On the joint distribution of order statistics from independent non-identical bivariate distributions

A. R. Omar

Correspondence:

azza.omar@azhar.edu.eg
Faculty of Science, Department of Mathematics, Girls Branch, Al-Azhar University, Cairo, Egypt

Abstract

In this note, the exact joint probability density function (jpdf) of bivariate order statistics from independent non-identical bivariate distributions is obtained. Furthermore, this result is applied to derive the joint distribution of a new sample rank obtained from the rth order statistics of the first component and the sth order statistics of the second component.

Keywords: Bivariate order statistics, Joint distribution, Rank, Random vector
Subject classifications: 62G32, 62G30

Introduction

Multivariate order statistics especially Bivariate order statistics have attracted the interest of several researchers, for example, see [1]. The distribution of bivariate order statistics can be easily obtained from the bivariate binomial distribution, which was first introduced by [2]. Considering a bivariate sample, David et al. [3] studied the distribution of the sample rank for a concomitant of an order statistic. Bairamove and Kemalbay [4] introduced new modifications of bivariate binomial distribution, which can be applied to derive the distribution of bivariate order statistics if a certain number of observations are within the given threshold set. Barakat [5] derived the exact explicit expression for the product moments (of any order) of bivariate order statistics from any arbitrary continuous bivariate distribution function (df). Bairamove and Kemalbay [6] used the derived jpdf by [5] to derive the joint distribution on new sample rank of bivariate order statistics. Moreover, Barakat [7] studied the limit behavior of the extreme order statistics arising from n twodimensional independent and non-identically distributed random vectors. The class of limit dfs of multivariate order statistics from independent and identical random vectors with random sample size was fully characterized by [8].
Consider n two-dimensional independent random vectors $\underline{W}_{j}=\left(X_{j}, Y_{j}\right), j=1,2, \ldots, n$, with the respective distribution function (df) $F_{j}(\underline{w})=F_{j}(x, y)=P\left(X_{j} \leq x, Y_{j} \leq y\right), j=$ $1,2, \ldots, n$. Let $X_{1: n} \leq X_{2: n} \leq \ldots \leq X_{n: n}$ and $Y_{1: n} \leq Y_{2: n} \leq \ldots \leq Y_{n: n}$ be the order statistics of the X and Y samples, respectively. The main object of this work is to derive the jpdf of the random vector $Z_{k, k^{\prime}: n}=\left(X_{n-k+1: n}, Y_{n-k^{\prime}+1: n}\right)$, where $1 \leq k, k^{\prime} \leq n$. Let $G_{j}(\underline{w})=$ $P\left(\underline{W}_{j}>\underline{w}\right)$ be the survival function of $F_{j}(\underline{w}), j=1,2, \ldots, n$ and let $F_{1, j}(),. F_{2, j}(),. G_{1, j}()=$.
$1-F_{1, j}($.$) and G_{2, j}()=.1-F_{2, j}($.$) the marginal dfs and the marginal survival functions$ of $\Phi_{k, k^{\prime}: n}=P\left(Z_{k, k^{\prime}: n} \leq \underline{w}\right), F_{j}(\underline{w})$ and $G_{j}(\underline{w}), j=1,2, \ldots, n$, respectively. Furthermore, let $F_{j}{ }^{1, .}=\frac{\partial F_{j}(\underline{w})}{\partial x}$ and $F_{j}{ }^{, 1}=\frac{\partial F_{j}(\underline{w})}{\partial y}$. Also, the $j p d f$ of $\left(X_{n-k+1: n}, Y_{n-k^{\prime}+1: n}\right)$ is conveniently denoted by $f_{k, k^{\prime}: n}(\underline{w})$. Finally, the abbreviations $\min (a, b)=a \wedge b$, and $\max (a, b)=a \vee b$ will be adopted.

The jpdf of non-identical bivariate order statistics

The following theorem gives the exact formula of the jpdf of non-identical bivariate order statistics.

