ORIGINAL RESEARCH

Open Access

Separation Problem for Bi-Harmonic Differential Operators in L^p — spaces on Manifolds

H. A. Atia

Correspondence: h_a_atia@hotmail.com Faculty of Science, Department of Mathematics, Zagazig University, Zagazig, Egypt

Abstract

Consider the bi-harmonic differential expression of the form

$$A = \Delta_M^2 + q$$

on a manifold of bounded geometry (M, g) with metric g, where Δ_M is the scalar Laplacian on M and $q \ge 0$ is a locally integrable function on M. In the terminology of Everitt and Giertz, the differential expression A is said to be separated in $L^p(M)$, if for all $u \in L^p(M)$ such that $Au \in L^p(M)$, we have $qu \in L^p(M)$. In this paper, we give sufficient conditions for A to be separated in $L^p(M)$, where 1 .

Keywords: Separation problem, Bi-harmonic differential operator, Manifold

AMS Subject Classification: 47F05, 58J99

Introduction

In the terminology of Everitt and Giertz, the concept of separation of differential operators was first introduced in [1]. Several results of the separation problem are given in a series of pioneering papers [2–5]. For more backgrounds concerning to our problem, see [6–8]. Atia et al. [9] have studied the separation property of the bi-harmonic differential expression $A = \Delta_M^2 + q$, on a Riemannian manifold (M, g) without boundary in $L^2(M)$, where Δ_M is the Laplacian on M and $0 \le q \in L_{loc}^2(M)$ is a real-valued function.

Recently, Atia [10] has studied the sufficient conditions for the magnetic bi-harmonic differential operator *B* of the form $B = \Delta_E^2 + q$ to be separated in $L^2(M)$, on a complete Riemannian manifold (M,g) with metric g, where Δ_E is the magnetic Laplacian on M and $q \ge 0$ is a locally square integrable function on M. In [11], Milatovic has studied the separation property for the Schrodinger-type expression of the form $L = \Delta_M + q$, on non-compact manifolds in $L^p(M)$. Let (M,g) be a Riemannian manifold without boundary, with metric g (i.e., M is a C^{∞} – manifold without boundary and $g = (g_{jk})$ is a Riemannian metric on M) and dimM = n. We will assume that M is connected. We will also assume that we are given a positive smooth measure $d\mu$, i.e., in any local coordinates x^1, x^2, \ldots, x^n , there exists a strictly positive C^{∞} -density $\rho(x)$ such that $d\mu = \rho(x) dx^1 dx^2 \ldots dx^n$. In the sequel, $L^2(M)$ is the space of complex-valued square integrable functions on M with the inner product:

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

$$(u,v) = \int_{M} (uv^{-}) d\mu, \qquad (1)$$

and $\|.\|$ is the norm in $L^2(M)$ corresponding to the inner product (1). We use the notation $L^2(\Lambda^1 T^*M)$ for the space of complex-valued square integrable 1-forms on M with the inner product:

$$(W, \Psi)_{L^2(\Lambda^1 T^* M)} = \int_M \langle W, \overline{\Psi} \rangle d\mu, \qquad (2)$$

where for 1-forms $W = W_j dx^j$ and $\Psi = \Psi_k dx^k$, we define $\langle W, \Psi \rangle = g^{jk} W_j \Psi_k$, where (g^{jk}) is the inverse matrix to (g_{jk}) , and $\overline{\Psi} = \overline{\Psi_k} dx^k$ (above, we use the standard Einstein summation convention).

The notation $\|.\|_{L^2(\Lambda^1T^*M)}$ stands for the norm in $L^2(\Lambda^1T^*M)$ corresponding to the inner product (2). To simplify notations, we will denote the inner products (1) and (2) by (.,.). In the sequel, for $1 \le p < \infty$, $L^p(M)$ is the space of complex-valued *p*-integrable functions on *M* with the norm:

$$\|u\|_{p} = \left(\int_{M} |u|^{p} d\mu\right)^{\overline{p}},$$
(3)

In what follows, by $C^1(M)$, we denote the space of continuously differentiable complexvalued functions on M, and by $C^{\infty}(M)$, we denote the space of smooth complex-valued functions on M, by $C_c^{\infty}(M)$ – the space of smooth compactly supported complex-valued functions on M, by $\Omega^1(M)$ – the space of smooth 1-forms on M, and by $\Omega_c^1(M)$ –the space of smooth compactly supported 1-forms on M. In the sequel, the operator $d: C^{\infty}(M) \rightarrow \Omega^1(M)$ is the standard differential and $d^*: \Omega^1(M) \rightarrow C^{\infty}(M)$ is the formal adjoint of d defined by the identity: $(du, v)_{L^2(\Lambda^1 T^*M)} = (u, d^*v)$, $u \in C_c^{\infty}(M)$, $v \in$ $\Omega^1(M)$. By $\Delta_M = d^*d$, we will denote the scalar Laplacian on M. We will use the product rule for d^* as follows:

$$d^{*}(uv) = ud^{*}v - \langle du, v \rangle, \ u \in C^{1}(M), \ v \in \Omega^{1}(M).$$
(4)

We consider the bi-harmonic differential expression:

$$A = \Delta_M^2 + q,\tag{5}$$

where $q \ge 0$ is a locally integrable function on *M*.

