ORIGINAL RESEARCH

Open Access

On the joint distribution of order statistics from independent non-identical bivariate distributions

A. R. Omar

Correspondence: azza.omar@azhar.edu.eg Faculty of Science, Department of Mathematics, Girls Branch, Al-Azhar University, Cairo, Egypt

Abstract

In this note, the exact joint probability density function (*jpdf*) of bivariate order statistics from independent non-identical bivariate distributions is obtained. Furthermore, this result is applied to derive the joint distribution of a new sample rank obtained from the *r*th order statistics of the first component and the *s*th order statistics of the second component.

Keywords: Bivariate order statistics, Joint distribution, Rank, Random vector

Subject classifications: 62G32, 62G30

Introduction

Multivariate order statistics especially Bivariate order statistics have attracted the interest of several researchers, for example, see [1]. The distribution of bivariate order statistics can be easily obtained from the bivariate binomial distribution, which was first introduced by [2]. Considering a bivariate sample, David et al. [3] studied the distribution of the sample rank for a concomitant of an order statistic. Bairamove and Kemalbay [4] introduced new modifications of bivariate binomial distribution, which can be applied to derive the distribution of bivariate order statistics if a certain number of observations are within the given threshold set. Barakat [5] derived the exact explicit expression for the product moments (of any order) of bivariate order statistics from any arbitrary continuous bivariate distribution function (df). Bairamove and Kemalbay [6] used the derived *jpdf* by [5] to derive the joint distribution on new sample rank of bivariate order statistics. Moreover, Barakat [7] studied the limit behavior of the extreme order statistics arising from *n* two-dimensional independent and non-identically distributed random vectors. The class of limit dfs of multivariate order statistics from independent and identical random vectors with random sample size was fully characterized by [8].

Consider *n* two-dimensional independent random vectors $\underline{W}_j = (X_j, Y_j), j = 1, 2, ..., n$, with the respective distribution function (df) $F_j(\underline{w}) = F_j(x, y) = P(X_j \le x, Y_j \le y), j =$ 1, 2, ..., n. Let $X_{1:n} \le X_{2:n} \le ... \le X_{n:n}$ and $Y_{1:n} \le Y_{2:n} \le ... \le Y_{n:n}$ be the order statistics of the *X* and *Y* samples, respectively. The main object of this work is to derive the *jpdf* of the random vector $Z_{k,k':n} = (X_{n-k+1:n}, Y_{n-k'+1:n})$, where $1 \le k, k' \le n$. Let $G_j(\underline{w}) =$ $P(\underline{W}_j > \underline{w})$ be the survival function of $F_j(\underline{w}), j = 1, 2, ..., n$ and let $F_{1,j}(.), F_{2,j}(.), G_{1,j}(.) =$

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. $1 - F_{1,j}(.)$ and $G_{2,j}(.) = 1 - F_{2,j}(.)$ the marginal dfs and the marginal survival functions of $\Phi_{k,k':n} = P(Z_{k,k':n} \leq \underline{w})$, $F_j(\underline{w})$ and $G_j(\underline{w}), j = 1, 2, ..., n$, respectively. Furthermore, let $F_j^{1,..} = \frac{\partial F_j(\underline{w})}{\partial x}$ and $F_j^{..,1} = \frac{\partial F_j(\underline{w})}{\partial y}$. Also, the *jpdf* of $(X_{n-k+1:n}, Y_{n-k'+1:n})$ is conveniently denoted by $f_{k,k':n}(\underline{w})$. Finally, the abbreviations $\min(a, b) = a \wedge b$, and $\max(a, b) = a \vee b$ will be adopted.

The jpdf of non-identical bivariate order statistics

The following theorem gives the exact formula of the jpdf of non-identical bivariate order statistics.

