-algebra, where

(a]L ×[ a)L = {(x, y) : x ∈ (a]L , y ∈[ a)L},
and
(x, y)◦ = (x◦ ∧ a, y◦ ∨ a) and (x, y)+ = (x+ ∧ a, y+ ∨ a) for all (x, y) ∈ (a]L ×[ a)L.

Now, we introduce the concept of Birkhoff center for a doubleMS-algebra.

Definition 5 An element a of a double MS-algebra L is called a Birkhoff central element
if there exist double MS-algebras L1 and L2 and an isomorphism from L to L1 × L2 such
that a is mapped to (1, 0). The set BC(L) of all Birkhoff central elements of L is called the
Birkhoff center.

Theorem 8 Let L be a double MS-algebra. Then, BC(L) = C(L).

Proof Let a ∈ BC(L). Then, there exist double MS-algebras L1 and L2 and an isomor-
phism h from L to L1 × L2 such that h(a) = (1, 0). By Theorem 4, C(L) is isomorphic to
C(L1 × L1) = C(L1) × C(L2). Thus, (1, 0) ∈ C(L1) × C(L2). Therefore, a = h−1(1, 0) ∈
C(L) and BC(L) ⊆ C(L).
Conversely, let a ∈ C(L). Then, by Theorem 5 and Theorem 6, L1 = (a]L and L2 =[ a)L
are doubleMS-algebras, respectively. The direct product L1×L2 = (a]L ×[ a)L is a double
MS-algebra, by Theorem 7. Notice that 1L1 = a is the greatest element of L1 and 0L2 = a
is the smallest element of L2. Define h : L → L1 × L2 by h(x) = (a∧ x, a∨ x). It is already
seen that h is an isomorphism of L onto L1 × L2. Then, h(a) = (a, a) = (1L1 , 0L2) implies
a ∈ BC(L). Therefore, C(L) ⊆ BC(L).

Balanced factor congruences of a doubleMS-algebra
In [14], Badawy investigated the relationship between congruences and de Morgan fil-
ters of decomposable MS-algebras. In this section, we study the connection between
congruences and central elements of a doubleMS-algebra.
Let a be an element of a doubleMS-algebra L. Define a binary relation θa on L by
(x, y) ∈ θa iff x ∨ a = y ∨ a.

Proposition 3 For any two elements a and b of a double MS-algebra L, we have
(1) θa is a lattice congruence on L with Ker θa = (a],
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(2) a ≤ b iff θa ⊆ θb,
(3) a = b iff θa = θb,
(4) θ0 = � and θ1 = ∇ ,
(5) θa is the smallest lattice congruence containing (0, a).

Proof (1). Obviously θa is an equivalence relation on L. Let (x, y) ∈ θa. Then, x∨a = y∨a.
For all z ∈ L, by associativity and commutativity of ∨, we have

(x ∨ z) ∨ a = x ∨ (z ∨ a)

= x ∨ (a ∨ z)

= (x ∨ a) ∨ z

= y ∨ (a ∨ z

= y ∨ (z ∨ a)

= (y ∨ z) ∨ a,

and
(x ∧ z) ∨ a = (x ∨ a) ∧ (z ∨ a) by distributivity of L

= (y ∨ a) ∧ (z ∨ a)

= (y ∧ z) ∨ a by distributivity of L.

Then, by Theorem 2, θa is a lattice congruence on L. Now

Ker θa = {x ∈ L : (0, x) ∈ θa}
= {x ∈ L : a = 0 ∨ a = x ∨ a}
= {x ∈ L : x ≤ a} =[ a).

(2) Let a ≤ b and (x, y) ∈ θa. Hence, x ∨ a = y ∨ a. Then, x ∨ a ∨ b = y ∨ a ∨ b
implies x ∨ b = y ∨ b. This gives (x, y) ∈ θa and θa ⊆ θb. Conversely, let θa ⊆ θb. Since
(a ∧ b) ∨ a = a = a ∨ a, then (a ∧ b, a) ∈ θa. By hypotheses, (a ∧ b, a) ∈ θb. Then,
(a ∧ b) ∨ b = a ∨ b implies b = a ∨ b. Therefore, a ≤ b.
(3) It is obvious.
(4) Since for any (x, y) ∈ θ0, we have x = y. Then, θ0 = �. For all x, y ∈ L, we have
x ∨ 1 = 1 = y ∨ 1 and hence (x, y) ∈ θ1. Hence, θ1 = ∇ .
(5) Let θ be a lattice congruence containing (0, a). Suppose that (x, y) ∈ θa. Then, x∨a =
y ∨ a. Since (x, x), (0, a) ∈ θ , then (x, x ∨ a) ∈ θ . Also, (y, y), (0, a) ∈ θ give (y, y ∨ a) ∈ θ .
Then, (x, x ∨ a), (x ∨ a, y) ∈ θ imply (x, y) ∈ θ . So, θa ⊆ θ .