Definition 1 The set D_p :

Let A be as in (5), we will use the notation

$$D_{p} = \{ u \in L^{p}(M) : Au \in L^{p}(M) \}.$$
(6)

Remark 1 In general, it is not true that for all $u \in D_p$, we have $\triangle_M^2 u \in L^p(M)$ and $qu \in L^p(M)$ separately. Using the terminology of Everitt and Giertz, we will say that the differential expression $A = \triangle_M^2 + q$ is separated in $L^p(M)$ when the following statement holds true: for all $u \in D_p$, we have $qu \in L^p(M)$.

We will give sufficient conditions for A to be separated in $L^{p}(M)$. Assume that the manifold (M, g) has bounded geometry, that is

(a) $\inf_{x \in M} r_{inj}(x) > 0$, where $r_{inj}(x)$ is the injectivity radius of (M, g),

(b) all covariant derivatives $\nabla^{j}R$ of the Riemann curvature tensor R are bounded: $|\nabla^{j}R| \leq K_{j}, j = 0, 1, 2, ...,$ where K_{j} are constants.

Let (M,g) be a manifold of bounded geometry. Then, there exists a sequence of functions (called cut-off functions) $\{\phi_j\}$ in $C_c^{\infty}(M)$ such that for all j = 1, 2, 3...,

(i) $0 \le \phi_j \le 1$;

(ii) $\phi_j \le \phi_{j+1}$;

(iii) for every compact set $S \subset M$, there exists *j* such that $\phi_j|_S = 1$;

(iv) $\sup_{x \in M} |d\phi_j| \leq C_1$, $\sup_{x \in M} |\Delta_M \phi_j| \leq C_1$, and $\sup_{x \in M} |\Delta_M^2 \phi_j| \leq C_1$, where $C_1 > 0$ is a constant independent of *j*. For the construction of ϕ_j satisfying the above properties, see [12].

Preliminary lemma

In the following, we introduce a preliminary lemma which will be used in the sequel.

Lemma 1 Assume that (M,g) is a connected C^{∞} -Riemannian manifold without boundary, with metric g and has bounded geometry. Assume that there exist a constant γ such that $0 < \gamma \leq q \in C^1(M)$, and

$$\left| \triangle_{M} q(x) \right| \le \sigma q^{\frac{3}{2}}(x), \text{ for all } x \in M, \tag{7}$$

where $0 < \sigma < \frac{2}{\sqrt{p-1}}$, $1 , and <math>|\Delta_M q(x)|$ denotes the norm of $\Delta_M q(x) \in T_x^*M$ with respect to the inner product in T_x^*M induced by the metric g. Assume that $f \in L^p(M)$ and that $u \in L^p(M) \cap C^1(M)$ is a solution of the equation

$$\Delta_M^2 u + qu = f. \tag{8}$$

Additionally assume that for all $k \in \left[-\frac{1}{2}, p-1\right]$,

$$|u|^{p} q^{k+\frac{1}{2}} \in L^{1}(M) \text{ and } \lim_{j \to \infty} \left(\triangle_{M} u q^{k} du, u |u|^{p-4} \phi_{j} du \right) = 0.$$
(9)

Then, the following properties hold:

$$\lim_{j \to \infty} \left(\triangle_M u, q^k u \, |u|^{p-2} \, \triangle_M \phi_j \right) = 0, \tag{10}$$

and

$$q^{k+1} |u|^p \in L^1(M)$$
, and $\int_M q^{k+1} |u|^p \ d\mu \le C_1 \|f\|_p^p$, (11)

for all $k \in \left[-\frac{1}{2}, p-1\right]$, where $\{\phi_j\}$ is as in (i-iv) and $C_1 \ge 0$ is a constant independent of u.

Proof We first prove (10): Since $u \in L^p(M) \cap C^1(M)$, using integration by parts, product rule of *d*, the definition of $\Delta_M = d^*d$, and the formula $d(u_{\epsilon}) = \frac{udu}{u_{\epsilon}}$, we have