Theorem 1 The jpdf of non-identical bivariate order statistics is given by

$$\begin{split} f_{k,k':n}(\underline{w}) &= \sum_{\theta,\varphi=0}^{1} \sum_{r=r_{**}}^{r^{**}} \sum_{\rho_{\theta,\varphi,r}} \Pi_{j=1}^{\theta} F_{i_{j}}^{,1}(\underline{w}) \Pi_{j=\theta+1}^{1}(f_{2,i_{j}}(y) - F_{i_{j}}^{,1}(\underline{w})) \Pi_{j=2}^{\varphi+1} F_{i_{j}}^{1,.}(\underline{w}) \\ &\times \Pi_{j=\varphi+2}^{2}(f_{1,i_{j}}(x) - F_{i_{j}}^{1,.}(\underline{w})) \Pi_{j=3}^{k-\theta-r+1}(F_{1,i_{j}}(x) - F_{i_{j}}(\underline{w})) \Pi_{j=k-\theta-r+2}^{k-\theta-r+2} F_{i_{j}}(\underline{w}) \\ &\times \Pi_{j=k-\theta+2}^{k+k'-\theta-\varphi-r}(F_{2,i_{j}}(y) - F_{i_{j}}(\underline{w})) \Pi_{j=k+k'-\theta-\varphi-r+1}^{n} G_{i_{j}}(\underline{w}) + \sum_{r=0 \lor (k+k'-n-1)}^{(k-1)\land (k'-1)} \sum_{\rho,r} f_{j}(\underline{w}) \\ &\Pi_{j=2}^{k-r}(F_{1,i_{j}}(x) - F_{i_{j}}(\underline{w})) \times \Pi_{j=k-r+1}^{k} F_{i_{j}}(\underline{w}) \Pi_{j=k+1}^{k+k'-r}(F_{2,i_{j}}(y) - F_{i_{j}}(\underline{w})) \Pi_{j=k+k'-r+1}^{n} G_{i_{j}}(\underline{w}), \end{split}$$

where $r_{**} = 0 \lor (k + k' - \theta - \varphi - n), r^{**} = (k - \theta - 1) \land (k' - \varphi - 1), \sum_{\rho}$ denotes summation subject to the condition ρ , and $\sum_{\rho_{\theta_1,\theta_2,\varphi_1,\varphi_2,\omega,r}}$ denotes the set of permutations of $i_1, ..., i_n$ such that $i_{j_1} < ... < i_{j_n}$.

Proof A convenient expression of $f_{k,k':n}(\underline{w})$ may derived by noting that the compound event $E = \{x < X_{k:n} < x + \delta x, y < Y_{k:n} < y + \delta y\}$ may be realized as follows: $r; \varphi_1; s_1; \theta_1; \omega; \theta_2; s_2; \varphi_2$ and t observations must fall respectively in the regions $I_1 = (-\infty, x] \cap (-\infty, y]; I_2 = (x, x + \delta x] \cap (-\infty, y]; I_3 = (x + \delta x, \infty] \cap (-\infty, y]; I_4 = (-\infty, x] \cap (y, y + \delta y]; I_5 = (x, x + \delta x] \cap (y, y + \delta y]; I_6 = (x + \delta x, \infty] \cap (y, y + \delta y]; I_7 = (-\infty, x] \cap (y + \delta y, \infty); I_8 = (x, x + \delta x] \cap (x + \delta x, \infty); and I_9 = (x + \delta x, \infty) \cap (y + \delta y, \infty)$ with the corresponding probability $P_{ij} = P(\underline{W}_j \in I_i), i = 1, 2, ..., 9$. Therefore, the joint density function $f_{k,k':n}(\underline{w})$ of $(X_{k:n}, Y_{k':n})$ is the limit of $\frac{P(E)}{\delta x \delta y}$ as $\delta x, \delta y \to 0$, where P(E) can be derived by noting that $\theta_1 + \theta_2 + \omega = \varphi_1 + \varphi_2 + \omega = 1; r + \theta_1 + s_2 = k - 1; r + \varphi_1 + s_1 = k' - 1; r, \theta_1, s_2, \varphi_1, \omega, \theta_2, s_1, \varphi_2, t \ge 0; P_{1j} = F_j(\underline{w}), P_{2j} = F_j^{1,..}(\underline{w}) \delta x, P_{3j} = F_{2,j}(y) - F_j(x + \delta x, y), P_{4j} = F_j^{-1}(\underline{w}) \delta y, P_{5j} \cong F_j^{1,1}(\underline{w}) \delta x \delta y = f_j(\underline{w}) \delta x \delta y, P_{6j} \cong (f_{2,j}(y) - F_j^{-1}(\underline{w} + \delta \underline{w})) \delta y$, where $f_{2,j}(y) = \frac{\partial F_{2,j}(y)}{\partial y}, f_j = 1, 2, ..., n, \ \partial \underline{w} = (\delta x, \delta y), \ \underline{w} + \delta \underline{w} = (x + \delta x, y + \delta y), P_{7j} = F_{1,j}(x) - F_j(x, y + \delta y), P_{8j} = (f_{1,j}(x) - F_j^{1,..}(\underline{w} + \delta \underline{w})) \delta x, P_{9j} = 1 - F_{1,j}(x + \delta x) - F_{2,j}(y + \delta y) + F_j(\underline{w})$. Thus, we get

