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Abstract

Uncertainty has been used in different areas in our life such as medical diagnosis, social
studies, pharmacology and others. The soft set theory and rough set theory are treated
as mathematical approaches to deal with uncertainty. In 2011, Feng et al. introduced
the notion of soft rough sets. In 2013, we introduced the notion of soft rough sets on a
complete atomic Boolean lattice as a generalization of soft rough sets. In this paper, we
strengthen the concept of soft rough set on a complete atomic Boolean lattice by
defining the concept of modified soft rough set (MRS-set) on a complete atomic
Boolean lattice. In this model, some properties which were not satisfied in soft rough
sets on a complete atomic Boolean lattice can be proved. Finally, we will use this
concept to introduce the concept of modified soft rough topology and we apply this
concept in diabetes mellitus.
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Introduction
In recent years, scientists, engineers, and mathematicians have shown great interest in
uncertainty as it found many fields like decision-making, engineering, environmental sci-
ence, social sciences, and medical science. Probability theory, fuzzy set theory [1], rough
set theory [2, 3], and other mathematical tools have been used successfully to describe
uncertainty. Each of these ideas has its inherent difficulties as pointed out in [4, 5]. Con-
sequently, Molodtsov proposed a novel concept for modeling vagueness and uncertainty
called soft set theory.
Theory of soft sets has enough parameters, so that it is free from abovementioned diffi-

culties. It deals with uncertainty and vagueness on the one hand while on the other it has
enough parametrization tools. These qualities of soft set theory make it popular among
researchers and experts working in diverse areas. Some applications of soft set theory can
be seen in [6–8]. Research on soft set theory is growing rapidly [9–13]. In [14], we pre-
sented soft sets on a complete atomic Boolean lattice as a generalization of soft sets and
obtained the lattice structure of these soft sets.
Rough set theory, introduced by Pawlak [3] in the 1980s, is a powerful machine learn-

ing tool that has applications in many areas [15, 16]. Rough set theory was proposed as a
formal tool for modeling and processing incomplete information in information system.
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Pawlak rough set is mainly based on equivalence relation. But in practical, it is very dif-
ficult to find an equivalence relation among the element of a set. So, some other general
relations such as tolerance one and dominance ones are considered to define rough set
models. Equivalence relations can be replaced by tolerance relations [17], similarity rela-
tions [18], and binary relations [19]. The properties of the rough approximations in more
general setting of complete atomic Boolean lattice were studied by Järvinen in [20]. All
these proposals share the common feature that they deal with approximations of concepts
in terms of granules.
The major criticism on rough set theory is that it lacks parametrization tools. In order

tomake parametrization tools available in rough sets, a major step is taken by Feng et al. in
[21]. They introduce the concept of soft rough sets, where instead of equivalence classes
parameterized subsets of a set serve the purpose of finding lower and upper approxima-
tions of a subset. In [22], Xueling and Jianming apply rough soft sets to BL-algebras. In
[23, 24], the concept of bipolar soft rough set and bipolar soft rough relation are proposed
In [25], Shabir introduced a new approach to soft rough sets called modified soft rough
set (MSR-set) and studied some of their basic properties. In [14], we defined two pairs of
soft rough approximation operators on a complete atomic Boolean lattice Band gave their
properties. These operators suffer from unexpected properties such as soft upper approx-
imation of non zero element might be equal zero and soft upper approximation of any
element might not greater than this element. To resolve this problem, we introduce the
notion of modified soft rough set on a complete atomic Boolean lattice and its application
in decision making was analyzed.
This paper is arranged as follows, in “Preliminaries” section, some basic concepts of

soft sets and rough sets on a complete atomic Boolean lattice are discussed. Also, we dis-
cuss the notion of soft rough set on a complete atomic Boolean lattice. The purpose of
“Modified soft rough sets (MSR-sets) on a complete atomic Boolean lattice” section is to
generalize soft rough set theory by introducing the notion of modified soft rough approx-
imation operators on a complete atomic Boolean lattice B. Moreover, we study their
properties and introduce a new rough set model, which is an improvement of Järvinen,s
model [20]. We study the relations between soft rough approximations on B [14] and
current approximations. Also, we introduce the deviation of some properties of the pre-
vious soft model [14] and our new model supported by counter examples. In “Relation
betweenMSR sets and rough sets on a complete atomic Boolean lattice” section, we intro-
duce the notion of Boolean lattice information system. Also, the relationship between
the Boolean lattice information system and soft set on a complete atomic Boolean lat-
tice is discussed. Also, the concept of approximations of Boolean lattice information
system with respect to another Boolean lattice information system is studied and we
introduce an applicable example to illustrate this notion. In the last section we intro-
duce the concept of modified soft rough topology and we apply it and its base in diabetes
mellitus(DM).

Preliminaries
We assume that the reader is familiar with the usual lattice-theoretical notation and
conventions, which can be found in [26, 27].

Lemma 1 [26] Let B = (B,≤) be a complete lattice, S, T ⊆ B and {Xi : i ∈ I} ⊆ ℘(B)
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(i) If S ⊆ T, then
∨

S ⊆ ∨
T.

(ii)
∨

(S ∪ T) = (
∨

S)
∨

(
∨

T).
(iii)

∨
(
⋃{Xi : i ∈ I}) = ∨ {∨Xi ∈ I}.

Lemma 2 [26] Let B = (B,≤) be a Boolean lattice, then for all x, y ∈ B

(i) 0′ = 1 and 1′ = 0,
(ii) x′′ = x,
(iii) (x ∨ y)′ = x′ ∧ y′, and (x ∧ y)′ = x′ ∨ y′,
(iv) x ≤ y iff x ∧ y′ = 0.

Lemma 3 [20] Let B = (B,≤) be a complete Boolean lattice. Then for all {xi : i ∈ I} ⊆ B
and y ∈ B

y ∧ (
∨

i∈I
xi) =

∨

i∈I
(y ∧ xi)

and

y ∨ (
∧

i∈I
xi) =

∧

i∈I
(y ∨ xi)

Definition 1 [20] Let B = (B,≤) be an ordered set and x, y ∈ B, we say that x is covered
by y (or that y covers x), and write, x ≺ y if x < y and there is no element z in B with
x < z < y.

Definition 2 [20] Let B = (B,≤) be a lattice with a least element 0. Then a ∈ B is called
an atom if 0 ≺ a. The set of atoms of B is denoted by A(B). The lattice B is called atomic if
every element of B is the supremum of the atoms below it, that is x = ∨ {a ∈ A(B) : a ≺ x}.

Definition 3 [14] Let B = (B,≤) be a complete atomic Boolean lattice and E be a set of
parameters. Let A be a non empty subset of E. A soft set over B, with support A , denoted by
fA on B is defined by the set of ordered pairs

fA = {(e, fA(e)) : e ∈ A, fA(e) ∈ B},
or is a function fA : A → B s.t

fA(e) �= 0 ∀ e ∈ A ⊆ E and fA(e) = 0 if e �∈ A.