$$\begin{split} \left(\Delta_{M} u, q^{k} u \left| u \right|^{p-2} \Delta_{M} \phi_{j} \right) &= \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u, q^{k} u (u_{\epsilon})^{p-2} \Delta_{M} \phi_{j} \right) \\ &= \lim_{\epsilon \to 0^{+}} \left(du, d \left(q^{k} u (u_{\epsilon})^{p-2} \Delta_{M} \phi_{j} \right) \right) \\ &= \lim_{\epsilon \to 0^{+}} \left(du q^{k} du, (u_{\epsilon})^{p-2} \Delta_{M} \phi_{j} \right) \\ &+ \lim_{\epsilon \to 0^{+}} \left(du q^{k} du, (u_{\epsilon})^{p-2} \Delta_{M} \phi_{j} \right) \\ &+ \left(p - 2 \right) \lim_{\epsilon \to 0^{+}} \left(du q^{k} du, u^{2} (u_{\epsilon})^{p-4} \Delta_{M} \phi_{j} \right) \\ &= \lim_{\epsilon \to 0^{+}} \left(du, q^{k} u (u_{\epsilon})^{p-2} d(\Delta_{M} \phi_{j}) \right) \\ &= \lim_{\epsilon \to 0^{+}} \left(du, dq^{k} u (u_{\epsilon})^{p-2} \Delta_{M} \phi_{j} \right) \\ &+ \left(p - 1 \right) \left(du, q^{k} du \left| u \right|^{p-2} \Delta_{M} \phi_{j} \right) \\ &= \lim_{\epsilon \to 0^{+}} \left(u, d^{*} \left(dq^{k} u (u_{\epsilon})^{p-2} d(\Delta_{M} \phi_{j}) \right) \right) \\ &+ \left(p - 1 \right) \lim_{\epsilon \to 0^{+}} \left(u, d^{*} \left(q^{k} u (u_{\epsilon})^{p-2} d(\Delta_{M} \phi_{j}) \right) \right) \\ &+ \left(p - 1 \right) \lim_{\epsilon \to 0^{+}} \left(u, d^{*} \left(q^{k} u (u_{\epsilon})^{p-2} d(\Delta_{M} \phi_{j}) \right) \right) \end{split}$$

using the product rule (4) of d^* , we get

$$\begin{split} \left(\triangle_{M} u, q^{k} u \left| u \right|^{p-2} \triangle_{M} \phi_{j} \right) &= -\lim_{\epsilon \to 0^{+}} \left(u d \left(u(u_{\epsilon})^{p-2} \triangle_{M} \phi_{j} \right), dq^{k} \right) \\ &+ \lim_{\epsilon \to 0^{+}} \left(u, u(u_{\epsilon})^{p-2} \triangle_{M} \phi_{j} \triangle_{M} q^{k} \right) \\ &- (p-1) \lim_{\epsilon \to 0^{+}} \left(u d \left(q^{k} (u_{\epsilon})^{p-2} \triangle_{M} \phi_{j} \right), du \right) \\ &+ (p-1) \lim_{\epsilon \to 0^{+}} \left(u, q^{k} (u_{\epsilon})^{p-2} \triangle_{M} \phi_{j} \triangle_{M} u \right) \\ &- \lim_{\epsilon \to 0^{+}} \left(u d \left(q^{k} u(u_{\epsilon})^{p-2} \right), d(\triangle_{M} \phi_{j}) \right) \\ &+ \lim_{\epsilon \to 0^{+}} \left(u, q^{k} u(u_{\epsilon})^{p-2} \triangle_{M}^{2} \phi_{j} \right), \end{split}$$

using the product rule of d again, we get

$$\begin{split} \left(\triangle_M u, q^k u \, |u|^{p-2} \, \triangle_M \phi_j \right) &= -\lim_{\epsilon \to 0^+} \left(u d \left(\triangle_M \phi_j \right), u(u_\epsilon)^{p-2} dq^k \right) \\ &- \lim_{\epsilon \to 0^+} \left(u \triangle_M \phi_j du, (u_\epsilon)^{p-2} dq^k \right) \\ &- (p-2) \lim_{\epsilon \to 0^+} \left(u \triangle_M \phi_j du, u^2 (u_\epsilon)^{p-4} dq^k \right) \\ &+ \lim_{\epsilon \to 0^+} \left(u, u(u_\epsilon)^{p-2} \triangle_M \phi_j \triangle_M q^k \right) \\ &+ \lim_{\epsilon \to 0^+} \left(u, q^k u(u_\epsilon)^{p-2} \triangle_M^2 \phi_j \right) \end{split}$$

$$+ (p-1) \lim_{\epsilon \to 0^+} \left(udq^k, (u_{\epsilon})^{p-2} \Delta_M \phi_j du \right) + (p-1) \lim_{\epsilon \to 0^+} \left(uq^k d \left(\Delta_M \phi_j \right), (u_{\epsilon})^{p-2} du \right) - (p-1)(p-2) \lim_{\epsilon \to 0^+} \left(uq^k du, u(u_{\epsilon})^{p-4} \Delta_M \phi_j du \right) - (p-1) \lim_{\epsilon \to 0^+} \left(u, q^k (u_{\epsilon})^{p-2} \Delta_M \phi_j \Delta_M u \right) + \lim_{\epsilon \to 0^+} \left(udq^k, u(u_{\epsilon})^{p-2} d(\Delta_M \phi_j) \right) - \lim_{\epsilon \to 0^+} \left(udq^k du, (u_{\epsilon})^{p-2} d(\Delta_M \phi_j) \right) - (p-2) \lim_{\epsilon \to 0^+} \left(udq^k du, u^2 (u_{\epsilon})^{p-4} d(\Delta_M \phi_j) \right).$$

