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Introduction

Denote by X, the class of analytic meromorphic multivalent functions of the form:

f(z)=£+2akzk(peN:{l,Z,...};m>—p), (1)

k=m

where U* = {z € Cand 0 < [z| < 1} = U\{0}. We note that Sigma,; , = 2.

For two functions f(z) and g(z), analytic in U, f(z) is subordinate to g(z) (f (z) < g(z))
in U, if there exists a function w(z), analytic in U with @ (0) = 0 and |w(2)| < 1, f(z) =
g(w(2))(z € U) and if g(z) is univalent in U, then (see for details [1] and also [2])

f(2) < g(2) <= f(0) =¢(0) and f(U) C g(U).

The Hadamard product of f(z) and g(z) given by
1 o
g(z) = 7 + Z bkzk
k=m
is defined by

1 o0
(F*8) @ =+ axbid’ = (g+f) @). (2)

k=m
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The Mittag-Leffler function Ey(z) (z € U*) ([3] and [4]) see also ([5, 6] and [7]) is

defined by
o0
1 X .
Ey(2) = k;) mz ,a € C,R(x) > 0.

Fora, B,y € C, fi(a) > 0, max {0, N(c) — 1} and N(c) > 0, Srivastava and Tomovski
[8] generalized Mittag-Leffler function by the function

Y ,c _ > ) nk
Eap@ = kg ke + p)ki- )

and proved that it is an entire function in the complex z-plane, where

()_F(y+9) , 6=0
Ty v+ +6-1), 040

Mostafa and Aouf [9] (see also [10]) used the function EZ; (z) and defined the

meromorphic function

M5 (@) = 2 PT(B)E) (2)

o0

- T(By + (k+p)c]
p
1 L TN (A + Kt el (4

R () = 0 when % (¢) = 1 with 8 # 0), (4)

’

and for f(z) € X, they defined the operator

Mo of (@) = M7 1(2) +f(2)

o]

=20 k;n 1“(;/)F 1“([21[ }(/ki(;;)z]ﬂclr P ©
From (5) it is easy to have
cz(H)e of @) = yHL L5 (@) — (v + peyHls of () (c > 0) (6)
and
oz (M) piif (z))/ = BHLE o @) — (pa+ B) ks 1 f (@), # 0. )
We note that:

(i) Hyp of (@) = f(2);

(i) Hg 4f @) = (0 + D f (@) + 2f (2);

(iti) HTp 4f (2) = 2f(2) + 2f (2.

Using the operator HZ,’; gf (2), we have the following definition.

Definition 1. For fixed A and B (—1 < B < A < 1), we say that a function f € X, is
in the class X };fn (a, B; A, B) if it satisfies

P (Hyaf@) 144
— <

. 8
p 1+ Bz ®)
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In view of the definition of differential subordination, (8) is equivalent to
Ak (H;ﬁ,ﬂf(z» +p
B+ (Hys of @) +pA

We note that:

< 1. )

(i)
211,;} (0,1,A,B) = £,(A,B) (-1 < B <A < 1;U*)

#Tf(2) 1+4Az
< )
p 1+ Bz

:ifeEp:—

the class X, (A, B) was introduced and studied by Mogra [11].
(ii)

Spm @ B,m) (0 <1 <p)

2
hm (a,ﬁ; 1- —1)
V4

{f € Sy -2 (M f @) ) > n}.

(10)
Preliminary results
The following lemmas will be required in our investigation.
Lemma 1 [12]. Let h be a convex (univalent) function in U with h(0) = 1. Also let

@) =1+ dpim2” ™ + dpymirZ? T4 (11)
be analytic in U. If

9@+ 22 o M0 20T £ 02 D), (12)
then

z
b(2) < W(z) = 7 / 77V n(tydt. (13)
p+m

0

Lemma 2 [13]. Let i be a positive measure on the unit interval [0,1]. Let g(z,t) be a
complex valued function defined on U x [0, 1] such that g(.,t) is analytic in U for each
t € [0,1] and such that g(z,.) is u integrable on [0, 1] for all z € U. In addition, suppose
that W{g(z,t)} > 0, g(—r,t) is real and

1 1
" {g(Z,t)} = g(—}’,t) (|Z| =r< Lite [01 1]).