$$f_{k,k':n}(\underline{w}) = \sum_{\theta_1,\varphi_1,\theta_2,\varphi_2=0}^{1} \sum_{r=r_*}^{r^*} \sum_{\substack{\rho_{\theta_1,\theta_2,\varphi_1,\varphi_2,\omega,r}}} \Pi_{j=1}^{\theta_1} P_{4i_j} \Pi_{\theta_1+1}^{\theta_1+\varphi_1} P_{2i_j} \Pi_{j=\theta_1+\varphi_1+\theta_2}^{\theta_1+\varphi_1+\theta_2} P_{6i_j} \Pi_{j=\theta_1+\varphi_1+\theta_2+1}^{\theta_1+\varphi_1+\theta_2+\varphi_2} P_{8i_j} \\ \Pi_{j=\theta_1+\varphi_1+\theta_2+\varphi_2+1}^{\theta_1+\varphi_1+\theta_2+\varphi_2+\omega} P_{5i_j} \Pi_{j=\theta_1+\varphi_1+\theta_2+\varphi_2+\omega+1}^{\theta_2+\varphi_1+\theta_2+\varphi_2+\omega+k-r-1} P_{7i_j} \Pi_{j=\theta_2+\varphi_1+\varphi_2+\omega+k-r}^{\varphi_1+\theta_2+\varphi_2+\omega+k-k'-r-2} P_{3i_j} \\ \Pi_{j=\theta_2+\varphi_2+\omega+k+k'-r-1}^{\eta_j} P_{9i_j},$$

where $r_* = 0 \vee (k+k'+\theta_2+\varphi_2+\omega-r-1-n)$, $r^* = (k-\theta_1-1) \wedge (k'-\varphi_1-1)$, \sum_{ρ} denotes summation subject to the condition ρ , and $\sum_{\rho_{\theta_1,\theta_2,\varphi_1,\varphi_2,\omega,r}}$ denotes the set of permutations of $i_1, ..., i_n$ such that $i_{j_1} < ... < i_{j_n}$ for each product of the type $\prod_{j=j_1}^{j_2}$. Moreover, if $j_1 > j_2$, then $\prod_{j=j_1}^{j_2} = 1$. But (1) can be written in the following simpler form

$$P(E) = \sum_{\theta,\varphi=0}^{1} \sum_{r=r_{**}}^{r^{**}} \sum_{\rho_{\theta,\varphi,r}} \Pi_{j=1}^{\theta} P_{4ij} \Pi_{j=\theta+1}^{1} P_{6ij} \Pi_{j=2}^{\varphi+1} P_{2ij} \Pi_{j=\varphi+2}^{2} P_{8ij} \Pi_{j=3}^{k-\theta-r+1} P_{7ij} \Pi_{j=k-\theta-r+2}^{k-\theta+1} P_{1ij} \Pi_{j=0}^{k-\theta+1} P_{1i$$