Hence, we obtain

$$p\left(\triangle_{M}u,q^{k}u|u|^{p-2}\triangle_{M}\phi_{j}\right) = \left(u\triangle_{M}q^{k},u|u|^{p-2}\triangle_{M}\phi_{j}\right) + \left(u,q^{k}u|u|^{p-2}\triangle_{M}^{2}\phi_{j}\right)$$
$$-(p-1)(p-2)\left(uq^{k}du,u|u|^{p-4}\triangle_{M}\phi_{j}du\right).$$

Taking the limit as $j \to \infty$, we get

$$p \lim_{j \to \infty} \left(\triangle_M u, q^k u \, |u|^{p-2} \, \triangle_M \phi_j \right) = \lim_{j \to \infty} \left(u \triangle_M q^k, u \, |u|^{p-2} \, \triangle_M \phi_j \right) \\ + \lim_{j \to \infty} \left(u, q^k u \, |u|^{p-2} \, \triangle_M^2 \phi_j \right) \\ - (p-1)(p-2) \lim_{j \to \infty} \left(u q^k du, u \, |u|^{p-4} \, \triangle_M \phi_j du \right).$$

By properties of $\{\phi_j\}$, it follows that for all $x \in M$, $\phi_j(x) \to 1$, $d\phi_j(x) \to 0$, $\Delta_M \phi_j(x) \to 0$ and $\Delta_M^2 \phi_j(x) \to 0$ as $j \to \infty$, we apply dominated convergence theorem by using the assumption (7), the assumption $|u|^p q^{k+\frac{1}{2}} \in L^1(M)$ and the condition (iv), we obtain (10).

We now prove (11): Since $u \in L^p(M) \cap C^1(M)$, using (8), integration by parts, product rule of d, the definition of $\Delta_M = d^*d$, and the formula $d(u_\epsilon) = \frac{udu}{u_\epsilon}$, we have

$$\begin{pmatrix} f, q^{k}u |u|^{p-2} \phi_{j} \end{pmatrix} = \left(\Delta_{M}^{2}u, q^{k}u |u|^{p-2} \phi_{j} \right) + \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right)$$

$$= \lim_{\epsilon \to 0^{+}} \left(\Delta_{M}^{2}u, q^{k}u (u_{\epsilon})^{p-2} \phi_{j} \right) + \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right)$$

$$= \lim_{\epsilon \to 0^{+}} \left(d \left(\Delta_{M}u \right), d \left(q^{k}u (u_{\epsilon})^{p-2} \phi_{j} \right) \right) + \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right)$$

$$\begin{split} &= \lim_{\epsilon \to 0^{+}} \left(d\left(\bigtriangleup_{M} u \right), q^{k} u(u_{\epsilon})^{p-2} d\phi_{j} \right) + \lim_{\epsilon \to 0^{+}} \left(d\left(\bigtriangleup_{M} u \right), q^{k} (u_{\epsilon})^{p-2} \phi_{j} du \right) \\ &+ (p-2) \lim_{\epsilon \to 0^{+}} \left(d\left(\bigtriangleup_{M} u \right), q^{k} u^{2} (u_{\epsilon})^{p-4} \phi_{j} du \right) \\ &+ \lim_{\epsilon \to 0^{+}} \left(d\left(\bigtriangleup_{M} u \right), u(u_{\epsilon})^{p-2} \phi_{j} dq^{k} \right) + \left(qu, q^{k} u |u|^{p-2} \phi_{j} \right) \\ &= \left(d\left(\bigtriangleup_{M} u \right), q^{k} u |u|^{p-2} d\phi_{j} \right) + \left(d\left(\bigtriangleup_{M} u \right), u |u|^{p-2} \phi_{j} dq^{k} \right) \\ &+ (p-1) \left(d\left(\bigtriangleup_{M} u \right), q^{k} |u|^{p-2} \phi_{j} du \right) + \left(qu, q^{k} u |u|^{p-2} \phi_{j} \right) \\ &= \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u, d^{*} \left(q^{k} u(u_{\epsilon})^{p-2} d\phi_{j} \right) \right) + (p-1) \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u, d^{*} \left(q^{k} (u_{\epsilon})^{p-2} \phi_{j} dq^{k} \right) \right) \\ &+ \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u, d^{*} \left(u(u_{\epsilon})^{p-2} \phi_{j} dq^{k} \right) \right) + \left(qu, q^{k} u |u|^{p-2} \phi_{j} \right), \end{split}$$

using the product rule (4) of d^* , we get

$$\begin{split} \left(f, q^{k} u |u|^{p-2} \phi_{j}\right) &= -\lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u d \left(q^{k} u(u_{\epsilon})^{p-2}\right), d\phi_{j}\right) + \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u, q^{k} u(u_{\epsilon})^{p-2} \bigtriangleup_{M} \phi_{j}\right) \\ &- \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u d \left(u(u_{\epsilon})^{p-2} \phi_{j}\right), dq^{k}\right) + \lim_{\epsilon \to 0^{+}} \left((\bigtriangleup_{M} u) u(u_{\epsilon})^{p-2} \phi_{j}, \bigtriangleup_{M} q^{k}\right) \\ &- (p-1) \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u d \left(q^{k} (u_{\epsilon})^{p-2} \phi_{j}\right), du\right) \\ &+ (p-1) \lim_{\epsilon \to 0^{+}} \left(\bigtriangleup_{M} u q^{k} (u_{\epsilon})^{p-2} \phi_{j}, \bigtriangleup_{M} u\right) + \left(qu, q^{k} u |u|^{p-2} \phi_{j}\right), \end{split}$$