In other words, a soft set over B is a parameterized family of elements of B. For each e ∈ A,
f (e) is considered as e-approximate element of fA

Definition 4 [14] LetB = (B,≤) be a complete atomic Boolean lattice. Let A ⊆ E and let
fA be a soft set over B. The complement of fA, denoted by (fA)c is defined by (fA)c = (f c,A),
where f c : A → B is a mapping given by f c(e) = f (e)′ for every e ∈ A.

Definition 5 [14] Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B.

(i) fA is called full, if
∨

e∈Af (e) = 1;
(ii) fA is keeping infimum, if for any e1, e2 ∈ A, there exists e3 ∈ A such that f (e1)∧f (e2) =

f (e3);
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(iii) fA is keeping supremum, if for any e1, e2 ∈ A, there exists e3 ∈ A such that f (e1) ∨
f (e2) = f (e3);

(iv) fA is called partition of B if

(1)
∨

e∈Af (e) = 1,
(2) For every e ∈ A, f (e) �= 0,
(3) For every e1, e2 ∈ A either f (e1) = f (e2) or f (e1) ∧ f (e2) = 0.

Definition 6 [14] Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B. For any element x ∈ B, we define a pair of operators x∨, x∧ : B → B as
follows:

x∨ = ∨ {b ∈ A(B) : ∃e ∈ A s.t b ≤ f (e) and f (e) ≤ x},
x∧ = ∨ {b ∈ A(B) : ∃e ∈ A s.t b ≤ f (e) and f (e) ∧ x �= 0}.

The elements x∨ and x∧ are called the soft lower and the soft upper approximations of x
over B. Two elements x and y are called soft equivalent if they have the same soft upper and
soft lower approximations over B. The resulting equivalence classes are called soft rough
sets over B.

Example 1 Let B = {0, a, b, c, d, e, f , 1} and let the order ≤ be defined as in Fig. 1.
The set of atoms of a complete atomic Boolean lattice B = (B,≤) is {a,b,c}. Let A =

{e1, e2, e3, } and fA be a soft set over B defined as follows: f (e1) = a, f (e2) = b, and f (e3) =
d. So, fA is not full. Many odd situation occurs. For example,
If x = c �= 0, then x∨ = x∧ = 0. Also if x = e, then x∧ = a ∨ b = d �≥ e Moreover c �≤ x∨

or c �≤ x∧ for any x ∈ B
In order to avoid these situations, we introduced in [14] the notion of full soft sets on B.
Moreover the concept of soft postive, soft negative and soft boundary are meaningful in the
case of full soft sets.

In the following, we show that negative element of any x ∈ B cannot be avoided.

Proposition 1 Let fA be a soft set over B which is not full. Then there exists at least
b ∈ A(B) such that b ≤ neg(x) = (x∧)′ for all x ∈ B.

Proof Since fA is not full, i.e.,
∨

a∈A
f (a) �≤ 1. So ∃b ∈ A(B) s.t b �≤ f (a) ∀ a ∈ A. Let

x ∈ B s.t b ≤ x. If b ≤ x∧, then ∃a ∈ A s.t b ≤ f (a) and f (a) ∧ x �= 0 which is a
contradiction. Hence b �≤ x∧. By a similar argument when b �≤ x it can be shown that
b �≤ x∧. Therefore b ≤ 1 − x∧ = (x∧)′.

Modified soft rough sets (MSR-sets) on a complete atomic Boolean lattice
Some properties of generalized soft roughmodel

In this section, we will generalize the soft rough model on a complete atomic
Boolean lattice B by defining modified soft rough sets on B. Also, we will present
some properties of modified soft rough approximation operators on B, and intro-
duce a new soft rough model on B, which is an improvement of previous
models [14, 20].
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Fig. 1 The complete atomic Boolean lattice B

Definition 7 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft set
over B. Let ϕ : A(B) → ℘(A) be another map defined as ϕ(b) = {a ∈ A : b ≤ f (a)}. Then
the pair (A(B),ϕ) is called MSR-approximation space on B and for any element x ∈ B,
lower MSR-approximation on B is defined as

x∨
ϕ = ∨ {a ∈ A(B) : a ≤ x ,ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x},
and its upper MSR-approximation over B is defined as
x∧
ϕ = ∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ x}.
If x∨

ϕ �= x∧
ϕ , Then x is said to be MSR-element on B.

Remark 1 Lower MSR-approximation of x over B can be defined as x∨
ϕ = ∨ {a ∈ A(B) :

ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x} because if we let ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x and
a �≤ x, then by hypothesis ϕ(a) �= ϕ(a) which is impossible.

Lemma 4 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft set
over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then for all c ∈ A(B) and x ∈ B

(i) c ≤ x∨
ϕ ⇐⇒ c ≤ x and ϕ(c) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x;

ii) c ≤ x∧
ϕ ⇐⇒ ϕ(c) = ϕ(b) for some b ∈ A(B) s.t b ≤ x.
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Proof (i) (⇒) Suppose that c ≤ x∨
ϕ = ∨ {a ∈ A(B) : a ≤ x ,ϕ(a) �=

ϕ(b) ∀ b ∈ A(B) s.t b �≤ x}. So c ≤ x. If ϕ(c) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x,
then c ∧ x∨

ϕ = c ∧ ∨ {a ∈ A(B) : a ≤ x ,ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x}=
∨ {a ∧ c : a ∈ A(B), c ≤ x ,ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x}. Since ϕ(c) �= ϕ(b), then
c �= a, i.e., c ∧ a = 0. Hence c ≤ (x∨

ϕ )′, a contradiction.
(⇐) Suppose that c ≤ x and ϕ(c) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x, then
c ≤ ∨ {a ∈ A(B) : a ≤ x , ϕ(a) �= ϕ(b) ∀ b �≤ x} = x∨

ϕ . Condition (ii) can be proved
similarly.

Proposition 2 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B. If ϕ(a) = ϕ(b) for some
a, b ∈ A(B), then for any x ∈ B either a, b ≤ x∧

ϕ or a, b �≤ x∧
ϕ .

Proof If a ≤ x∧
ϕ , then ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. Since ϕ(a) = ϕ(b), then

ϕ(b) = ϕ(c), c ≤ x. This implies that b ≤ x∧
ϕ .

Proposition 3 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then for all x ∈ B

(i) x∨
ϕ ≤ x ≤ x∧

ϕ

(ii) 0∨
ϕ = 0 = 0∧

ϕ

(iii) 1∨
ϕ = 1 = 1∧

ϕ

Proof (i) Assume that b ∈ A(B), s.t b ≤ x∨
ϕ , then b ≤ x. For the other inclusion, let

b ∈ A(B) s.t b ≤ x. Then ϕ(b) = ϕ(b) for some b ≤ x. Thus b ≤ x∧
ϕ .

(ii) 0∨
ϕ = ∨ {a ∈ A(B) : a ≤ 0 ,ϕ(a) �= ϕ(b) ∀b ∈ A(B) s.t b �≤ 0} = 0. Also, 0∧

ϕ =
∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ 0} = 0. Claim (iii) can be proved
similarly.

