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Abstract

Thermodynamic properties of heavy mesons are calculated within the framework of
the N-dimensional radial Schrödinger equation. The Cornell potential is extended by
including the quadratic potential plus the inverse of quadratic potential. The energy
eigenvalues and the corresponding wave functions are calculated in the N-dimensional
space using the Nikiforov–Uvarov (NU) method. The obtained results are applied for
calculating the mass of spectra of charmonium, bottomonium, bc; and cs mesons. The
thermodynamic properties of heavy quarkonia such as the mean energy, the specific
heat, the free energy, and the entropy are calculated. The effect of temperature and the
dimensionality number on heavy meson masses and thermodynamic properties is
investigated. The obtained results are improved in comparison with other theoretical
approaches and in a good agreement with experimental data. We conclude that the
present potential well describes thermodynamic properties in the three-dimensional
space and also the higher dimensional space.

Keywords: Cornell potential, Thermodynamic properties, Schrödinger equation,
Heavy mesons
Introduction
Thermodynamics is the branch of physics concerned in temperature and their relation to

energy. This branch plays an important role in high energy physics [1]. According to

statistical quantum chromodynamics (QCD), nuclear matter may undergo a color de-

confined partonic phase, the quark–gluon plasma (QGP), at sufficiently high temperature

and/or density. Over the past few decades, strenuous efforts have been made to devise

clean and experimentally viable signals that can unambiguously identify the existence of

QCD phase transition and trace out its signatures. Charmonium (a bound state of charm

and anti-charm quarks) suppression had been predicted as a signature for the deconfine-

ment transition [2, 3].

The Schrödinger equation (SE) plays an important role in describing many phenomena

as in high energy physics. Thus, the solutions of the SE are important for calculating the

mass of quarkonia and thermodynamic properties. To obtain the exact and approximate

solutions of SE, various methods have been used for specific potentials such as the

Nikiforov–Uvarov method [4], supersymmetry quantum mechanics [5], asymptotic

iteration method [6], and Laplace integral transform [7]. Recently, N-dimensional
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Schrödinger equation has received focal attention in the literature. The higher dimension

studies facilitate a general treatment of the problem in such a manner that one can obtain

the required results in the lower dimensions just dialing appropriate with N [8–14].

The thermodynamic properties play an essential role in describing quark–gluon plasma

[15], in which the thermodynamic properties of light quarks are calculated in comparison

with the strange quark matter. In [16], the thermodynamic properties of the QGP are

performed based on the constituent quasiparticle model of the quark–gluon plasma. In

addition, the thermodynamic properties are investigated in the framework chiral quark

models such as in [17–19] and also in molecular physics using the relativistic and non-

relativistic models [20–23].

In the present paper, we aim to calculate the N-dimensional Schrödinger equation

analytically by using Nikiforov–Uvarov (NU) method firstly, and apply the present

results to find the properties of quarkonium particles which are not considered in other

works such as thermodynamic properties for charm matter.

The paper is organized as follows: In the “Theoretical description of the Nikiforov–

Uvarov method” section, the NU method is briefly explained. In the “The Schrödinger

equation with the extended Cornell potential” section, the energy eigenvalues and the

corresponding wave functions are calculated in the N-dimensional space. In the

“Results and discussion” section, the results are discussed. In the “Summary and

conclusion” section, the summary and conclusion are presented.

Theoretical description of the Nikiforov–Uvarov method
The NU method is briefly given that is a suitable method to obtain the solution of the

second-order differential equation which has the following form:

Ψ00 sð Þ þ τ sð Þ
σ sð Þ Ψ 0 sð Þ þ ~σ sð Þ

σ sð Þ2 Ψ sð Þ ¼ 0; ð1Þ

where σ (s) and ~σ ðsÞ are the polynomial of the maximum second degree and τðsÞ is a

polynomial of the maximum first degree with a coordinate transformation S = S (r) to

find the particular solution of Eq. (1) by separation of variables, if we use the following

transformation:

Ψ sð Þ ¼ Φ sð Þ χ sð Þ: ð2Þ

Equation (1) can be written as in [23, 24] as follows:

σ sð Þ χ 00 sð Þ þ τ sð Þ χ 0 sð Þ þ λ χ sð Þ ¼ 0; ð3Þ

π sð Þ ¼ σ0 sð Þ−τ sð Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0 sð Þ−τ sð Þ

2

� �2

−~σ sð Þ þ K σ sð Þ
s

;

ð4Þ

λ ¼ λn ¼ −n τ sð Þ‘− n n−1ð Þ
2

σ 00 sð Þ; n ¼ 0; 1; 2;… ð5Þ

χ (s) = χn(s) is a polynomial of n degree which satisfies the hypergeometric equation
which has the following form:
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λ ¼ K þ π0 sð Þ; ð6Þ

where π(s) is a polynomial of the first degree. The values of K in the square root

of Eq. (4) is possible to calculate if the expressions under the square root are

square of the expressions. This is possible if its discriminate is zero (for details, see [4]).

The Schrödinger equation with the extended Cornell potential
The SE for two particles interacting via symmetric potential in the N-dimensional space

takes the form as in [25]

d2

dr2
þ N � 1

r
d
dr

� L Lþ N � 2ð Þ
r2

þ 2μ E � V rð Þð Þ
� �

Ψ rð Þ ¼ 0; ð7Þ

where L, N, and μ are the angular momentum quantum number, the dimensionality

number, and the reduced mass for the quarkonium particle, respectively. Setting wave

function Ψ(r) = r
1−N
2 R(r), the following radial SE is obtained:

d2

dr2
þ 2 μ E � V rð Þð Þ−

Lþ N−2
2

� �2− 1
4

2μ r2

2
64

3
75 R rð Þ ¼ 0; ð8Þ

the extended Cornell potential is suggested as follows. V(r) takes the form.

V rð Þ ¼ ar−
b
r
þ cr2 þ d

r2
; ð9Þ

where a, b, c, and d are the arbitrary constants to be determined later. The first term is

a linear term for confinement feature and coulomb’s potential that describes the short

distances between quark–antiquark. The two terms are called Cornell potential. In the

present work, we extend the Cornell potential to include the quadratic potential and

the inverse quadratic potential which play an important role in improving quarkonium

properties such as in [26, 27].

By substituting Eq. (9) into Eq. (8), we obtain:

d2

dr2
þ 2μ E−ar þ b

r
−c r2−

d
r2
−

l þ N−2
2

� �2− 1
4

2 μ r2

0
B@

1
CA

2
64

3
75 R rð Þ ¼ 0; ð10Þ

Let us assume that r = 1
x and r0 is a characteristic radius of the meson. Then, the scheme is

based on the expansion of 1x in a power series around r0, i.e., around δ ¼ 1
r0
. Equation (10)

takes the following equation:

d2

dx2
þ 2 x

x2
d
dx

þ 2 μ
x4

−Aþ B x−C1x
2

� �� �
R xð Þ ¼ 0; ð11Þ

where

A ¼ −μ E−
3 a
δ

−
6 a

δ2

� �
; B ¼ μ

3 a

δ2
þ 8 C

δ3
þ b

� �
;

and
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C1 ¼ μ
a

δ3
þ c

δ4
−
b
δ
þ d þ

l þ N−2
2

� �2− 1
4

2 μ

0
B@

1
CA;

therefore,

π ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 2 C1ð Þ x2−2 Bxþ 2 A

p
; ð12Þ

the constant K is chosen such as the function under the square root has a double zero,

i.e., its discriminant for bound state solutions, we choose the positive sign in the above

equation so that the derivative is given.

τ‘ ¼ 2−
2Bffiffiffiffiffiffiffi
2 A

p ð13Þ

λ ¼ λn ¼ −n τ‘ sð Þ− n n−1ð Þ
2

σ 00 sð Þ; n ¼ 0; 1; 2;… ð14Þ

and Eq. (14), we obtain:

λn ¼ −n 2−
2B

2
ffiffiffiffiffi
A

p
� �

� n n� 1ð Þ; ð15Þ

by using Eq. (5), we obtain from Eq. (6); λ = λn. The energy eigenvalue in the N-dimensional

space is given.