using the product rule of d again, we get

$$\begin{split} \left(f, q^{k} u \, |u|^{p-2} \, \phi_{j}\right) &= -\lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u q^{k}, u(u_{\epsilon})^{p-2} d\phi_{j} \right) - \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u q^{k} du, (u_{\epsilon})^{p-2} d\phi_{j} \right) \\ &- (p-2) \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u q^{k} du, u^{2} (u_{\epsilon})^{p-4} d\phi_{j} \right) \\ &+ \left(\Delta_{M} u, q^{k} u \, |u|^{p-2} \Delta_{M} \phi_{j} \right) + \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u d\phi_{j}, u(u_{\epsilon})^{p-2} dq^{k} \right) \\ &- \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u \phi_{j} du, (u_{\epsilon})^{p-2} dq^{k} \right) + \left((\Delta_{M} u) u \, |u|^{p-2} \phi_{j}, \Delta_{M} q^{k} \right) \\ &- (p-2) \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u \phi_{j} du, u^{2} (u_{\epsilon})^{p-4} dq^{k} \right) \\ &+ (p-1) \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u q^{k}, (u_{\epsilon})^{p-2} \phi_{j} du \right) \\ &+ (p-1) (p-2) \lim_{\epsilon \to 0^{+}} \left(\Delta_{M} u q^{k} du, u(u_{\epsilon})^{p-4} \phi_{j} du \right) \\ &+ (p-1) \left(\Delta_{M} u q^{k} \, |u|^{p-2} \phi_{j}, \Delta_{M} u \right) + \left(qu, q^{k} u \, |u|^{p-2} \phi_{j} \right). \end{split}$$

Hence, we obtain

$$\begin{pmatrix} f, q^{k}u |u|^{p-2} \phi_{j} \end{pmatrix} = -(p-1)(p-2) \left(\triangle_{M}uq^{k}du, u |u|^{p-4} \phi_{j}du \right) + \left(\triangle_{M}u, q^{k}u |u|^{p-2} \triangle_{M}\phi_{j} \right) + (p-1) \left(\triangle_{M}u, q^{k} |u|^{p-2} \phi_{j} \triangle_{M}u \right) + \left(\triangle_{M}u, u |u|^{p-2} \phi_{j} \triangle_{M}q^{k} \right) + \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right).$$
(12)

We now estimate the term $(\triangle_M u, u |u|^{p-2} \phi_j \triangle_M q^k)$. Using the assumption (7), we get

$$\left| \Delta_M q^k \right| \le \sigma \ |k| \ q^{k + \frac{1}{2}}. \tag{13}$$

Using (13) and the inequality $ab \le (p-1)a^2 + \frac{b^2}{4(p-1)}$, for all $0 \le a, b \in R$, we have

$$\left| \left(\bigtriangleup_M u, u \, |u|^{p-2} \, \phi_j \bigtriangleup_M q^k \right) \right| \leq \int_M |\bigtriangleup_M u| \, \left| \bigtriangleup_M q^k \right| \, |u|^{p-1} \, \phi_j \, d\mu$$

$$\leq \int_{M} \sigma |\Delta_{M}u| |k| q^{k+\frac{1}{2}} |u|^{p-1} \phi_{j} d\mu$$

$$= \int_{M} \left(|\Delta_{M}u| |u|^{\frac{p-2}{2}} \phi_{j}^{\frac{1}{2}} q^{\frac{k}{2}} \right) \left(\sigma |k| q^{\frac{k+1}{2}} \phi_{j}^{\frac{1}{2}} |u|^{\frac{p}{2}} \right) d\mu$$

$$\leq (p-1) \int_{M} |\Delta_{M}u|^{2} |u|^{p-2} \phi_{j} q^{k} d\mu + \frac{\sigma^{2}k^{2}}{4(p-1)} \int_{M} q^{k+1} \phi_{j} |u|^{p} d\mu$$

$$= (p-1) \left(\Delta_{M}u, q^{k} |u|^{p-2} \phi_{j} \Delta_{M}u \right) + \frac{\sigma^{2}k^{2}}{4(p-1)} \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right)$$

$$= (p-1) \left(\Delta_{M}u, q^{k} |u|^{p-2} \phi_{j} \Delta_{M}u \right) + (1-\alpha) \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right),$$

$$(14)$$

where $\alpha = 1 - \frac{\sigma^2 k^2}{4(p-1)}$, and $\alpha \in (0, 1]$. From (14), we get

$$\left(\bigtriangleup_M u, u | u |^{p-2} \phi_j \bigtriangleup_M q^k \right) \ge - \left| \left(\bigtriangleup_M u, u | u |^{p-2} \phi_j \bigtriangleup_M q^k \right) \right|$$

$$\geq (1-p)\left(\Delta_M u, q^k |u|^{p-2} \phi_j \Delta_M u\right) + (\alpha - 1)\left(qu, q^k u |u|^{p-2} \phi_j\right).$$
(15)