Proposition 4 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then for all x, y ∈ B

(i) The mappings ∨
ϕ : B −→ B and ∧

ϕ : B −→ B are order preserving.
(ii) The mappings ∨

ϕ : B −→ B and ∧
ϕ : B −→ B are mutually dual.

Proof (i) Assume that x ≤ y and a ≤ x∨
ϕ . Let b ∈ A(B) s.t b �≤ y. Since x ≤ y, then b �≤ x.

Since a ≤ x∨
ϕ , then ϕ(a) �= ϕ(b). So a ≤ y∨

ϕ and we get x∨
ϕ ≤ y∨

ϕ . Now let b ≤ x∧
ϕ , that is

ϕ(b) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. Since x ≤ y, then ϕ(b) = ϕ(c) for some c ∈ A(B)

s.t c ≤ y. Thus b ≤ y∧
ϕ . Consequently, x∧

ϕ ≤ y∧
ϕ .

(ii) We must show that x∧
ϕ = ((x′

)∨ϕ )
′ and ((x′

)∧ϕ )
′ = x∨

ϕ . Let a ∈ A(B) s.t a ≤ ((x′
)∨ϕ )

′ ,
then a �≤ (x′

)∨ϕ . So, either a �≤ x or ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ (x′
)
′ = x, that

is a ≤ x∧
ϕ . Conversely, Let a ≤ x∧

ϕ , then ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ x. Thus
a �≤ (x′

)∨ϕ , that is a ≤ ((x′
)∨ϕ )

′ . So x∧
ϕ = ((x′

)∨ϕ )
′ .

Let a ∈ A(B) s.t a ≤ ((x′
)∧ϕ )

′ , then a �≤ (x′
)∧ϕ . Hence, ϕ(a) �= ϕ(b) for all b ∈ A(B) s.t

b ≤ x′ . That is a ≤ x because otherwise, if a ≤ x′ , then ϕ(a) �= ϕ(a), a contradiction.
Thus, a ≤ x, ϕ(a) �= ϕ(b) for all b ∈ A(B) s.t b ≤ x′ and consequently, a ≤ x∨

ϕ .
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Conversely, let a ∈ A(B) s.t a ≤ x∨
ϕ , then a ≤ x and ϕ(a) �= ϕ(b) for all b ∈ A(B) s.t

b ≤ x′ . Thus a �≤ (x′
)∧ϕ , i.e a ≤ ((x′

)∧ϕ )
′ . So ((x′

)∧ϕ )
′ = x∨

ϕ .

For all S ⊆ B, we denote S∨
ϕ = {x∨

ϕ : x ∈ S} and S∧
ϕ = {x∧

ϕ : x ∈ S}.

Proposition 5 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B, then

i) For all S ⊆ B, ∨S∧
ϕ = (∨S)∧ϕ and ∧S∧

ϕ ≥ (∧S)∧ϕ .
ii) For all S ⊆ B, ∧S∨

ϕ = (∧S)∨ϕ and ∨S∨
ϕ ≤ (∨S)∨ϕ .

(iii) (B∧
ϕ ,≤) is a complete lattice; 0 is the least element and 1 is the greatest element of

(B∧
ϕ ,≤).

(iv) (B∨
ϕ ,≤) is a complete lattice; 0 is the least element and 1 is the greatest element

of(B∨
ϕ ,≤).

(v) The kernal �∨
ϕ = {(x, y) : x∨

ϕ = y∨
ϕ } of the map ∨

ϕ : B −→ B is a congruence on the
semi lattice (B,∧) such that the �∨

ϕ -class of any x has a least element.
(vi) The kernal �∧

ϕ = {(x, y) : x∧
ϕ = y∧

ϕ } of the map ∧
ϕ : B −→ B is a congruence on the

semi lattice (B,∨) such that the �∧
ϕ -class of any x has a greatest element.

Proof (i) Let S ⊆ B. The mapping ∧
ϕ :B −→ B is order preserving, which implies that

∨S∧
ϕ ≤ (∨S)∧ϕ and ∧S∧

ϕ ≥ (∧S)∧ϕ . Let b ∈ A(B) and assume that a ≤ (∨S)∧ϕ . So, ϕ(a) =
ϕ(b) for some b ∈ A(B) s.t b ≤ ∨S. So, ϕ(a) = ϕ(b) for some b ∈ A(B) and x ∈ S s.t
b ≤ x. So {a ∈ A(B) : ϕ(a) = ϕ(b) forsome b ∈ A(B) s.t b ≤ ∨S}
⊆ ∪x∈S {a ∈ A(B) : ϕ(a) = ϕ(b)forsome b ∈ A(B) s.t b ≤ x}. Then
(∨S)∧ϕ = ∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ ∨S}
≤ ∨

(∪x∈S {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ x})
= ∨

x∈S (
∨{a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ x}) (by Lemma 1)

=
∨{x∧

ϕ : x ∈ S} = ∨
S∧
ϕ

(ii) Let S ⊆ B. The mapping ∨
ϕ :B −→ B is order preserving, which implies that (∧S)∨ϕ ≤

∧S∨
ϕ and ∨S∨

ϕ ≤ (∨S)∨ϕ . Let a ∈ A(B) s.t a ≤ ∧S∨
ϕ = ∧{x∨

ϕ : x ∈ S}. So, a ≤ x and
ϕ(a) �= ϕ(b) for all b ∈ A(B) s.t b �≤ x for every x ∈ S. Hence ϕ(a) �= ϕ(b) for all
b ∈ A(B) s.t b �≤ ∧S. In fact if b �≤ ∧S, then ∃ x ∈ S s.t b �≤ x. So, ϕ(a) �= ϕ(b). Therefore
b ≤ (∧S)∨ϕ . Consequently, ∧S∨

ϕ ≤ (∧S)∨ϕ . Assertions (iii) and (iv) follow easily from (i), (ii)
and Proposition 3(i). The proof of (v) and (vi) follow by (i) and (ii).

The inequalities in Proposition 5 may be proper. This can be seen in the following
example.

Example 2 Let B = {0, a, b, c, d, e, f , 1} and let the order ≤ be defined as in Fig. 1. Let
A = {e1, e2, e3, } and fA be a soft set over B defined as follows:
f (e1) = 0, f (e2) = c, and f (e3) = d. Then the map ϕ of MSR-approximation space
(A(B),ϕ) on B will be ϕ(a) = {e3}, ϕ(b) = {e3}, and ϕ(c) = {e2}.
If we take x = e and y = f . Then x ∨ y = 1 and (x ∨ y)∨ϕ = 1. Also, x∨

ϕ = c, y∨
ϕ = c and

x∨
ϕ ∨ y∨

ϕ = c. Thus (x ∨ y)∨ϕ >�= x
∨
ϕ ∨ y∨

ϕ .
Now x∧

ϕ = a ∨ b ∨ c = 1, y∧
ϕ = a ∨ b ∨ c = 1. So x∧

ϕ ∧ y∧
ϕ = 1. On the other hand

x ∧ y = e ∧ f = c and (x ∧ y)∧ϕ = 0. Thus x∧
ϕ ∧ y∧

ϕ >�= (x ∧ y)∧ϕ .
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Proposition 6 Let B = (B,≤) be a complete atomic Boolean lattice and let fn be a soft
set over B. Let (A(B), ϕ) be a MSR-approximation space on B. Then, (B∨