 $\Pi_{j=k-\theta+2}^{k+k'-\theta-\varphi-r} P_{3i_j} \Pi_{j=k+k'-\theta-\varphi-r+1}^n P_{9i_j} + \sum_{r=0\lor (k+k'-n-1)}^{(k-1)\land (k'-1)} \sum_{\rho_r} P_{5i_3} \Pi_{j=2}^{k-r} P_{7i_j} \Pi_{j=k-r+1}^k P_{1i_j} \Pi_{j=k+1'}^{k+k'-r} P_{3i_j} \Pi_{j=k+k'-r}^n P_{9i_j},$ where $r_{**} = 0 \lor (k+k'-\theta-\varphi-n), r^{**} = (k-\theta-1)\land (k'-\varphi-1).$ Therefore,

$$f_{k,k':n}(\underline{w}) = \sum_{\theta,\varphi=0}^{1} \sum_{r=r_{**}}^{r^{**}} \sum_{\rho_{\theta,\varphi,r}} \Pi_{j=1}^{\theta} P_{4i_j} \Pi_{j=\theta+1}^{1} P_{6i_j} \Pi_{j=2}^{\varphi+1} P_{2i_j} \Pi_{j=\varphi+2}^{2} P_{8i_j} \Pi_{j=3}^{k-\theta-r+1} P_{7i_j}$$
$$\Pi_{j=k-\theta-r+2}^{k-\theta+1} P_{1i_j} \Pi_{j=k-\theta+2}^{k+k'-\theta-\varphi-r} P_{3i_j} \Pi_{j=k+k'-\theta-\varphi-r+1}^{n} P_{9i_j} + \sum_{r=0\lor(k+k'-n-1)}^{(k-1)\land(k'-1)} \sum_{\rho,r} P_{5i_3} \Pi_{j=2}^{k-r} P_{7i_j}$$
$$\Pi_{j=k-r+1}^{k} P_{1i_j} \Pi_{j=k+1}^{k+k'-r} P_{3i_j} \Pi_{j=k+k'-r}^{n} P_{9i_j}.$$

Thus, we get

$$f_{k,k':n}(\underline{w}) = \sum_{\theta,\varphi=0}^{1} \sum_{r=r_{**}}^{r^{**}} \sum_{\rho_{\theta,\varphi,r}} \Pi_{j=1}^{\theta} F_{ij}^{*1}(\underline{w}) \Pi_{j=\theta+1}^{1}(f_{2,ij}(\underline{y}) - F_{ij}^{*1}(\underline{w})) \Pi_{j=2}^{\varphi+1} F_{ij}^{1,..}(\underline{w})$$

$$\Pi_{j=\varphi+2}^{2}(f_{1,ij}(\underline{x}) - F_{ij}^{1,..}(\underline{w})) \Pi_{j=3}^{k-\theta-r+1}(F_{2,ij}(\underline{x}) - F_{ij}(\underline{w})) \Pi_{j=k-\theta-r+2}^{k-\theta+1} F_{ij}(\underline{w}) \Pi_{j=k-\theta+2}^{k+k'-\theta-\varphi-r}(F_{2,ij}(\underline{y}) - F_{ij}(\underline{w}))$$

$$\Pi_{j=k+k'-\theta-\varphi-r+1}^{n} G_{ij}(\underline{w}) + \sum_{r=0\vee(k+k'-n-1)}^{(k-1)\wedge(k'-1)} \sum_{\rho_r} f_{i3}(\underline{w}) \Pi_{j=2}^{k-r}(F_{1ij}(\underline{x}) - F_{ij}(\underline{w}))$$

$$\Pi_{j=k-r+1}^{k} F_{ij}(\underline{w}) \Pi_{j=k+1}^{k+k'-r}(F_{2,ij}(\underline{y}) - F_{ij}(\underline{w})) \Pi_{j=k+k'-r+1}^{n} G_{ij}(\underline{w}).$$
(3)

Hence, the proof.