From (15) into (12), we obtain

$$\begin{pmatrix} f, q^{k}u |u|^{p-2} \phi_{j} \end{pmatrix} \geq -(p-1)(p-2) \left(\Delta_{M}uq^{k}du, u |u|^{p-4} \phi_{j}du \right) + \left(\Delta_{M}u, q^{k}u |u|^{p-2} \Delta_{M}\phi_{j} \right) + (p-1) \left(\Delta_{M}u, q^{k} |u|^{p-2} \phi_{j}\Delta_{M}u \right) + (1-p) \left(\Delta_{M}u, q^{k} |u|^{p-2} \phi_{j}\Delta_{M}u \right) + (\alpha-1) \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right) + \left(qu, q^{k}u |u|^{p-2} \phi_{j} \right) = -(p-1)(p-2) \left(\Delta_{M}uq^{k}du, u |u|^{p-4} \phi_{j}du \right) + \left(\Delta_{M}u, q^{k}u |u|^{p-2} \Delta_{M}\phi_{j} \right) + \alpha \left(u, q^{k+1}u |u|^{p-2} \phi_{j} \right).$$
(16)

Now, we use the inequality:

$$|ab| \le \frac{|a|^p}{\lambda^p} + \lambda |b|^t,$$
(17)

where $\frac{1}{p} + \frac{1}{t} = 1$, $a, b \in R$, and $\lambda \in (0, 1)$. Since $\phi_j \leq 1$ and $t = \frac{p}{p-1} > 1$, this implies $(\phi_j)^t \leq \phi_j$.

Using this and (17), we have

$$\left(f, q^{k} u |u|^{p-2} \phi_{j} \right) \leq \left| \left(f, q^{k} u |u|^{p-2} \phi_{j} \right) \right|$$

$$\leq \frac{1}{\lambda^{p}} \int_{M} \left| f \right|^{p} d\mu + \lambda \int_{M} (\phi_{j})^{t} q^{kt} |u|^{t} |u|^{(p-2)t} d\mu$$

$$\leq \lambda^{-p} \left\| f \right\|_{p}^{p} + \lambda \int_{M} \phi_{j} q^{kt} |u|^{t} |u|^{(p-2)t} d\mu$$

$$= \lambda^{-p} \left\| f \right\|_{p}^{p} + \lambda \left(q^{\frac{kp}{p-1}} |u|, \phi_{j} |u|^{p-1} \right).$$

$$(18)$$

From (18) into (16), we get

$$\left(\bigtriangleup_{M} u, q^{k} u |u|^{p-2} \bigtriangleup_{M} \phi_{j} \right) + \alpha \left(u, q^{k+1} u |u|^{p-2} \phi_{j} \right)$$
$$-(p-1)(p-2) \left(\bigtriangleup_{M} u q^{k} du, u |u|^{p-4} \phi_{j} du \right) \leq \lambda^{-p} \left\| f \right\|_{p}^{p} + \lambda \left(q^{\frac{kp}{p-1}} |u|, \phi_{j} |u|^{p-1} \right).$$

Since $k \le p-1$ and $\lambda \in (0, 1)$ is arbitrary, we can choose a sufficiently small $\lambda > 0$ such that

$$-(p-1)(p-2)\left(\triangle_{M}uq^{k}du, u |u|^{p-4}\phi_{j}du\right) + \left(\triangle_{M}u, q^{k}u |u|^{p-2} \triangle_{M}\phi_{j}\right) + \frac{\alpha}{2}\left(u, q^{k+1}u |u|^{p-2}\phi_{j}\right) \leq \lambda^{-p} \|f\|_{p}^{p}.$$
 (19)

By Fatou's lemma, we have

$$\int_{M} q^{k+1} |u|^{p} d\mu \leq \liminf_{j \to \infty} \left(u, q^{k+1} u |u|^{p-2} \phi_{j} \right).$$
(20)

Combining (19) and (20) and using (9) and (10), we obtain $\int_{M} q^{k+1} |u|^p d\mu \leq C_1 ||f||_p^p$, where $C_1 \geq 0$ is a constant independent of u, which is the proof of (11) and the lemma.

Preparatory result

The following proposition is the most important result of this section.

Proposition 1 Assume that (M,g) is a connected C^{∞} -Riemannian manifold without boundary, with metric g and has bounded geometry. Assume that the hypotheses (7), (8), and (9) of the Lemma 1 are satisfied. Then

$$\left\| qu \right\|_{p} \le C \left\| f \right\|_{p},\tag{21}$$

where $C \ge 0$ is a constant independent of u.