ϕ ,≥) ∼= (B∧
ϕ ,≤)

Proof We show that x∧
ϕ −→ (x′

)∨ϕ is the required dual order isomorphism. It is obvious
that x∧

ϕ −→ (x′
)∨ϕ is onto (B∨

ϕ ,≥). We show that x∧
ϕ −→ (x′

)∨ϕ is order embedding. Suppose
that x∧

ϕ ≤ y∧
ϕ . Then for all a ∈ A(B), a ≤ x∧

ϕ implies a ≤ y∧
ϕ . So, for all a ∈ A(B) such that

ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ x implies ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ y.
Suppose that (y′

)∨ϕ �≤(x′
)∨ϕ . So there exists a ∈ A(B) such that a ≤ (y′

)∨ϕ and a �≤ (x′
)∨ϕ .

Hence a ≤ y′ and ϕ(a) �= ϕ(b) for all b ∈ A(B) s.t b ≤ (y′
)
′ = y. Also a �≤ (x′

)∨ϕ implies
either a �≤ x′ or ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ (x′

)
′ = x, a contradiction. Hence

(y′
)∨ϕ ≤ (x′

)∨ϕ . On the other hand, assume that (y′
)∨ϕ ≤ (x′

)∨ϕ and x∧
ϕ �≤ y∧

ϕ . So there exists
a ∈ A(B) such that a ≤ x∧

ϕ and a �≤ y∧
ϕ . So ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ x. But

ϕ(a) �= ϕ(c) for all c ∈ A(B) s.t c ≤ y. So a ≤ (y′
)∨ϕ and a �≤ (x′

)∨ϕ , a contradiction.

Proposition 7 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B), ϕ) be a MSR-approximation space on B. Then for all x ∈ B

i) (x∨
ϕ )∨ϕ = x∨

ϕ ;
ii) (x∧

ϕ )∧ϕ = x∧
ϕ .

iii) (x∨
ϕ )∧ϕ = x∨

ϕ

iv) (x∧
ϕ )∨ϕ = x∧

ϕ

Proof i) (x∨
ϕ )∨ϕ = ∨ {a ∈ A(B) : a ≤ x∨

ϕ ,ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x∨
ϕ }. By Propo-

sition 3 x∨
ϕ ≤ x which gives x′ ≤ (x∨

ϕ )
′ . So if b ≤ x′ , then b ≤ (x∨

ϕ )
′ . Therefore

(x∨
ϕ )∨ϕ = ∨ {a ∈ A(B) : a ≤ x∨

ϕ ,ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ x} = x∨
ϕ .

ii)By Proposition 3 x∧
ϕ ≤ (x∧

ϕ )∧ϕ . For the reverse inclusion, let a ≤ (x∧
ϕ )∧ϕ , then ϕ(a) = ϕ(b)

for some b ∈ A(B) s.t b ≤ x∧
ϕ , that is ϕ(b) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. This implies

that ϕ(a) = ϕ(c) for some c ∈ A(B) s.t c ≤ x. Hence a ≤ x∧
ϕ and therefore (x∧

ϕ )∧ϕ ≤ x∧
ϕ .

Hence (x∧
ϕ )∧ϕ = x∧

ϕ .
iii)x∨

ϕ ≤ (x∨
ϕ )∧ϕ by Proposition 3. For the converse assume that a ≤ (x∨

ϕ )∧ϕ . So ϕ(a) = ϕ(b)
for some b ∈ A(B) s.t b ≤ x∨

ϕ . Hence ϕ(b) �= ϕ(c) for all c ∈ A(B) s.t c ≤ x′ . Since
ϕ(a) = ϕ(b), then ϕ(a) �= ϕ(c) for all c ∈ A(B) s.t c ≤ x′ . Since ϕ(a) = ϕ(a), then a �≤ x′ ,
i.e a ≤ x. So a ≤ x∨

ϕ . Hence (x∨
ϕ )∧ϕ ≤ x∨

ϕ and we conclude that (x∨
ϕ )∧ϕ = x∨

ϕ .
iv)By Proposition 3 (x∧

ϕ )∨ϕ ≤ x∧
ϕ . Conversely, if a �≤ (x∧

ϕ )∨ϕ , then either a �≤ x∧
ϕ or

ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ (x∧
ϕ )

′ . If a �≤ x∧
ϕ , then we get our required result.

In later case, ϕ(a) = ϕ(b) for some b ∈ A(B) s.t b ≤ (x∧
ϕ )

′ . So ϕ(b) �= ϕ(z) for all z ∈ A(B)

s.t z ≤ x. Therefore ϕ(a) �= ϕ(z) for all z ∈ A(B) s.t z ≤ x. Also, a ≤ x′ because if a �≤ x′ ,
then a ≤ x. So ϕ(a) �= ϕ(a), a contradiction. Hence a ≤ (x′

)∨ϕ . That is a �≤ ((x′
)∨ϕ )

′ = x∧
ϕ

by Proposition 4(ii).

Relations between soft rough approximations on B and current approximations

The following proposition shows a relation between soft lower approximation operators
over a complete atomic Boolean lattice B and lower MSR-approximation over B.

Proposition 8 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be aMSR-approximation space on B. Then for any x ∈ B, x∨ ≤ x∨

ϕ .
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Proof Let b ∈ A(B) s.t b ≤ x∨. Then ∃ a ∈ A s.t b ≤ f (a) ≤ x. So a ∈ ϕ(b) and b ≤ x.
If b �≤ x∨

ϕ , then ϕ(b) = ϕ(c) for c ∈ A(B) s.t c �≤ x. Since a ∈ ϕ(b) and ϕ(b) = ϕ(c), then
a ∈ ϕ(c)which implies that c ≤ f (a) ≤ x. Hence c ≤ xwhich is a contradiction. Therefore
x∨ ≤ x∨

ϕ .

The following example shows that the relation ≤ between x∨
ϕ and x∨ may be proper.

Example 3 Let B = {0, a, b, c, d, e, f , 1} and let the order ≤ be defined as in Fig. 1. Let
A = {e1, e2, e3, } and fA be a soft set over B defined as follows:
f (e1) = a, f (e2) = 0, and f (e3) = e. Then the map ϕ of MSR-approximation space
(A(B),ϕ) on B will be ϕ(a) = {e1, e3}, ϕ(b) = φ, and ϕ(c) = {e3}.
Let x = d. Then x∨

ϕ = a ∨ b = d and x∨ = a. Thus x∨<�= x
∨
ϕ .

In the following proposition we study a necessary and sufficient condition for x∨
ϕ ≤ x∨

to be hold for any x ∈ B.

Proposition 9 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then for any x ∈ B, x∨

ϕ ≤ x∨

iff for every b ∈ A(B) ∃ e ∈ A s.t f (e) = ∨{a ∈ A(B) : ϕ(a) = ϕ(b)}.