Ifthe function G is defined by
1
G(z) = /g(z, Hdp(t),
0
then

! 1 1
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Each of the identities (asserted by Lemma 2) is fairly well known (cf, e.g, [[8], ch. 14]).

Lemma 3 [14]. For real or complex numbers a, b, and ¢ (¢ #0,—1,—-2,...)

1

/tb_l Q-0 1A —t) *dt = rere-» Fi (a,b;¢2) (R (c) < R (b) > 0);
J I' (o) 2

2F1 (a,b;62) = (1 —2) 7% F (a,c —bic;— 1) (z#1) (14)
and

oF1 (a,b;¢;2) =2 F1 (b, a;62) . (15)

Lemma 4 [15]. Let ® be analytic in U with
1
®(0) =1 and N{P(z)} > 7

Then, for any function F, analytic in U, (O * F) (U) is contained in the convex hull of F (U) .

We used the technique used by ([16—18] and [19]).

Main inclusion relationships
Unless otherwise mentioned, we assume throughout this paper that -1 < B < A <
La,B,y € C,R(a) > 0, max {0, NR(c) — 1}, N(c) > 0,8 > 0,f(z) given by (1) and z € U*.

Theorem 1 Let y # 0 and f(z) satisfy:

(1—8)z° ™! <7—[;”;’ﬁf(z)>/ + 82711 (H;,;rjécf(z)) 1+ Az

— < , (16)
P 1+ Bz
then
ZP+1 (HV Y (Z)) 14 A
- wtf < W¥(z) < + Z, (17)
p 1+ Bz
where
A
V() = 3+ (1=8) a5 h R (1 gl + 11z ) B0 (18)
Ut rmem s B=0
is the best dominant of (17). Furthermore,
Zp-‘rl (HV:C (Z))
90— pas/ S0 0<p<1), (19)
V4
where
A
7+( )1—3 F(ll, + 1 )B 0,
o = B ( ) 2 b1 5c(p+m) B—1 # (20)
L= S B=0.

The result is the best possible.
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Proof Let

1 (H;,’g,ﬂf(z)>
p
where ¢ is given by (11). Differentiating (21) and using (6), we get

¢(2) = — ) (21)

-9 (r ﬂf(z))/ + 52+ (H;’;igcf(z))/

Sczgp 1+A
+cqu(z)< + Az

=¢(z .
» (@ v 1+ Bz
Now, by using Lemma 1 for 7 = £, we get
1 (H%C (z)) z
_ pectf “ W =—7F z—%/tw—l 1+AL o
p dc(p + m) 1+ Bt

A A -1 . . _B
§+<1_§)(1+Bz) 2F1<1’1’5C(p}i|>m)+1’1+232>’B#O
)4 —
1+WAZ, B—O

This proves (17) of Theorem 1. In order to prove (20), we need to show that
inf {M(V(2)} = W(-1). (22)
|z|]<1

We have

[1+ Az 1—Ar
N > (Jzl <r<1).
1+ Bz 1—Br

Putting

LT ALZ ddve) = — ) e s 0 <7 < 1),

1+ Bz dc(p+m)

which is a positive measure on [0, 1], we obtain

G(Z,{) =

1
W) = f G (5,0) dv(Z).
0
Then
1
R (2) > /

0

1—-A¢r
1—-B¢r

dv(Q) =V(=r(zl =r <1.