Proof Let m be an integer such that $\frac{m}{2} . By the result (11) in Lemma 1 with <math>k = -\frac{1}{2}$, 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, ..., $\frac{m}{2}$, we get $q^{\frac{1}{2}} |u|^p \in L^1(M)$, $q |u|^p \in L^1(M)$, ..., $q^{\frac{m}{2}+1} |u|^p \in L^1(M)$. Since $q(x) \geq \gamma > 0$, thus $|u|^p q^{p-\frac{1}{2}} = |u|^p q^{\frac{m}{2}+1} q^\beta \leq |u|^p q^{\frac{m}{2}+1} \gamma^\beta$, where $\beta = p - \frac{m+1}{2} \leq 0$. This implies $|u|^p q^{(p-1)+\frac{1}{2}} \in L^1(M)$, so by (11) (for k = p - 1), we obtain $q^p |u|^p \in L^1(M)$ and $\int_M q^p |u|^p d\mu \leq C_1 \|f\|_p^p$, which implies $\|qu\|_p^p \leq C_1 \|f\|_p^p$, that is $\|qu\|_p \leq C \|f\|_p$, where $C \geq 0$ is a constant independent of u. Hence, the proof of the proposition.

Lemma 2 Let (M, g) be a Remannian manifold, and let $u \in L^1_{loc}(M)$, $\Delta_M u \in L^1_{loc}(M)$. Then, $\Delta^2_M |u| \le Re\left((\Delta^2_M u) sign\overline{u}\right)$, where $signu(x) = \begin{cases} \frac{u(x)}{|u(x)|} & \text{if } u(x) \neq 0\\ 0 & \text{otherwise} \end{cases}$. See [13].

Distributional inequality For $1 and <math>\lambda > 0$, we consider the inequality, $(\Delta_M^2 + \lambda) u = v \ge 0$, $u \in L^p(M)$, where $v \ge 0$ means that v is a positive distribution, i.e., $\langle v, \phi \rangle \ge 0$ for every $0 \le \phi \in C_c^{\infty}(M)$. See [14].

Lemma 3 Let (M,g) be a manifold of bounded geometry and let 1 . $If <math>u \in L^p(M)$ satisfies the distributional inequality: $(\Delta_M^2 + \lambda) u \ge 0$, then $u \ge 0$ (almost every where or, equivalently, as a distribution). See [15]. **Lemma 4** If $u \in L^p(M)$ satisfies the equation $\triangle_M^2 u + qu = 0$, (which is understood in distributional sense), then u = 0.

Proof Since $q \in C^1(M) \subset L^{\infty}_{loc}(M)$, it follows that $qu \in L^1_{loc}(M)$. Since we have $\triangle^2_M u + qu = 0$, it follows that $\triangle^2_M u = -qu \in L^1_{loc}(M)$. From Lemma 2 and the assumption $q \ge \gamma > 0$, we get

$$\Delta_M^2 |u| \le \operatorname{Re}\left((\Delta_M^2 u) \operatorname{sign}\overline{u}\right) = -\operatorname{Re}\left((qu) \operatorname{sign}\overline{u}\right) = -qu\frac{\overline{u}}{|\overline{u}|} = -q\frac{|u|^2}{|u|} = -q|u| \le -\gamma |u|,$$

which implies $(\triangle_M^2 + \gamma) |u| \le 0$. From Lemma 3, we get $|u| \le 0$. This implies u = 0, hence the proof.

The Main result

We now introduce our main result of this paper.

Theorem 1 Assume that (M,g) is a connected C^{∞} -Riemannian manifold without boundary, with metric g and has bounded geometry. Assume that the assumption (7) of the Lemma 1 is satisfied. Then

$$\left\| qu \right\|_p \le C \left\| Au \right\|_p, \text{ for all } u \in D_p,$$
(22)

where $C \ge 0$ is a constant independent of u.

Proof Let
$$u \in D_n$$
 and

$$\left(\triangle_{M}^{2}+q\right)u=f,\tag{23}$$

so $f \in L^p(M)$. Thus, there exist a sequence (f_j) in $C_c^{\infty}(M)$ such that $f_j \to f$ in $L^p(M)$ as $j \to \infty$. Let *T* be the closure of $(\Delta_M^2 + q)|_{C_c^{\infty}(M)}$ in $L^p(M)$. By [15], it follows that:

(i) $Dom(T) = D_p$, and $Tu = (\Delta_M^2 + q) u$ for all $u \in D_p$.

(ii) The operator *T* is invertible, and $T^{-1} : L^p(M) \to L^p(M)$ is a bounded linear operator.