Proof (⇒) Assume that x∨
ϕ ≤ x∨ for any x ∈ B. Let b ∈ A(B) and x = ∨{a ∈ A(B) :

ϕ(a) = ϕ(b)}. So x∨
ϕ = ∨{a ∈ A(B) : ϕ(a) = ϕ(c) for some c ∈ A(B) c ≤ x} = ∨{a ∈

A(B) : ϕ(a) = ϕ(b)} = x. Since b ≤ x = x∨
ϕ and x∨

ϕ ≤ x∨, then b ≤ x∨. Therefore ∃ e ∈ A
s.t b ≤ f (e) and f (e) ≤ x. Also, for all a ∈ A(B) s.t a ≤ x, we have ϕ(a) = ϕ(b), thus
e ∈ ϕ(b) = ϕ(a). So a ≤ f (e) and therefore x ≤ f (e). Consequently, f (e) = x = ∨{a ∈
A(B) : ϕ(a) = ϕ(b)}.
(⇐) Let x ∈ B and b ∈ A(B) s.t b ≤ x∨

ϕ . So for every a ∈ A(B), if ϕ(a) = ϕ(b), then
a ≤ x. Hence

∨{a ∈ A(B) : ϕ(a) = ϕ(b)} ≤ x. By assumption, ∃ e ∈ A s.t f (e) = ∨{a ∈
A(B) : ϕ(a) = ϕ(b)}. Hence b ≤ f (e) and f (e) ≤ x. Therefore b ≤ x∨ and consequently,
x∨
ϕ ≤ x∨.

Remark 2 In general, there is no relation between x∧
ϕ and x∧. If x = e in Example 1, then

x∧ = d and x∧
ϕ = e �≤ d.

In Propositions 10 and 11 and Corollary 2 we show that there is a relation between x∧
ϕ

and x∧ if some specific conditions hold.

Proposition 10 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then fA is full iff x∧

ϕ ≤ x∧

for every x ∈ B.

Proof (⇒) Assume that fA is full and x ∈ B. Let a ∈ A(B) s.t a ≤ x∧
ϕ , then ∃ b ∈ A(B)

s.t b ≤ x and ϕ(a) = ϕ(b). Since b ≤ 1 = ∨

e∈A
f (e), then ∃ e ∈ A s.t b ≤ f (e). Hence

b ≤ f (e) ∧ x and thus f (e) ∧ x �= 0. By, b ≤ f (e), we have e ∈ ϕ(b) = ϕ(a) and therefore
a ≤ f (e). Consequently, x∧

ϕ ≤ x∧.
(⇐) Suppose that x∧

ϕ ≤ x∧ for every x ∈ B, we show that 1 ≤ ∨

e∈A
f (e). Let a ∈ A(B),
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then a ≤ a∧
ϕ ≤ a∧. Therefore ∃ e ∈ A s.t f (e)∧a �= 0 and thus a ≤ f (e) because a ∈ A(B).

Consequently, fA is a full soft set over B.

Corollary 1 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft set
over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then fA is full iff x ≤ x∧ for
every x ∈ B.

Proof (⇒) Assume that fA is full and x ∈ B. Then x ≤ x∧
ϕ ≤ x∧ (by Propositions 3

and 10).
(⇐) Assume that x ≤ x∧ for every x ∈ B. Let b ∈ A(B), then b ≤ b∧ ≤ ∨{f (e) : e ∈ A
andf (e) ∧ b �= 0} = ∨{f (e) : e ∈ A and b ≤ f (e)}. Therefore ∃ e ∈ A s.t b ≤ f (e) and
consequently, fA is full.

Proposition 11 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B. Let (A(B),ϕ) be a MSR-approximation space on B. Then x∧ ≤ x∧

ϕ for every
x ∈ B iff for every e1, e2 ∈ A, f (e1) ∧ f (e2) = 0 whenever f (e1) �= f (e2).

Proof (⇒) Assume that x∧ ≤ x∧
ϕ for every x ∈ B. Let e1, e2 ∈ A, if f (e1) ∧ f (e2) �= 0,

then ∃ b ∈ A(B) s.t b ≤ f (e1) ∧ f (e2). Since b ≤ f (e1), then f (e1) ≤ ∨{f (e) : b ≤ f (e)} =
∨{f (e) : b ∧ f (e) �= 0} = b∧ ≤ b∧

ϕ = ∨{a ∈ A(B) : ϕ(a) = ϕ(b)}. On the other hand
we show that

∨{a ∈ A(B) : ϕ(a) = ϕ(b)} ≤ f (e1). Let c ∈ A(B) s.t c ≤ ∨{a ∈ A(B) : ϕ(a)
= ϕ(b)}, then ϕ(c) = ϕ(b) and thus e1 ∈ ϕ(b) = ϕ(c). Therefore c ≤ f (e1) and conse-
quently, f (e1) = ∨{a ∈ A(B) : ϕ(a) = ϕ(b)}. Similarly, by b ≤ f (e2), f (e2) = ∨{a ∈
A(B) : ϕ(a) = ϕ(b)} and hence f (e1) = f (e2) .
(⇐) Assume that for every e1, e2 ∈ A, f (e1) ∧ f (e2) = 0 whenever f (e1) �= f (e2). Let
x ∈ B and a ∈ A(B) s.t a ≤ x∧, then ∃ e1 ∈ A s.t a ≤ f (e1) and f (e1) ∧ x �= 0. So, ∃
b ∈ A(B) s.t b ≤ f (e1) ∧ x. We show that ϕ(a) = {e2 ∈ A : f (e2) = f (e1)}. If f (e2) �= f (e1),
then f (e1) ∧ f (e2) = 0 by assumption. Thus a �≤ f (e2) because a ≤ f (e1) and therefore
e2 �∈ ϕ(a). So ϕ(a) ⊆ {e2 ∈ A : f (e2) = f (e1)}. On the other hand, if f (e2) = f (e1), then
a ≤ f (e2) and hence e2 ∈ ϕ(a). Consequently, ϕ(a) = {e2 ∈ A : f (e2) = f (e1)}. Similarly
we can show that ϕ(b) = {e2 ∈ A : f (e2) = f (e1)} and thus ϕ(a) = ϕ(b). Since b ≤ x, then
a ≤ x∧

ϕ .

Corollary 2 Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft set
over B. Let (A(B),ϕ) be a MSR-approximation space on B. If f (e) �= 0 for every e ∈ A, then
fA is a partition soft set iff x∧ = x∧

ϕ for every x ∈ B.

Proof Obvious.

Deviation of some properties of the previous soft rough approximations and the current

approximations

In this section we will introduce the deviations of some properties of soft rough approxi-
mations on a complete atomic Boolean lattice B [14] and the current approximations.
On accounting of Proposition 3, 5, 6, and 7[parts (ii) and (iv)], there are deviations
between some of the properties of lower and upper approximations on B and MSR lower
and upper approximations on B, as follows
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Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a soft set over B. Then
for all x ∈ B

(i) x �≤ x∧

(ii) 1∨
ϕ �= 1 �= 1∧

(iii) For all S ⊆ B, ∧S∨ �= (∧S)∨.
(iv) (x∧)∧ �≤ x∧.
(v) (x∨)∧ �≤ x∨

(vi) In general (B∨,≥) �∼= (B∧,≤)

The following counter example support our claims about the above deviations.