Enl ¼ 3a
δ

þ 6c

δ2
−

2μ 3a
δ2
þ 8c

δ3
þ b

	 
2
2nþ 1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 μa

δ3
þ 4 Lþ N−2

2

� �2− 1
4

	 

−8μd þ 24 μc

δ4

r� �2 ; ð16Þ

By taking a = 0 and N = 3, we obtain the results in [28]. At d = 0, we obtain the results
of [29].

The radial of the wave function of Eq. (10) takes the following form.

Rnl ¼ Cnl r
−Bffiffiffiffiffiffi
2 A

p −1 e
ffiffiffiffiffiffiffi
2 A

p
r −r2

d
dr

� �n

r−2 nþ −2 Bffiffiffiffiffiffi
2 A

p
e−2

ffiffiffiffiffiffiffi
2 A

p
r

	 

; ð17Þ

where Cn is the normalization constant that is determined by:

Z
Rn l rð Þj j2 dr ¼ 1: ð18Þ

Thermodynamic properties
We study thermodynamic properties of extended Cornell potential; the partition function

is given Z =
P½ λ �

n¼0 e
−β E , where β = 1

K T ; K is the Boltzmann constant. The principal

quantum number n ranges from 0, 1, 2,…, [λ], λ = 1
2 ½

ffiffiffiffi
A2
A1

q
−A3] where A1, A2, A3 are

defined in Eq. (20). In the classical limit, at high temperature T for large [ λ], the sum can

be replaced by an integral as used in [20, 21], in which the partition function and thermo-

dynamic properties are defined as follows.
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Partition function

Z βð Þ ¼
Z λ

0
e−β En dλ;

by substituting Eq. (16), we obtain:

Z βð Þ ¼ 1
2
e−A1β −A3e

A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
Erfi

ffiffiffiffiffiffi
A2

p ffiffiffi
β

p
A3

" #
−Erfi

ffiffiffiffiffiffi
A2

p ffiffiffi
β

p
A3 þ 2λ

" # ! !
;

ð19Þ

where

A1 ¼ 3 a
δ

þ 6 a

δ2

� �
; A2 ¼ 2μ

3 a

δ2
þ 8 C

δ3
þ b

� �2

;

A3 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 μa

δ3
þ 4 Lþ N−2

2

� �2

−
1
4

 !
−8μd þ 24 μc

δ4

vuut ð20Þ

Mean energy U

U βð Þ ¼ −
d
dβ

LnZ βð Þ:

U βð Þ ¼ − 2eA1 β 1
2
e−A1β −

A2e
A2β

A3
2

A3
þ A2e

A2β

A3þ2λð Þ2

A3 þ 2λ
þ

ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
Dþ H

2
ffiffiffi
β

p
0
B@

0
B@

1
CA

0
B@

−
1
2
A1e

−A1β −A3e
A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffi
β

p
H

� �!!

= −A3e
A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffi
β

p
H

� �!
;

ð21Þ

where

D ¼
ffiffiffiffiffiffi
A2

p
e
A2β

A3
2

A3
ffiffiffi
π

p ffiffiffi
β

p −
ffiffiffiffiffiffi
A2

p
e

A2β

A3þ2λð Þ2ffiffiffi
π

p ffiffiffi
β

p
A3 þ 2λð Þ ;

H ¼ Erfi

ffiffiffiffiffiffi
A2

p ffiffiffi
β

p
A3

" #
−Erfi

ffiffiffiffiffiffi
A2

p ffiffiffi
β

p
A3 þ 2λ

" #
;

Specific heat C

C βð Þ ¼ dU
dT

¼ −K β2
dU
dβ

;
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C βð Þ ¼ −Kβ2ðð2eA1 βð
1
2
e−A1 β −

A2e
A2β

A3
2

A3
þ A2e

A2β

A3þ2λð Þ2

A3 þ 2λ
þ

ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
D þ

ffiffiffiffiffiffi
A2

p ffiffiffi
π

p
H

2
ffiffiffi
β

p
0
B@

1
CA

−
1
2
A1e

−A1β −A3e
A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
H

� �

−
A2e

A2β

A3
2

A3
þ A2e

A2β

A3þ2λð Þ2

A3 þ 2λ
þ

ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
Dþ

ffiffiffiffiffiffi
A2

p ffiffiffi
π

p
H

2
ffiffiffi
β

p
0
B@

1
CAÞ

þe
A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
HÞÞÞ=

= −A3ⅇ
A2β

A3
2 þ ⅇ

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
H

� �
ð22Þ

Free energy

F βð Þ ¼ −KT LnZ βð Þ;