Proposition 4 For any two elements a and b of a double MS-algebra L, we have
(1) θa∧b = θa ∩ θb,
(2) θa∨b = θa ∨ θb,
(3) θa ◦ θb = θb ◦ θa,
(4) θa ◦ θb = θa ∨ θb,
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Proof (1). Since a∧b ≤ a, b, then by Proposition 3(2), θa∧b ⊆ θa, θb. Thus, θa∧b ⊆ θa∩θb.
Conversely, let (x, y) ∈ θa ∩ θb. Then

(x, y) ∈ θa ∩ θb ⇒ (x, y) ∈ θa and (x, y) ∈ θb

⇒ x ∨ a = y ∨ a and x ∨ b = y ∨ b

⇒ (x ∨ a) ∧ (x ∨ b) = (y ∨ a) ∧ (y ∨ b)

⇒ x ∨ (a ∧ b) = y ∨ (a ∧ b) by distributivity of L

⇒ (x, y) ∈ θa∧b.

Therefore, θa ∩ θb ⊆ θa∧b and θa∧b = θa ∩ θb.
(2) Since a, b ≤ a ∨ b, then θa, θb ⊆ θa∨b. Hence, θa∨b is an upper bound of θa and θb.
Assume that θc is an upper bound of θa and θb. Then, by Proposition 3(2), θa, θb ⊆ θc
imply that a, b ≤ c. We prove that θa∨b ⊆ θc. Let (x, y) ∈ θa∨b. Then, x∨a∨b = y∨a∨b.
Hence, x ∨ a∨ b ∨ c = y ∨ a ∨ b ∨ c implies x ∨ c = y ∨ c and (x, y) ∈ θc. This shows that
θa∨b is the least upper bound of θa and θb, that is, θa∨b = θa ∨ θb.
(3) Let (x, y) ∈ θa ◦ θb. Then, there exists q ∈ L such that (x, q) ∈ θa and (q, y) ∈ θb. Thus,
x ∨ a = q ∨ a and q ∨ b = y ∨ b. Put s = (a ∨ y) ∧ (b ∨ x). Now

a ∨ s = a ∨ {(a ∨ y) ∧ (b ∨ x)}
= (a ∨ a ∨ y) ∧ (a ∨ b ∨ x) by distributivity of L

= (a ∨ y) ∧ (a ∨ b ∨ q) as a ∨ q = a ∨ x

= (a ∨ y) ∧ (a ∨ b ∨ y) as b ∨ q = b ∨ y

= a ∨ {y ∧ (b ∨ y)} by distributivity of L
= a ∨ y by the absorbtion identity.

Then, (s, y) ∈ θa. Also

b ∨ s = b ∨ {(a ∨ y) ∧ (b ∨ x)}
= (a ∨ b ∨ y) ∧ (b ∨ x) by distributivity of L

= (b ∨ a ∨ q) ∧ (b ∨ x) as b ∨ q = b ∨ y

= (b ∨ a ∨ x) ∧ (b ∨ x) as x ∨ a = q ∨ a

= b ∨ {(a ∨ x) ∧ x} by distributivity of L
= b ∨ x by the absorbtion identity.

Then, (x, s) ∈ θb. Therefore, (x, y) ∈ θb ◦ θa and θa ◦ θb ⊆ θb ◦ θa. Conversely, let (x, y) ∈
θb ◦θa. Then, there exists s ∈ L such that (x, s) ∈ θb and (s, y) ∈ θa. Set t = (b∨y)∧(a∨x).
Then, we can get a ∨ t = a ∨ x and b ∨ t = b ∨ y which means (x, t) ∈ θa and (t, y) ∈ θb.
Therefore, (x, y) ∈ θa ◦ θb. So, θb ◦ θa ⊆ θa ◦ θb.
(4) Let (x, y) ∈ θa ◦ θb. Then, there exists q ∈ L such that (x, q) ∈ θa and (q, y) ∈ θb. Then,
x ∨ a = q ∨ a and q ∨ b = y ∨ b. Using associativity and commutativity of ∨, we get

(a ∨ b) ∨ x = (a ∨ x) ∨ b = (a ∨ q) ∨ b = a ∨ (q ∨ b) = a ∨ (y ∨ b) = (a ∨ b) ∨ y.
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Then, (x, y) ∈ θa∨b. Conversely, let (x, y) ∈ θa∨b. Then, a ∨ b ∨ x = a ∨ b ∨ y. Set
q = (a ∨ x) ∧ (b ∨ y). We have

a ∨ q = a ∨ {(a ∨ x) ∧ (b ∨ y)}
= (a ∨ x) ∧ (a ∨ b ∨ y) by distributivity of L

= (a ∨ x) ∧ (a ∨ b ∨ x)

= a ∨ x as a ∨ x ≤ a ∨ b ∨ x.