Example 4 Let B = {0, a, b, c, d, e, f , 1} and let the order ≤ be defined as in Fig. 1. Let
A = {e1, e2, e3, }.
(1) Let fA be a soft set over B defined as follows:
f (e1) = a, f (e2) = b, f (e3) = d and f (e4) = 0. So fA is not full. Let x = f , then x∧ = d �≥ f .
So, x �≤ x∧. Also, 1∨

ϕ = d = 1∧ �= 1.
(2) Let fA be a soft set over B defined as follows:f (e1) = a, f (e2) = f , f (e3) = e and f (e4) =
0. So fA is not keeping infumum. Let S = {f , e}, then ∧S = f ∧ e = c and (∧S)∨ = c∨ = 0.
Also, S∨ = {f , e} and hence ∧S∨ = f ∧ e = c �≤ 0 = (∧S)∨. Let x = a, then x∧ = e and
(x∧)∧ = e∧ = 1 �≤ e = x∧. Also x∨ = a and (x∨)∧ = e �≤ a = x∨.
Let x = a and y = f ; then x∧ = e and y∧ = 1. Therefore x∧ ≤ y∧. On the other hand
y′∨ = a �≤ f = x′∨. Hence (B∨,≥) �∼= (B∧,≤).

Remark 3 (1)It is mentioned that in order to prove that x ≤ x∧ and 1∨ = 1 = 1∧ in [14]
we employed a strong condition on soft set fA over a complete atomic Boolean lattice to be
full. However in proving x ≤ x∧

ϕ and 1∨
ϕ = 1 = 1∧

ϕ in Proposition 3 no such condition is
required.
(2) Also to prove that for all S ⊆ B, ∧Sn = (∧S)∨ in [14] we employed a strong condition
on soft set fA over a complete atomic Boolean lattice to be keeping infimum. However in
proving ∧S∨

ϕ = (∧S)∨ϕ in Proposition 5 no such condition is required.
(3) Finally to prove that (x∨)∧ = x∨ , (x∧)∧ = x∧ and (B∨,≥) ∼= (B∧,≤) we employed
a strong condition on soft set fA over a complete atomic Boolean lattice to be a partition.
However in proving (x∨

ϕ )∧ϕ = x∨
ϕ , (x∧

ϕ )∧ϕ = x∧
ϕ and (B∨

ϕ ,≥) ∼= (B∧
ϕ ,≤) in Propositions 6 and

7 no such condition is required.
(4) It is clear that MSR-element over a complete atomic Boolean lattice satisfies all
the basic properties Järvinen,s approximations [20]. Thus, MSR-element over a complete
atomic Boolean lattice provides a good combination of roughness and parametrization.

RelationbetweenMSR sets and rough sets on a complete atomic Boolean lattice
In the following, we introduce the notion of Boolean lattice information system and we
show that every soft sets on a complete atomic Boolean lattice induces a Boolean lattice
information system and vice versa.

Definition 8 Let B = (B,≤) be a complete atomic Boolean lattice and A be a finite
set of attributes. The pair (A(B),A,V , g) is called lattice information system, if g is an
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information function from A(B) × A to V = ⋃

e∈A
Ve where Ve = {g(b, e) : b ∈ A(B), e ∈

A} is the values of the attribute set e.

Definition 9 A lattice information system (A(B),A,V , g) is called Boolean lattice
information system if V = {0, 1}.

Definition 10 Let B = (B,≤) be a complete atomic Boolean lattice and let S = fA be a
soft set over B. Then fA induces a Boolean lattice information system Is = (A(B),A,V , gs),
where gs : A(B) × A −→ V = {0, 1}, For any b ∈ A(B) and e ∈ A,

gs(b, e) =
{
1 if b ≤ f (e),
0 if b �≤ f (e)

Definition 11 Let B = (B,≤) be a complete atomic Boolean lattice and I = (A(B),
A,V , g) be a Boolean lattice information system. Then SI = f IA is called a soft set over B
induced by I, where f IA : A −→ B and for e ∈ A, f I(e) = ∨{b ∈ A(B) : g(b, e) = 1}.

Proposition 12 Let B = (B,≤) be a complete atomic Boolean lattice and S = fA be a
soft set over B. Let Is = (A(B),A,V , gs) be a Boolean lattice information system induced by
S and SIs = f IsA be a soft set over B induced by Is. Then f IsA = fA.

Proof By Definition 11, for any e ∈ A, f IsA (e) = ∨{b ∈ A(B) : gs(b, e) = 1}.
By Definition 10, for any b ∈ A(B) and e ∈ A,

gs(b, e) =
{
1 if b ≤ f (e),
0 if b �≤ f (e)

This implies that gs(b, e) = 1 ⇔ b ≤ f (e). So, for any b ∈ A(B) e ∈ A, f (e) = f Is(e).

Proposition 13 Let B = (B,≤) be a complete atomic Boolean lattice and I =
(A(B),A,V , g) be a Boolean lattice information system. Let SI = f IA be a soft set over B
induced by I and IsI = (A(B),A,V , gsI ) be a Boolean lattice information system induced by
SI . Then I = IsI .

Proof By Definition 10, for any b ∈ A(B) and e ∈ A,

gsI (b, e) =
{
1 if b ≤ f I(e),
0 if b �≤ f I(e)

By Definition 11, for any e ∈ A, f I(e) = ∨{b ∈ A(B) : g(b, e) = 1}. Since I =
(A(B),A,V , g) be a Boolean lattice information system, then g(b, e) = 0 if b �≤ f I(e). This
implies that

g(b, e) =
{
1 if b ≤ f I(e),
0 if b �≤ f I(e)

So for any b ∈ A(B) and e ∈ A, gsI (b, e) = g(b, e). Hence gsI = g and Consequently,
I = IsI .



Mustafa Journal of the EgyptianMathematical Society           (2019) 27:15 Page 13 of 17

Definition 12 Let B = (B,≤) be a complete atomic Boolean lattice and let S = fA be a
soft set over B. Let Is = (A(B),A,V , gs) be a Boolean lattice information system induced by
S. Then Is induces a mapping ψs : A(B) −→ B as follows; for every a, b ∈ A(B)

a ≤ ψs(b) ⇔ ∀ e ∈ A gs(a, e) = gs(b, e)

In [14], we define a mapping induced by a soft set fA on a complete atomic Boolean
lattice B as follows

Definition 13 [14] Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B. Define a mapping ψf : A(B) → B by

a ≤ ψf (b) ⇔ ∃e ∈ A, s.t a ≤ f (e) and b ≤ f (e)

for every a, b ∈ A(B). Then ψf is called the mapping induced by fA on B.