Assuming r — 17 in the above inequality, we obtain (22). The result in (19) is the best
possible and W is the best dominant of (17). This completes the proof of Theorem 1. [

Theorem 2 Letf(z) € ) (o, B,1) (0 < 1 < p), then

n {_Zp+1 [(1 =8 (e f @) +8 (M) L5r @) ]} >n(zl <R, (23)

where

_1
p+m

\/0282(p+m)2+)/2—68(p+m)
%

R= (24)

The result is the best possible.
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Proof Since f(z) € E};}i, (o, B, 1), let
(WS @) =0+ (o= muca), (25)
where u(z) in the form (11) and 9 {u(2)} > 0. Differentiating (25) and using (6), we get

Sz (2)

2+l [ —95 (Hycﬁf(z)) +38 (Hy+tg7(z)> ]
_ = u(z) + T (26)

p—n
Applying the following estimate [20],

‘Zu/(z)‘ 2(p+m)rp+m
<
R{u(z)) = 1—r2etm

(Izl =r <1);

in (26), we get

o+l |:(1 —9) (Hy;ﬂf(z)> +4 ( ;,:é—:gcf(z))] +

N4 -
p—n
o 2¢8(p + m)rP™m
> N (u(2) (1 - y(l—rz(l""”‘))> (27)

It is easily seen that the right-hand side of (27) is positive, if r < R, where R is given by (24).
In order to show that the bound R is the best possible, we consider the function f € X,

defined by
1+ 221"
I (HES@) =t - —
Noting that
21 [(1 =8 (Hye @) +6 (M) T57 @) ] +
- P
oy (L=22PT) 428 (p + my T o
Y (1 _ Zp+m)2 ’
for
in
z=RMN ( ) .
p+m
This completes the proof of Theorem 2. O

Putting § = 1 in Theorem 2, we obtain the following result.

Corollary 1 Iff(z) € &), (o, B,1) (0 < ) < p) , thenf(z) € =, TV (o, B, ) for 2] < RY,
where

2 2. .2 P
ccp+m’+y>—clp+m

14

R =

The result is the best possible.
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Theorem 3 If the function f (z) € Xy, satisfies

yiC y+1,c 1+ Az
2= Oy f @ + 51T @) < 15
then
c 1+4
szyaﬁf(z) < W¥i(2) < Bj

and
N {ZpHyoclﬂf(z)} > p,

where V1 (2) is in the form (18) and p given by (20). The result is the best possible.

Proof The proof follows by taking the same lines as in the proof of Theorem 1 and taking
$(2) = M), of (2) in (21). O

For the function f(z) in the class X, Kumar and Shukla [21] defined the integral
operator [ p : Xpm — Xpm as follows:

z

Futh@ = Sl [ oo
0
— P S L
=z +k§nk+p+“akz (n>0). (28)
From (28), we get
z (s ﬁmp(f)(z)) = WHE @ — (D) HLE ST p (N ). (29)

Theorem 4 Let the function f(z) given by (1) be in the class Z};,',fq (o, B;A,B) and
F wp(f)(2) defined by (28). Then

’

P (’HV CﬁFMP(f)(Z)) o 1+ Az
— <

, 30
» @ < 7 B2 (30)
where
A A -1
1+M+p+mAz, B=0.
is the best dominant of (31). Furthermore,
p+1 (HyaﬂFMp(f)(z)>
R{— >0 0<o<1), (32)
V4
where
A _
At a-mhR (Lughs +ugk). B O .
R B=0.

n+pt+m

The result is the best possible.
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Proof Let
zp+1 (Hva ﬂpup(f)(z)>
L(z) = , (34)
p
where L in the form (11). Differentiating (34) and using (29), we get
e (Hyéﬂﬂz)) s 144z

=L(z) + ;L (z) < T+ B2

Now the remaining part of Theorem 4 follows by using the technique used in proving
Theorem 1. O

Theorem 5 Let the function |, ,(f)(2) defined by (28) satisfy:

1 +Az

P A= M5 o p @ + 5H e of @ | < (35)
then

9N {zp’y’-[;”ocl,ﬁFM,p(f)(z)} >0, (36)
where

A A -1
. 4+(1-2)a=-B5E (Ll +Lsk), B£O
L= iwstrrm B=0
The result is the best possible.
Proof Let
K@) =2"H)5 gF up(H (@), (37)

where K in the form (11). Differentiating (37) and using (29) and (35), we get

14 Az
1+ Bz’

82 ’
K+ —K (2) <
"

Now the remaining part of Theorem 5 follows by using the technique used in proving
Theorem 1. O

Theorem 6 Let the function f(z) € Zp,m satisfy:

P! |:(1_5) (’HycﬁFup(f)(z)) +8<Hycﬁf(z)) :| 1+Az
5 S4B

then

(g @)
p

N

> 0,

where [ ,,(f)(2) is given by (28) and 0 is given as in Theorem 5. The result is the best
possible.