Then, (x, q) ∈ θa. Also, we can get (q, y) ∈ θb. Therefore, (x, y) ∈ θa ◦θb and θa∨b ⊆ θa ◦θb.

Theorem 9 For any two elements a and b of a double MS-algebra L, we have
(1) θa is compatible with ° if and only if a ∨ a◦ = 1,
(2) θa is compatible with + if and only if a+ ∧ a++ = 0,
(3) θa is a congruence on L if and only if a ∈ C(L).

Proof (1). Let (x, y) ∈ θa and a◦ ∨ a = 1. Then, x ∨ a = y ∨ a. We prove that (x, y) ∈ θa
implies (x◦, y◦) ∈ θa.

(x, y) ∈ θa ⇒ x ∨ a = y ∨ a

⇒ x◦ ∧ a◦ = (x ∨ a)◦ = (y ∨ a)◦ = y◦ ∧ a◦ by Theorem 1(5)

⇒ (x◦ ∧ a◦) ∨ a = (y◦ ∧ a◦) ∨ a by joining two sides with a

⇒ (x◦ ∨ a) ∧ (a◦ ∨ a) = (x◦ ∨ a) ∧ (a◦ ∨ a) by the distributivity of L

⇒ x◦ ∨ a = x◦ ∨ a as a◦ ∨ a = 1

⇒ (x◦, y◦) ∈ θa

Then, (x◦, y◦) ∈ θa. Conversely, let θa is compatible with °. Since (0, a) ∈ θa by Proposition
3(5), then (1, a◦)) ∈ θa. Hence, (a, a), (1, a◦)) ∈ θa implies (1, a ∨ a◦) ∈ θa. Therefore,
1 = 1 ∨ a = a ∨ (a ∨ a◦) = a ∨ b.
(2) Let a+ ∧ a++ = 0. Using the properties of dual MS-algebra (L;+ ) and Proposition 1,
we get a+ ∨ a ≥ a+ ∨ a++ = (a+ ∧ a++)+ = 0+ = 1 and hence a+ ∨ a = 1. Now, let
(x, y) ∈ θa. We have

(x, y) ∈ θa ⇒ x ∨ a = y ∨ a

⇒ x+ ∧ a+ = (x ∨ a)+ = (y ∨ a)+ = y+ ∧ a+ by Proposition 1(5)

⇒ (x+ ∧ a+) ∨ a = (y+ ∧ a+) ∨ a by joining two sides with a

⇒ (x+ ∨ a) ∧ (a+ ∨ a) = (x+ ∨ a) ∧ (a+ ∨ a) by the distributivity of L

⇒ x+ ∨ a = x+ ∨ a as a+ ∨ a = 1.

Then, (x+, y+) ∈ θa. Conversely, let θa is compatible with +. Then, (0, a) ∈ θa implies
(1, a+)) ∈ θa. Since (a, a), (1, a+)) ∈ θa, then (1, a∨ a+) ∈ θa. Hence, 1 = 1∨ a = a∨ a+.
It follows that a+ ∧ a++ = (a ∨ a+)+ = 1+ = 0.
(3) As a ∈ C(L), then a ∨ a◦ = 1, a ∧ a+ = 0, and a = a◦◦, the proof follows (1)
and (2).

Now, we introduce the concept of factor congruences for doubleMS-algebras.
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Definition 6 A congruence θ on a double MS-algebra L is called a factor congruence if
there is a congruence ψ on L such that θ ∧ ψ = �, θ ∨ ψ = ∇ and θ permutes with ψ .

Theorem 10 Let L be a double MS-algebra and θ a congruence on L. Then, θ is a factor
congruence on L if and only if θ = θa for some a ∈ C(L).

Proof Let a ∈ C(L). Hence, a◦ ∈ C(L). Using Theorem 9(3), we deduce that θa and θa◦

are congruences on L. Hence, we get

θa ∨ θa◦ = θa∨a◦ by Proposition 4(2)

= θ1 as a ∨ a◦ = 1

= ∇ by Proposition 3(4),

θa ∩ θa◦ = θa∧a◦ by Proposition 4(1)

= θ0 as a ∧ a◦ = 0

= � by Proposition 3(4),

θa ◦ θa◦ = θa◦ ◦ θa by Proposition 4(3).