Definition 14 [14] Let B = (B,≤) be a complete atomic Boolean lattice and let fA be a
soft set over B. Let ψf : A(B) → B be the mapping induced by fA on B. We define a pair of
soft approximation operators ∇f ,�f : B → B as follows s

x∇f = ∨ {b ∈ A(B) : ψf (b) ≤ x}, and
x�f = ∨ {b ∈ A(B) : ψf (b) ∧ x �= 0}.

The elements x∇f and x�f are called the soft lower and the soft upper approximations
of x with respect to the mapping ψf induced by fA respectively. Two elements x and y are
called equivalent if they have the same soft upper and lower approximations with respect
to the mapping ψf induced by fA on B. The resulting equivalence classes are called soft
rough sets with respect to the mapping ψf induced by fA on B.

Proposition 14 Let B = (B,≤) be a complete atomic Boolean lattice and S = fA be a
partition soft set over B. Let Is = (A(B),A,V , gs) be a Boolean lattice information system
induced by fA. Then

a ≤ ψs(b) ⇔ a ≤ ψf (b) ∀ a, b ∈ A(B)

Proof (⇒) Let a, b ∈ A(B) s.t a ≤ ψs(b). Then ∀ e ∈ A, gs(a, e) = gs(b, e). Since a ≤ 1
and fA be a partition soft set, then ∃ e ∈ A s.t a ≤ f (e). So gs(b, e) = gs(a, e) = 1 and
therefore b ≤ f (e). Consequently, a ≤ ψf (b).
(⇐)Let a, b ∈ A(B) s.t a ≤ ψf (b). Then ∃ e1 ∈ A s.t a ≤ f (e1) and b ≤ f (e1). So
gs(a, e1) = gs(b, e1). For every e2 ∈ A− {e1}, if f (e1) = f (e2), then a ≤ f (e2) and b ≤ f (e2)
and thus gs(a, e2) = 1 = gs(b, e2). If f (e1) �= f (e2), then f (e1) ∧ f (e2) = 0 because fA is
a partition. Since a ≤ f (e1) and b ≤ f (e1), then a �≤ f (e2) and b �≤ f (e2) and therefore
gs(a, e2) = 0 = gs(b, e2). So, gs(a, e) = gs(b, e) ∀e ∈ A and consequently a ≤ ψs(b).

Proposition 15 Let B = (B,≤) be a complete atomic Boolean lattice and let S = fA be a
soft set over B. Let (A(B),ϕ) be a MSR-approximation space on B and Is = (A(B),A,V , gs)
be a Boolean lattice information system induced by S. Then

(i) ∀a, b ∈ A(B) a ≤ ψs(b) ⇔ ϕ(a) = ϕ(b) .
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(ii) ∀x ∈ B, x∨
ϕ = x∇

s , where x∇
s = ∨ {b ∈ A(B) : ψs(b) ≤ x}.

(iii) ∀x ∈ B, x∧
ϕ = x�

s , where x�
s = ∨ {b ∈ A(B) : ψs(b) ∧ x �= 0}

Proof i)(⇒) Let a, b ∈ A(B) s.t a ≤ ψs(b). So gs(a, e) = gs(b, e) ∀ e ∈ A. Let e ∈ ϕ(a), so
a ≤ f (e) and hence gs(a, e) = 1. Therefore gs(b, e) = 1 and thus b ≤ f (e). Consequently,
e ∈ ϕ(b). So ϕ(a) ⊆ ϕ(b), similarly we can show that ϕ(b) ⊆ ϕ(a).
(⇐) Let a, b ∈ A(B) s.t ϕ(a) = ϕ(b). Let e ∈ A, if gs(a, e) = 1, then a ≤ f (e) and hence
e ∈ ϕ(a) = ϕ(b). Also, b ≤ f (e) and so gs(b, e) = 1. If gs(a, e) = 0, then a �≤ f (e) and
hence e �∈ ϕ(a) = ϕ(b). Therefore b �≤ f (e) and thus gs(b, e) = 0. So gs(a, e) = gs(b, e) ∀
e ∈ A and consequently, a ≤ ψs(b).
ii) Let x ∈ B and b ∈ A(B) s.t b ≤ x∨

ϕ . We show that ψs(b) ≤ x. Let a ∈ A(B) s.t a ≤ ψs(b),
then ϕ(a) = ϕ(b) by i). But b ≤ x∨

ϕ implies that ϕ(b) �= ϕ(c) ∀ c ∈ A(B) s.t c �≤ x. Since
ϕ(a) = ϕ(b), then a ≤ x and therefore ψs(b) ≤ x. This implies that x∨

ϕ ≤ x∇
s .

Conversely, Let b ∈ A(B) s.t b ≤ x∇
s . So ψs(b) ≤ x. Let a ∈ A(B) s.t a �≤ x, thus a �≤ ψs(b).

Therefore ϕ(a) �= ϕ(b) by i) and so b ≤ x∨
ϕ . Consequently, x∇

s ≤ x∨
ϕ .

iii) Let x ∈ B and b ∈ A(B) s.t b ≤ x∧
ϕ , then ∃ a ∈ A(B) s.t a ≤ x and ϕ(a) = ϕ(b). So

a ≤ ψs(b) by i) and therefore ψs(b) ∧ x �= 0. Consequently, b ≤ x�
s .

Conversely, let b ∈ A(B) s.t b ≤ x�
s , then ψs(b) ∧ x �= 0. Thus ∃ a ∈ A(B) s.t a ≤ x and

a ≤ ψs(b). Thus ϕ(a) = ϕ(b) by i) and therefore b ≤ x∧
ϕ .

In the following, we introduce the concept of Boolean lattice information system with
respect to another Boolean lattice information system. We study upper and lower MSR-
approximations of soft set on a complete atomic Boolean lattice with respect to another
soft set.

Definition 15 Let B = (B,≤) be a complete atomic Boolean lattice and let fA1 be a soft
set over B. Let (A(B),ϕ) be a MSR-approximation space on B where ϕ : A(B) −→ P(A1) is
defined as ϕ(b) = {a ∈ A : b ≤ f (a)}. Let gA2 be another soft set over B. For any e ∈ A2,
lower and upper MSR approximations of gA2 over B are denoted by (gA2)

∨
ϕ and (gA2)

∧
ϕ

defined as

g(e)∨ϕ = ∨ {a ∈ A(B) : a ≤ g(e) ,ϕ(a) �= ϕ(b) ∀ b ∈ A(B) s.t b �≤ g(e)} ∀e ∈ A2,
g(e)∧ϕ = ∨ {a ∈ A(B) : ϕ(a) = ϕ(b) for some b ∈ A(b) s.t b ≤ g(e)} ∀e ∈ A2.