Relation (3) may be written in term of permanents (c.f [9]) as follows:

$$f_{k,k':n}(\underline{w}) = \sum_{\theta,\varphi=0}^{1} \sum_{r=r_{*}}^{r^{**}} \frac{1}{(k-\theta-r-1)!r!(k'-\varphi-r-1)!(n-k-k'+\varphi+\theta+r-1)!}$$

$$\Pr[\underbrace{\mathcal{U}_{1,1}^{,1}}_{1,1} \qquad \underbrace{(\mathcal{U}_{1,1}^{1}-\mathcal{U}_{1,1}^{,1})}_{\theta} \qquad \underbrace{\mathcal{U}_{1,1}^{1}-\mathcal{U}_{1,1}^{1,1}}_{1,1} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,1}^{1,r})}_{\theta} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,1})}_{1-\theta} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,1})}_{\theta} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,1})}_{1-\theta} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,1})}_{1-\varphi} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,r})}_{1-\varphi} \qquad \underbrace{(\mathcal{U}_{1,r}^{1}-\mathcal{U}_{1,r})}_$$

where $\underline{U}_{1,.} = (F_{11}(x_1) \ F_{12}(x_1) \ \dots \ F_{1n}(x_1))', \ \underline{U}_{.,1} = (F_{2,1}(x_2) \ F_{2,2}(x_2) \ \dots \ F_{2,n}(x_2))', \ \underline{U}_{1,1} = (F_1(\underline{x}) \ F_2(\underline{x}) \ \dots \ F_n(\underline{x}))' \text{ and } \underline{1} \text{ is the } n \times 1 \text{ column vector of ones. Moreover, if } \underline{a}_1, \underline{a}_2, \dots \text{ are column vectors, then}$

$$\begin{array}{ccc} \operatorname{Per}[\underline{a}_1 & \underline{a}_2 & \dots] \\ i_1 & i_2 & \dots \end{array}$$

will denote the matrix obtained by taking i_1 copies of \underline{a}_1 , i_2 copies of \underline{a}_2 , and so on. Finally, when k = k' = 1, in (3), we get

$$f_{1,1:n}(\underline{w}) = \sum_{\rho_{\theta,\varphi,r}} (f_{2,i_1}(y) - F_{i_1}^{,,1}(\underline{w}))(f_{1,i_2}(x) - F_{i_2}^{1,.}(\underline{w}))\Pi_{j=3}^n G_{i_j}(\underline{w}) + \sum_{\rho_r} f_{i_3}(\underline{w})$$
$$(F_{2,i_2}(y) - F_{i_2}(\underline{w}))\Pi_{j=3}^n G_{i_3}(\underline{w}).$$

Also, for k = k' = n, we get

$$f_{n,n:n}(\underline{w}) = \sum_{\rho_{\theta,\varphi,r}} F_{i_1}^{,,1}(\underline{w}) F_{i_2}^{1,.}(\underline{w}) \prod_{j=3}^n F_{i_j}(\underline{w}) + \sum_{\rho_r} f_{i_3}(\underline{w}) \prod_{j=2}^n F_{i_j}(\underline{w})) (F_{2,i_{n+1}}(y) - F_{i_{n+1}}(\underline{w})).$$

Joint distribution of the new sample rank of X_{r:n} and Y_{s:n}

Consider *n* two-dimensional independent vectors $\underline{W}_j = (X_j, Y_j), j = 1, ..., n$, with the respective df $F_j(\underline{W})$ and the *jpdf* $f_j(\underline{W})$. Further assume that $(X_{n+1}, Y_{n+1}), (X_{n+2}, Y_{n+2}),$..., $(X_{n+m}, Y_{n+m}), (m \ge 1)$ is another random sample with absolutely continuous df $G_j^*(x, y), j = 1, ..., m$ and *jpdf* $g_j(x, y)$. We assume that the two samples $(X_{n+1}, Y_{n+1}), (X_{n+2}, Y_{n+2}), ..., (X_{n+m}, Y_{n+m}), (m \ge 1)$ and $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are independent.