F βð Þ ¼ −
1
β
Log

1
2
e−A1 β −A3e

A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
Erfi

ffiffiffiffiffiffi
A2

p ffiffiffi
β

p
A3

" #
−Erfi

ffiffiffiffiffiffi
A2

p ffiffiffi
β

p
A3 þ 2λ

" # ! !" #
:

ð23Þ

Entropy

S βð Þ ¼ K lnZ βð Þ þ K T
∂
∂T

lnZ βð Þ:

S βð Þ ¼ Kβ2ð−ð2eA1 βð 1
2
e−A1 βð−A2e

A2β

A3
2

A3
þ A2e

A2β

A3þ2λð Þ2

A3 þ 2λ
þ

ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
D−

1
2
A1e

−A1β

−A3e
A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
H

� �
ÞÞ

= β −A3e
A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
H

� �� ��

þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
H ÞÞ− 1

β
Log

1
2
e−A1 β −A3e

A2β

A3
2 þ e

A2β

A3þ2λð Þ2 A3 þ 2λð Þ þ
ffiffiffiffiffiffi
A2

p ffiffiffi
π

p ffiffiffi
β

p
H

� �� �
;

ð24Þ

Results and discussion
Quarkonium masses

In this section, we calculate the spectra of the heavy quarkonium system such as

charmonium and bottomonium that have the quark and antiquark flavor; the mass

of quarkonium is calculated in 3-dimensional space (N = 3). So, we apply the

following relation as in [23–26].

M ¼ 2mþ Enl; ð25Þ
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where m is the bare quark mass for quarkonium. By using Eq. (16), we can write

Eq. (25) as follows:

M ¼ 2mþ 3a
δ

þ 6c

δ2
−

2μ 3a
δ2
þ 8c

δ3
þ b

	 
2
2nþ 1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 μa

δ3
þ 4 Lþ N−2

2

� �2− 1
4

	 

−8μd þ 24 μc

δ4

r� �2 ð26Þ

In Table 1, we calculated the energy eigenvalue from 1S to 2D. The charmonium

mass is calculated by using Eq. (26). The free parameters of the present calculations are

a, b, c, and δ and are fitted with experimental data. In addition, quark masses are

obtained from [28]. In Table 1, we note that the calculated masses of charmonium are

in good agreement with experimental data and are improved in comparison with [8, 25,

28, 30, 31], in which maximum error in comparison experimental data is about 0.0555.

The effect of dimensional number plays an important role in recent works [7–11]. The

general form of higher dimensional gives more information about the system under

study. In addition, we note that the charmonium mass increases with the increasing

dimensional number due to the increasing binding energy. Therefore, binding energy is

larger than the constituents of charmonium which give us the limitation of non-

relativistic models. The effect is also studied in [11].

In Table 2, we note the present results for bottomonium are in agreement with

experimental data, in which maximum error equals 0.0004828 and the present results are

improved in comparison with [8, 25, 28, 31], in which different potential and methods are

used. We note that the effect of dimensionality has the same effect as charmonium.

In Table 3, we calculate the mass spectra of b c mesons where 2m= mb + mc in

Eq. (26). We find that the 1S state closes with the experimental data. The experimental

data of the other states are not available. Hence, the theoretical predictions of the

present method are displayed. We note that the present results of the bc mass are in

good agreement in comparison with [32, 35, 36].

In Table 4, we calculate the mass spectra of c s mesons where 2m =mc +ms in

Eq. (26). The 1S, 2S, and 1D are close with experimental data and are improved in

comparison with power potential, screened potential, and phenomenological potential
Table 1 Mass spectra of charmonium (in GeV) (mc = 1.209 GeV, a = 0.01 GeV2, b = 14.94,
d = − 15.04 GeV−1, c = 0.02 GeV3, δ = 1.7 GeV)

State Present work [8] [28] [30] [25] [31] N = 4 Exp. [32]