In order to understand this concept consider the following example:

Example 5 Let B = {0, a, b, c, d, e, f , 1} representing 8 patients, where 0 denotes patient
who drink mineral water only, a denotes patient who drink coffee, b denotes patient who
drink cola, c denotes patient who drink tea, d denotes patient who drink caffeine liq-
uids, e denotes patient who drink antioxidant liquids, f denotes patient who drink cold
liquids and 1 denotes patient who drink all liquids. So, the order ≤ can be defined as
in Fig. 1.
Let A1 = {e1, e2, e3, }, where e1 denotes temperature, e2 denotes headache and e3 denotes
stomach problem and let fA1 be a soft set over B representing the diagnosis of doctor M,
defined as follows:
f (e1) = b, f (e2) = e and f (e3) = b. Then the Boolean lattice information system of fA1 can
be given by Table 1, where 1 and 0 denote yes and no respectively.
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Table 1 Lattice information system of the soft set fA
e1 e2 e3

a 0 1 0

b 1 0 1

c 0 1 0

Then the map ϕ of MSR-approximation space (A(B),ϕ) will be ϕ(a) = {e2}, ϕ(b) =
{e1, e3}, and ϕ(c) = {e2}.
Let A2 = {e1, e2, e3, e4} and gA2 be another soft set over B representing the diagnosis of doc-
tor N , where A2 = {e1, e2, e3, e4} and e4 represents cough, defined as follows:
g(e1) = d, g(e2) = b, g(e3) = c and g(e4) = e. So lower MSR-approximations of gA2 over B
are g(e1)∨ϕ = b, g(e2)∨ϕ = b, g(e3)∨ϕ = 0 and g(e4)∨ϕ = a. Also, upper MSR-approximations
of gA2 over B are g(e1)∧ϕ = a ∨ b ∨ c = 1, g(e2)∧ϕ = b, g(e3)∧ϕ = a ∨ c = e and g(e4)∧ϕ = e.
So, for example the patient a will be diagnosed cough by doctor N.

Application
In this section, we introduce the concepts of modified soft rough topology based on the
notion of modified soft lower and upper approximations

Proposition 16 Let U be the universe,X ⊆ U B = ℘(U) and FA be a soft set over U.
Then, the collection τ

ϕ
SR(X) = {U ,φ,X∨

ϕ ,X∧
ϕ , yyϕ(X) = X∧

ϕ − X∨
ϕ }, forms a topology on U

called the modified soft rough topology on U w.r.t X.

Proposition 17 Let τ
ϕ
SR(X) be a modified soft rough topology on U w.r.t X. Then the

collection β
ϕ
SR(X) = {U ,X∨

ϕ ,Bndϕ(X)} forms a base for τ
ϕ
SR(X).

Proof Obvious

Now, we will apply the concept of soft rough topology in Diabetes mellitus (DM),
commonly referred to as diabetes, is a group of metabolic diseases in which there are
high blood sugar levels over a prolonged period. Symptoms of high blood sugar include
frequent urination, increased thirst and increased hunger. If left untreated, diabetes
can cause many complications. Acute complications can include diabetic ketoacidosis,
nonketotic hyperosmolar coma or death. Serious long-term complications include heart
disease, stroke, chronic kidney failure, foot ulcers, and damage to the eyes.
Consider the following information table (Table 2) giving data about 6 patients as a ran-
dom representative. The rows of the table represent the attributes (the symptoms for Dia-
betes) and the columns represent the objects (the patients). LetU = {p1, p2, p3, p4, p5, p6}
and A = {e1(Frequent Urination), e2(Increased Hunger), e3(Increased Thirst)}. Let FA be
a soft over U given by Table 2 and (U ,ϕ) be a MSR-approximation space.

Let X = {p1, p4, p5} be the set of patients having diabetes. Then, we have
X∨

ϕ = {p1, p4, p5},X∧
ϕ = {p1, p4, p5} and Bndϕ(X) = φ. Therefore τ

ϕ
SR = {U ,φ, {p1, p4, p5}}

is a modified soft rough topology on U and its soft basis β
ϕ
SR(X) = {U ,ϕ, {p1, p4, p5}}.

If the attribute frequent urination is removed, we haveX∨
ϕ = {p4, p5},X∧

ϕ = {p1, p3, p4, p5}
and Bndϕ(X) = {p1, p3}. Therefore, τϕ

SR(X) = {U ,φ, {p4, p5}, {p1, p3, p4, p5}, {p1, p3}} is a
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Table 2 Tabular representation of the soft set FA
p1 p2 p3 p4 p5 p6

e1 1 0 0 1 1 0

e2 1 1 1 0 0 1

e3 0 1 0 1 1 1

Diabetes 1 0 0 1 1 0

modified soft rough topology on U and its soft basis β
ϕ
SR(X)−e1 = {U , {p4, p5}, {p1, p3}} �=

β
ϕ
SR(X).

Again, if the attribute increased hunger is removed, we have X∨
ϕ = {p1, p4, p5},

X∧
ϕ = {p1, p4, p5} and Bndϕ(X) = φ. Therefore, τϕ

SR(X) = {U ,φ, {p1, p4, p5}} is a modified
soft rough topology on U and its soft basis β

ϕ
SR(X) − e2 = {U ,φ, {p1, p4, p5}} = β

ϕ
SR(X).

Finally, if the attribute Increased Thirst is removed, we have X∨
ϕ = {p1, p4, p5},

X∧
ϕ = {p1, p4, p5} and Bndϕ(X) = φ. Therefore τ

ϕ
SR(X) = {U ,φ, {p1, p4, p5}} is a modified

soft rough topology on U and its soft basis β
ϕ
SR(X) − e3 = {U ,φ, {p1, p4, p5}} = β

ϕ
SR(X).

Therefore, Core(SRϕ)(X) = {e1}, i.e., frequent urination is the key attribute that has close
connection to disease diabetes.

Algorithm:
Step 1: Given a finite universe U, a finite set A of attributes represent the data as an
information table, rows of which are labeled by attributes (C),columns by objects and
entries of the table are attribute values.
Step 2: Find the lowerMSR approximation, upper MSR approximation and the soft MSR-
boundary region of X ⊆ U .
Step 3: Generate the soft rough topology τ

ϕ
SR(X) on U and its soft basis β

ϕ
SR(X).

Step 4: Remove an attribute x from conditions of attributes (C) and find the lower and
upper MSR approximations and the MSR-boundary region of X on C − (x).
Step 5: Generate the soft rough topology τ

ϕ
SR on U and its soft basis β

ϕ
SR(X) − x.

Step 6: Repeat steps 4 and 5 for all attributes in C.
Step 7: Those attributes in C for which β

ϕ
SR(X) − x �= β

ϕ
SR(X) forms the Core(SRϕ)(X).

Conclusion
Lattice is a very important structure in mathematics. In [14], we introduced the concept
of soft sets on a complete atomic Boolean lattice B. We combine soft set and rough set
by introducing the concept of soft rough set on B. Some shortcoming became the part
of soft rough sets on B. In this paper, we introduced the concept of Modified soft rough
sets(MSR) on a complete atomic Boolean lattice. Some important properties of MSR on B
have been discussed. Similar results which require some strong conditions for their proof
in soft rough sets on B can be proved in MSR sets without these conditions. Furthermore,
we used the modified soft rough approximation operators to introduce the concept of
modified soft rough topology and apply this concept in diabetes mellitus.
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