For $1 \le r, s \le n, m \ge 1$, we define the random variables η_1 and η_2 as follows:

$$\eta_1 = \sum_{i=1}^m I_{(X_{r:n} - X_{n+i})}$$

and

$$\eta_2 = \sum_{i=1}^m I_{(Y_{s:n} - Y_{n+i})}$$

where I(x) = 1 if x > 0 and I(x) = 0 if $x \le 0$ is an indicator function. The random variables η_1 and η_2 are referred to as exceedance statistics. Clearly η_1 shows the total number of new X observations $X_{n+1}, X_{n+2}, ..., X_{n+m}$ which does not exceed a random threshold based on the *r*th order statistic $X_{r:n}$. Similarly, η_2 is the number of new observations $Y_{n+1}, Y_{n+2}, ..., Y_{n+m}$ which does not exceed $Y_{s:n}$.

The random variable $\zeta_1 = \eta_1 + 1$ indicates the rank of $X_{r:n}$ in the new sample $X_{n+1}, X_{n+2}, ..., X_{n+m}$, and the random variable $\zeta_2 = \eta_2 + 1$ indicates the rank of $Y_{s:n}$ in the new sample $Y_{n+1}, Y_{n+2}, ..., Y_{n+m}$. We are interested in the joint probability mass function of random variables ζ_1 and ζ_2 . We will need the following representation of the compound event $P(\zeta_1 = p, \zeta_2 = q) = P(\eta_1 = p - 1, \eta_2 = q - 1)$.

Definition 1 Denote $A = \{X_{n+i} \le X_{r:n}\}, A^c = \{X_{n+i} > X_{r:n}\}, B = \{Y_{n+i} \le Y_{s:n}\}$ and $B^c = \{Y_{n+i} > Y_{s:n}\}$. Assume that in a fourfold sampling scheme, the outcome of the random experiment is one of the events A or A^c , and simultaneously one of B or B^c , where A^c is the complement of A.

In *m* independent repetitions of this experiment, if *A* appears together with $B \ell$ times, then *A* and B^c appear together $p - \ell - 1$ times. Therefore, *B* appears together with

Clearly, the random variables η_1 and η_2 are the number of occurrences of the events A and B in m independent trials of the fourfold sampling scheme, respectively. By conditioning on $X_{r:n} = x$ and $Y_{s:n} = y$, the joint distribution of η_1 and η_2 can be obtained from bivariate binomial distribution considering the four sampling scheme with events $A = \{X_{n+i} \le x\}, B = \{Y_{n+i} \le y\}$, and with respective probabilities

$$P(AB) = P(X_{n+i} \le x, Y_{n+i} \le y),$$

$$P(AB^{c}) = P(X_{n+i} \le x, Y_{n+i} > y),$$

$$P(A^{c}B) = P(X_{n+i} > x, Y_{n+i} \le y),$$

$$P(A^{c}B^{c}) = P(X_{n+i} > x, Y_{n+i} > y).$$

Now, we can state the following theorem.

Theorem 2 *The joint probability mass function of* ζ_1 *and* ζ_2 *, is given by*

$$\begin{split} P(\zeta_1 = p, \zeta_2 = q) &= P(\eta_1 = p - 1, \eta_2 = q - 1) = \sum_{\ell = max(0, p+q-m-2)}^{min(p-1, q-1)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \prod_{j=\ell+1}^{\ell} [G_{1,i_j}^*(x) - G_{i_j}^*(x, y)] \, \Pi_{j=p}^{q-\ell-1+p} \left[G_{2,i_j}^*(y) - G_{i_j}^*(x, y) \right] \Pi_{j=q-\ell+p}^{m+2} \overline{G}_{1,i_j}^*(x) f_{k,k':n(\underline{w})} dx dy, \\ where, p, q = 1, ..., m + 1, f_{k,k:n}(\underline{w}) \text{ is defined in (3).} \end{split}$$