1s 3.095 3.078 3.096 3.096 3.096 3.078 3.360 3.096

1p 3.258 3.415 3.433 3.433 3.255 3.415 3.673 –

2s 3.685 4.187 3.686 3.686 3.686 3.581 3.698 3.686

1D 3.510 3.752 3.767 3.770 3.504 3.749 3.895 –

2p 3.779 4.143 3.910 4.023 3.779 3.917 3.827 3.773

3s 4.040 5.297 3.984 4.040 4.040 4.085 3.966 4.040

4s 4.262 6.407 4.150 4.355 4.269 4.589 3.986 4.263

2D 3.928 – – 3.096 – 3.078 4.170 4.159



Table 2 Mass spectra of bottomonium (in GeV) (mb = 4.823 GeV, a = 0.798 GeV2, b = 5.051,
d = − 3.854 GeV−1, c = 0.02 GeV3, δ = 1.5 GeV)

State Present work [8] [28] [31] [25] [33] N = 4 Exp. [34]

1s 9.460 9.510 9.460 9.460 9.460 9.510 9.610 9.460

1p 9.609 9.862 9.840 9.811 9.619 9.862 10.022 –

2s 10.022 10.627 10.023 10.023 10.023 10.038 10.072 10.023

1D 9.846 10.214 10.140 10.161 9.864 10.214 10.205 –

2p 10.109 10.944 10.160 10.374 10.114 10.396 10.269 –

3s 10.360 11.726 10.280 10.355 10.355 10.566 10.306 10.355

4s 10.580 12.834 10.420 10.655 10.567 11.094 10.344 10.580
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in [36]. The effect of dimensionality number has the same effect as in the charmonium

and bottomonium.

In Fig. 1, we note that the partition function Z decreases with increasing β. The range

of β = 4.0 to 6.5 GeV−1 corresponding to T = 0.154 to 0.250 GeV represents the range of

temperature which charmonium melts to its constituents as charm quark. We note that

the partition function decreases with increasing β and the dimensionality number N

(Fig. 2). In addition, we note the partition function is not sensitive at the largest values

of β. The behavior of the partition function will act on other observables that will be

discussed.

In [20], it is observed that the partition function Z decreases monotonically with in-

creasing β in which the author applied the deformed five-parameter exponential-type

potential in the SE. In [21], the partition function decreases with increasing β. There-

fore, the behavior of Z is in agreement with [20, 21].

In Fig. 3, we note that the U decreases with increasing of β and increases with

increasing of λ. In Fig. 4, the values of U shift to higher values by increasing di-

mensionality number. In [21], the authors found that the internal energy increases

with increasing λ for HCL. In [20], the internal energy decreases with increasing λ.

In [22], the authors calculated all thermodynamic properties of a neutral particle in

a magnetic cosmic string background of using the non-relativistic Schrödinger–

Pauli equation, in which they found that internal energy increases with increasing

temperature and angular quantum number. We obtained the same conclusion in

the present work for internal energy. Thus, the behavior of internal energy is in

agreement with recent works [20–22]. In Fig. 4, we note that the U increases with

increasing dimensionality number. This effect is not considered in other works

such as in [20–22].
Table 3 Mass spectra of bc meson (in GeV) (mb = 4.823 GeV, mc = 1.209 GeV, a = 0.606 GeV2,
b = 3.651, d = − 2.199 GeV−1, c = 0.1 GeV3, δ = 1.2 GeV)

State Present work [32] [35] [36] N = 4 Exp. [34]

1s 6.277 6.349 6.264 6.270 6.355 6.277

1p 7.042 6.715 6.700 6.699 6.883 –

2s 7.383 6.821 6.856 6.835 6.878 –

2p 6.663 7.102 7.108 7.091 7.161 –

3s 7.206 7.175 7.244 7.193 8.035 –



Table 4 Mass spectra of cs meson in (GeV) (mc = 1.628, ms = 0.419 GeV, a = 0.48 GeV2, b = 3.795,
d = − 1.481 GeV−1, c = 0.1 GeV3, δ = 1.6 GeV)

State Present work Power Screened Phenomenological N = 4 Exp.