Consider the sequence $T^{-1}f_j = w_j$, since $T^{-1} : L^p(M) \to L^p(M)$ is a bounded linear operator, so $w_j \to T^{-1}f$ in $L^p(M)$ as $j \to \infty$. Let $w = T^{-1}f$. Using the property (i) of T, we get

$$\left(\Delta_M^2 + q\right)w = f. \tag{24}$$

From (23) and (24), we get $(\triangle_M^2 + q)(u - w) = 0$. By Lemma 4, we obtain u = w. Since $T^{-1}f_j = w_j$, it follows that $w_j \in D_p$, and by the property (i) of *T*, we get

$$\left(\bigtriangleup_M^2 + q\right) w_j = f_j. \tag{25}$$

In (25), we have $q \in C^1(M)$ and $f_j \in C_c^{\infty}(M)$, so by elliptic regularity, we get $w_j \in W_{loc}^{2,p}(M)$. By Sobolev embedding theorem [16], we get $w_j \in W_{loc}^{2,p}(M) \subset L_{loc}^t(M)$, where $\frac{1}{t} = \frac{1}{p} - \frac{2}{m}$. Hence, $qw_j \in L_{loc}^t(M)$. Using elliptic regularity again, we get $w_j \in W_{loc}^{2,t}(M)$ with t > p. Applying the same procedure, we will obtain $w_j \in C^1(M)$. Thus, $w_j \in C^1(M) \cap L^p(M)$ satisfies the conditions of Proposition 1. From (25) for j, r = 1, 2, ..., we get $(\Delta_M^2 + q)(w_j - w_r) = f_j - f_r$. Also, from (21), we get

$$\|q(w_j - w_r)\|_p \le C \|f_j - f_r\|_p.$$
 (26)

Since (f_j) is a cauchy sequence in $L^p(M)$, from (26), it follows that (qw_j) is also a cauchy sequence in $L^p(M)$, which implies (qw_j) converges to $s \in L^p(M)$. Let $\Psi \in C_c^{\infty}(M)$, then $0 = (qw_j, \Psi) - (w_j, q\Psi) \rightarrow (s, \Psi) - (w, q\Psi) = (s - qw, \Psi)$. So qw = s (because $C_c^{\infty}(M)$ is dense in $L^p(M)$). Hence, $qw_j \rightarrow qw$ in $L^p(M)$ as $j \rightarrow \infty$. But, we have u = w, so qu = qw. Since we have $||qw_j||_p \leq C ||f_j||_p$, by taking the limit as $j \rightarrow \infty$, we obtain $||qu||_p \leq C ||f||_p = C ||Au||_p$, where $C \geq 0$ is a constant independent of u. This concludes the proof of the Theorem.

Acknowledgements

Not applicable.

Authors' contributions

The author read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The author declare that he have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 November 2018 Accepted: 4 March 2019 Published online: 01 August 2019

References

- Everitt, W. N., Giertz, M.: Some properties of the domains of certain differential operators. Proc. Lond. Math. Soc. 23, 301–324 (1971)
- 2. Atia, H. A.: Separation problem for second order elliptic differential operators on Riemannian manifolds. J. Comput. Anal. Appl. **19**(2), 229–240 (2015)
- Biomatov, K. Kh.: Coercive estimates and separation for second order elliptic differential equations. Sov. Math. Dokl. 38(1), 157–160 (1989)
- Everitt, W. N., Giertz, M.: Inequalities and separation for Schrodinger-type operators in L₂(Rⁿ). Proc. Roy. Soc. Edin. 79 A, 257–265 (1977)
- Milatovic, O.: Separation property for Schrodinger operators on Riemannian manifolds. J. Geom. Phys. 56, 1283–1293 (2006)
- Eichhorn, J.: Elliptic differential operators on non compact manifolds. Teubner-Texte Math. 106, 4–169 (1988). Teubnet, Leipzig, Berlin, 1986/87
- Masamune, J.: Essential self adjointness of Laplacians on Riemannian manifolds with fractal boundary. Commun. Partial Differ. Equat. 24(3–4), 749–757 (1999)
- Shubin, M. A.: Essential self-adjointness for semi bounded magnetic Schrodinger operators on non-compact manifolds. J. Funct. Anal. 186, 92–116 (2001)
- Atia, H. A., Alsaedi, R. A., Ramady, A.: Separation of bi-harmonic differential operators on Riemannian manifolds. Forum Math. 26(3), 953–966 (2014)
- Atia, H. A.: Magnetic bi-harmonic differential operators on Riemannian manifolds and the separation problem. J. Contemp. Math. Anal. 51(5), 222–226 (2016)
- Milatovic, O.: Separation property for Schrodinger operators in L^p-spaces on non-compact manifolds. Complex Variables Elliptic Equat. 58(6), 853–864 (2013)
- 12. Shubin, M. A.: Spectral theory of elliptic operators on non-compact manifolds. Asterisque. 207, 35–108 (1992)
- Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrodinger type operators on manifolds. Russ. Math. Surv. 57(4), 641–692 (2002)
- 14. Gelfand, I. M., Vilenkin, N. Ya.: Generalized Functions, applications of harmonic analysis. Academic Press, New York (1964)
- Milatovic, O.: On *m*-accretive Schrodinger operators in L^p -spaces on manifolds of bounded geometry. J. Math. Anal. Appl. **324**, 762–772 (2006)
- 16. Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Springer, New York (1998)