Proof Consider the fourfold sampling scheme described in Definition (1). By conditioning with respect to $X_{r:n} = x$ and $Y_{s:n} = y$, we obtain

$$P(\zeta_{1} = p, \zeta_{2} = q) \equiv P(\eta_{1} = p - 1, \eta_{2} = q - 1) = P\left\{\sum_{i=1}^{m} I_{(X_{r:n} - X_{n+i})} = p - 1, I_{(Y_{r:n} - Y_{n+i})} = q - 1\right\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left\{\sum_{i=1}^{m} I_{(X_{r:n} - X_{n+i})} = p - 1, I_{(Y_{s:n} - Y_{n+i})} = q - 1|X_{r:n} = x, Y_{s:n} = y\right\}$$
(5)
$$\times P\{X_{r:n} = x, Y_{s:n} = y\}dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left\{\sum_{i=1}^{m} I_{(x - X_{n+i})} = p - 1, I_{(y - Y_{n+i})} = q - 1\right\}dF_{r,s:n}(x, y).$$

On the other hand,

$$P\left(\sum_{i=1}^{m} I_{(x-X_{n+i})} = p-1, I_{(y-Y_{n+i})} = q-1\right) = \sum_{\ell=max(0,p+q-m-2)}^{min(p-1,q-1)} \prod_{j=1}^{\ell} P_{i_j}(AB) \prod_{j=\ell+1}^{p-1} P_{i_j}(AB^c)$$
(6)
$$\prod_{j=p}^{q-\ell-2+p} P_{i_j} \prod_{j=q-\ell-1+p}^{m} P_{i_j}.$$

Substituting (6) in (5), we get

$$\begin{split} P(\zeta_1 = p, \zeta_2 = q) &= P(\eta_1 = p - 1, \eta_2 = q - 1) = \sum_{\ell = max(0, p+q-m-2)}^{min(p-1, q-1)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \prod_{j=1}^{\ell} G_{i_j}^*(x, y) \\ \Pi_{j=\ell+1}^{p-1} [G_{1,i_j}^*(x) - G_{i_j}^*(x, y)] \, \Pi_{j=p}^{q-\ell-1+p} [G_{2,i_j}^*(y) - G_{i_j}^*(x, y)] \, \Pi_{j=q-\ell+p}^m \overline{G}_{1,i_j}^*(x) f_{k,k':n(\underline{w})} dx dy, \\ \text{where } p, q = 1, ..., m + 1. \text{ This completes the proof.} \end{split}$$

Acknowledgements

Not applicable.

Authors' contributions

The author read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The author declares that she has no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 December 2018 Accepted: 8 January 2019

Published online: 22 August 2019

References

- Galambos, J.: Order statistics of samples from multivariate distributions. J. Amer. Statist. Assoc. 70(351), 674–680 (1975)
- Aitken, A. C., Gonin, H. T.: On fourfold sampling with and without replacement. Proc. Roy. Soc. Edinburgh. 55, 114–125 (1935)
- David, H. A., O'Connell, M. J., Yang, S. S: Distribution and expected value of the rank of a concomitant of an order statistic. Ann. Statist. 5, 216–223 (1977)
- Bairamove, I., Kemalbay, G.: Some novel discrete distributions under fourfold sampling schemes and conditional bivariate order statistics. J. Comput. Appl. Math. 248, 1–14 (2013)
- 5. Barakat, H. M.: On moments of bivariate order statistics. Ann. Instit. Statist. Math. 51(2), 351–358 (1999)
- Bairamove, I., Kemalbay, G.: Joint distribution of new sample rank of bivariate order statistics. J. Appl. Statist. 42(10), 2280–2289 (2015)
- Barakat, H. M.: Limit theorems for bivariate extremes of non-identically distributed random variable. Appl. Math. 29(4), 371–386 (2002)
- Barakat, H. M., Nigm, E. M., Al-Awady, M. A.: Asymptotic properties of multivariate order statistics with random index. Bull. Malaysian Math. Soc. (second series). 38(1), 289–301 (2015)
- Bapat, R. B., Beg, M. I.: Order statistics for nonidentically distributed variables and permanents. Sankhya Indian J. Stat. Ser. A. 51(1), 79–93 (1989)

Submit your manuscript to a SpringerOpen[●] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com