1s 1.968 1.9724 1.9685 1.968 2.3001 1968.3 [33]

1p 2.565 2.540 2.7485 2.566 2.742 –

2s 2.709 2.6506 2.8385 2.815 2.797 2.709 [37]

3S 2.932 2.9691 3.2537 3.280 2.967 –

1D 2.857 – – – 3.934 2.859 [37]
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In Fig. 5, we note that the specific heat (C) decreases with increasing β and it shifts

to higher values by increasing parameter λ. In addition, the dimensionality number

shifts the specific heat to higher values as in Fig. 6. The behavior of the specific head is

studied in [20–22] using the Schrödinger equation. We found the qualitative agreement

with these works.

In Fig. 7, we note that the free energy F increases with increasing β and λ. Also, the

free energy increases with increasing N, in Fig. 8. In [15], the quark–gluon plasma is

assumed to be composed of the light quarks only such as the up and down quarks,

which interact weakly, and the gluons which are treated as they are free. They found

the free energy decreases with increasing temperature. In [38], the authors studied free

energy for strange quark matter and they found the conclusion of [15]. In [22], the

authors calculated the free energy of a neutral particle and found the free energy

decreases with increasing temperature. In the present work, we note charm quark

matter is qualitative agreement with [15, 22, 38].

In Figs. 9 and 10, the entropy decreases with increasing β. In addition, the entropy

shifts to higher values by increasing N and λ. In [15, 22, 37], the authors found the

entropy increases with increasing temperature for light quark, strange quark, and

natural particles. We have the same conclusion for charm quark. In addition, we found

there is no changing in the phase transition in the interval of temperatures that indicate
Fig. 1 Partition function is plotted as a function of β for different values of λ



Fig. 2 Partition function is plotted as a function of β for different values of N
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the charmonium melts below the critical temperature. In [39], the author shows that

the dissociation of charmonium is found at below critical temperature.

Summary and conclusion
In the present work, the energy eigenvalues and the wave functions are obtained in the

N-dimensional space by solving the N-radial Schrödinger equation using the NU

method. The Cornell potential is extended to include the quadratic potential and
Fig. 3 Internal energy U against β for different values of λ



Fig. 4 Internal energy U against β for different values of N
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inverse quadratic potential which give a good description of heavy meson. We obtained

the energy eigenvalues and wave functions in the higher dimensional space. In

addition, special cases are obtained from the general form of the eigenvalue of

energy. We applied the present results to calculate heavy meson masses and

thermodynamic properties.

We conclude the following points:
Fig. 5 Specific heat C is plotted against β different values of λ



Fig. 6 Specific heat C is plotted against β for different values of N
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I—At N = 3, the heavy meson masses are calculated. We found that the present results

are in good agreement in comparison with experimental data. We found that the

maximum errors are 0.0555 for the charmonium, 0.0004828 for the bottomonium, 0

for the bc meson, and 0.000699 for the cs meson and are improved in comparison

with other published works that used other potentials or techniques. For higher

dimensional space (N > 3), we noted that the mass of spectra of charmonium,
Fig. 7 Free energy F is plotted against β for different values of



Fig. 8 Free energy F is plotted against β for different values of N
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bottomonium, bc; and cs mesons increase with the increasing dimensional number

due to the increase in the corresponding binding energy. The binding energy nears to

the constituents of heavy meson masses (charm quark). Thus, the velocity of charm

quark closes to the velocity of light which leads to the limitation of non-relativistic

quark models when N takes larger values.

II—At N = 3, the thermodynamic properties are calculated such as internal energy,

free energy, specific heat, and entropy. We found the internal energy, the specific heat,

and the entropy decrease with increasing β. In [15, 22, 37], thermodynamic properties
Fig. 9 Entropy S is plotted against β for different values of



Fig. 10 Entropy S is plotted against β for different values of N
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for the light quark, the strange quark, and natural particles are studied. The present

results are in qualitative agreement with [15, 22, 37]. So far, the thermodynamic

properties of charmonium are not considered in many works such as [15, 22, 37]. For

N > 3, the dimensionality number plays an important role in changing the behavior of

thermodynamic properties for charm matter. We noted from the figures that the

internal energy, the free energy, the specific heat, and the entropy shift to higher

values by increasing dimensional number. Therefore, the dimensional number

increases the energetic of charm matter. We hope to extend this work to include

spin–spin interaction and spin–orbital interaction. In addition, the effect of external

magnetic field on heavy meson properties gives more information about quark–gluon

plasma as a future work.
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