Proof The proof follows by taking the same lines as in Theorem 5. O
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Theorem 7 Let f(z) be in the class Tp,,. Also, let g(z) € Ly, satisfy:

{2 @] = 0.

If
e -1 <1,
Hp,a,ﬁg('z)
then
Z(HYS f(2)
% —M >0 (2] < Ro), (38)
ViC
’praﬂf(z)
where
2 _
Ro = VOWw+m)? +4p(p +m) — 3 +m) (39)
2(2p + m)
Proof Let
Hyft (2)
P(2) = ’;%J — 1= epim? "+ eprmn T 4 (40)
’pra’ﬂg(z)

we note that ¢ is analytic in U, with ¢ (0) = 0 and |¢(z)| < |z[P"". Then, by applying the
familiar Schwarz Lemma [22], we have ¢ (z) = 2ZZT"W(z) is analytic in U and |¥(z)| < 1
(z € U). Therefore, (40) leads to

Hyopf @ =Hy 48(2) (ZZ77"W(2) +1). (41)
Differentiating (41), we obtain

z (H;j;,ﬁf (z)) z (H;';,ﬁg(z)) P [(p +m) V() + z\lf’(z)]

= + . (42)
Hyy of (2) H, 8@ 1+ 22+ (2)

Letting x (z) = 2 H;;,ﬁ g(z), we see that the function y is of the form (11) and is analytic

inU, R{x()} >0and

/

z (H;,ﬁ,ﬁg (z)) @

M@ — x@
so, we find from (42) that
o | _2C4is @) 2 @| |2 [ermve+ey o] 43
N —W = - X(Z) - 1+zp+mlp(z) ( )

Using the following known estimates [23] (see also [20]),

p+m
- 1 —ypptm

x )
x(2)

(lzl =7 < 1),

2(p + m)rptm=1 p+m ¥ +2z2¥ (2)
= 1—p2etm 14 z2tm(z)

in (43), we have

V.C
z (Hp,a,ﬂf (Z)> _ P= 3@+ mrt — 2p 4 w2
Hyogf@ |~ 1 — r2p+m)

Ny -

’

which is certainly positive, provided that r < Ry, Ry given by (39). O
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Theorem 8 Let the function f (z) € Ly, satisfy:

1+ Az
2 [a- 9w @+ @] < S T

then
N < pasYe % 1
$ Z ’Hp,a,ﬁf(z)) >e1 (geN),

where € in the form (20). The result is the best possible.

Proof Let
$(2) =PH,), of (2), (44)
where ¢ in the form (11). Differentiating (44) and using (6), we have

Sczd (2) L l+Az
1+ Bz

Now the remaining part of Theorem 8 follows by using the technique used in proving

2[A =M @ + 51, @] = 62+

Theorem 1, and using the inequality:
RWT) > RW)7 (W) > 0;q € N),
we have the result asserted by Theorem 8. O
Theorem 9 Let the function f (z) € E},’)’,ﬁ, (ot, B; A, B) and let g(z) € Xy satisfy:
N (Fg2) > %
Then,
(f*g) (@) € Zpm (@, B;A,B).

Proof We have
(W, (@) @ (Hig@)
— =— * 28 g(2).
p p
Since
1
R (£g(2)) > 3
and ﬁgi is convex in U, it follows from (8) and Lemma 4 that (f *g) (z) €

) 1}7’, w (at, B; A, B) , which completes the proof of Theorem 9. O

Remark 1 For different value of v, ¢, o, B, and p in the above results, we obtain results
corresponding to the functions given in the introduction.
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