Therefore, θa is a factor congruence on L, whenever a ∈ C(L). Conversely, let θ be a
factor congruence on L. Then, there exists a congruence ψ on L such that θ ∨ ψ = ∇
and θ ∩ ψ = �. Since (0, 1) ∈ ∇ = θ ∨ ψ = θ ◦ ψ , then there exists x ∈ L such that
(0, x) ∈ θ and (x, 1) ∈ ψ . Thus, (0, x◦◦) ∈ θ and (x◦◦, 1) ∈ ψ . We prove that θ = θx◦◦ such
that x◦◦ ∈ C(L). Since (0, x◦◦) ∈ θ , then by Proposition 3(5), θx◦◦ ⊆ θ . Now, let (p, q) ∈ θ .
Then, (p, q), (x◦◦, x◦◦) ∈ θ implies (p ∨ x◦◦, q ∨ x◦◦) ∈ θ . Since (x◦◦, 1), (p, p), (q, q) ∈ ψ ,
then (x◦◦∨p, 1), (x◦◦∨q, 1) ∈ ψ . Hence, (x◦◦∨p, x◦◦∨q) ∈ ψ . Therefore, (x◦◦∨p, x◦◦∨q) ∈
θ ∩ ψ = �. It follows that x◦◦ ∨ p = x◦◦ ∨ q and hence (p, q) ∈ θx◦◦ . So, θ ⊆ θ◦◦ and
θ = θx◦◦ . This deduce that θx◦◦ is a congruence on L. So, by Theorem 9(3), x◦◦ ∈ C(L).

Now, we introduce the concept of balanced factor congruences of a doubleMS-algebra.

Definition 7 A congruence θ on a double MS-algebra L is called balanced if (θ ∨ α) ∩
(θ ∨ ά) = θ for all factor congruence α and its complement ά. The set B(L) of all balanced
factor congruences which admit a balanced complement is called the Boolean center of L.

Example 2 Consider the double MS-algebra L as in Example 1. Factor congruences on L
are given as follows:

θ0 = �, θ1 = ∇ , θa = {{0, c, a}, {x, y, z}, {b, d, 1}}, θb = {{0, x, b}, {c, y, d}, {a, z, 1}}.

It is observed that the Boolean lattice B(L), of all balanced factor congruences is B(L) =
{θ0, θa, θb, θ1} which is represented in Fig. 5. Clearly C(L) and B(L) are isomorphic Boolean
lattices.

Lemma 1 Let L be a double MS-algebra and x ∈ C(L). Then, θx is balanced.

Proof Let α be a factor congruence on L and ά be its complement. Using Theorem 10,
there exist a, b ∈ C(L) such that α = θa and ά = θb. Hence, α ∩ ά = � and α ∨ ά = ∇ .
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Fig. 5 B(L)

We have

(θx ∨ α) ∩ (θx ∨ ά) = (θx ∨ θa) ∩ (θx ∨ θb)

= θx∨a ∩ θx∨b by Proposition 4(2)

= θ(x∨a)∧(x∨b) by Proposition 4(1)

= θx∨(a∧b) by distributivity of L
= θx ∨ (θa ∩ θb) by Proposition 4(2) and (1), respectively

= θx ∨ (α ∩ ά)

= θx ∨ � as α ∩ ά = �

= θx as � ⊆ θxfor all x ∈ L.

Then, θx is balanced.

We close this section with the following two important results.

Theorem 11 Let L be a double MS-algebra. Then, the Boolean center B(L) of L is
precisely the set {θa : a ∈ C(L)}.

Theorem 12 Let L be a double MS-algebra. Then, the Boolean center B(L) is a Boolean
algebra and the mapping a �→ θa is an isomorphism of C(L) onto B(L).

Proof The set of all balanced factor congruences of L is B(L) = {θa : a ∈ C(L)} by
Theorem 11. It is clear that θ1 = ∇ is the greatest element of B(L) and θ0 = � is the
smallest element of B(L) by Proposition 3(4). Also, by Proposition 4(1),(2), respectively,
we have θa ∩ θb = θa∧b and θa ∨ θb = θa∨b for all θa, θb ∈ B(L). Then, (B(L);∩,∨, θ0, θ1) is
a bounded lattice. For all θa, θb, θc ∈ B(L), by distributivity of C(L), we get θa ∩ (θb ∨ θc) =
θa ∩ θb∨c = θa∧(a∨b) = θ(a∨b)∧(a∨c) = θa∨b ∩ θa∨c = (θa ∨ θb) ∩ (θa ∨ θc). Thus, B(L) is
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a distributive lattice. The complement of θa is θa◦ . Then, B(L) is a Boolean algebra. The
proof of the rest part of this theorem is straightforward.
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