Theorem 1 The jpdf of non-identical bivariate order statistics is given by

$$
\begin{array}{r}
f_{k, k^{\prime}: n}(\underline{w})=\sum_{\theta, \varphi=0}^{1} \sum_{r=r_{* *}}^{r^{* *}} \sum_{\rho_{\theta, \varphi, r}} \Pi_{j=1}^{\theta} F_{i_{j}}^{, 1}(\underline{w}) \Pi_{j=\theta+1}^{1}\left(f_{2, i_{j}}(y)-F_{i_{j}}^{, 1}(\underline{w})\right) \Pi_{j=2}^{\varphi+1} F_{i_{j}}^{1, \cdot}(\underline{w}) \\
\times \Pi_{j=\varphi+2}^{2}\left(f_{1, i_{j}}(x)-F_{i_{j}}^{1, \cdot}(\underline{w})\right) \Pi_{j=3}^{k-\theta-r+1}\left(F_{1, i_{j}}(x)-F_{i_{j}}(\underline{w})\right) \Pi_{j=k-\theta-r+2}^{k-\theta+1} F_{i_{j}}(\underline{w}) \\
\times \Pi_{j=k-\theta+2}^{k+k^{\prime}-\theta-\varphi-r}\left(F_{2, i_{j}}(y)-F_{i_{j}}(\underline{w})\right) \Pi_{j=k+k^{\prime}-\theta-\varphi-r+1}^{n} G_{i_{j}}(\underline{w})+\sum_{(k-1) \wedge\left(k^{\prime}-1\right)}^{r=0 \vee\left(k+k^{\prime}-n-1\right)} \sum_{\rho_{r}} f_{j}(\underline{w}) \\
\Pi_{j=2}^{k-r}\left(F_{1, i_{j}}(x)-F_{i_{j}}(\underline{w})\right) \times \Pi_{j=k-r+1}^{k} F_{i_{j}}(\underline{w}) \Pi_{j=k+1}^{k+k^{\prime}-r}\left(F_{2, i_{j}}(y)-F_{i_{j}}(\underline{w})\right) \Pi_{j=k+k^{\prime}-r+1}^{n} G_{i_{j}}(\underline{w}),
\end{array}
$$

where $r_{* *}=0 \vee\left(k+k^{\prime}-\theta-\varphi-n\right), r^{* *}=(k-\theta-1) \wedge\left(k^{\prime}-\varphi-1\right), \sum_{\rho}$ denotes summation subject to the condition ρ, and $\sum_{\rho_{\theta_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}, \omega, r}}$ denotes the set of permutations of i_{1}, \ldots, i_{n} such that $i_{j_{1}}<\ldots<i_{j_{n}}$.

Proof A convenient expression of $f_{k, k^{\prime}: n}(\underline{w})$ may derived by noting that the compound event $E=\left\{x<X_{k: n}<x+\delta x, y<Y_{k: n}<y+\delta y\right\}$ may be realized as follows: $r ; \varphi_{1} ; s_{1} ; \theta_{1} ; \omega ; \theta_{2} ; s_{2} ; \varphi_{2}$ and t observations must fall respectively in the regions $I_{1}=(-\infty, x] \cap(-\infty, y] ; I_{2}=(x, x+\delta x] \cap(-\infty, y] ; I_{3}=(x+\delta x, \infty] \cap(-\infty, y] ; I_{4}=$ $(-\infty, x] \cap(y, y+\delta y] ; I_{5}=(x, x+\delta x] \cap(y, y+\delta y] ; I_{6}=(x+\delta x, \infty] \cap(y, y+\delta y] ; I_{7}=$ $(-\infty, x] \cap(y+\delta y, \infty) ; I_{8}=(x, x+\delta x] \cap(x+\delta x, \infty)$; and $I_{9}=(x+\delta x, \infty) \cap(y+\delta y, \infty)$ with the corresponding probability $P_{i j}=P\left(\underline{W}_{j} \in I_{i}\right), i=1,2, \ldots, 9$. Therefore, the joint density function $f_{k, k^{\prime}: n}(\underline{w})$ of $\left(X_{k: n}, Y_{k^{\prime}: n}\right)$ is the limit of $\frac{P(E)}{\delta x \delta y}$ as $\delta x, \delta y \rightarrow 0$, where $P(E)$ can be derived by noting that $\theta_{1}+\theta_{2}+\omega=\varphi_{1}+\varphi_{2}+\omega=1 ; r+\theta_{1}+s_{2}=k-1 ; r+\varphi_{1}+s_{1}=$ $k^{\prime}-1 ; r, \theta_{1}, s_{2}, \varphi_{1}, \omega, \theta_{2}, s_{1}, \varphi_{2}, t \geq 0 ; P_{1 j}=F_{j}(\underline{w}), P_{2 j}=F_{j}^{1, .}(\underline{w}) \delta x, P_{3 j}=F_{2, j}(y)-F_{j}(x+$ $\delta x, y), P_{4 j}=F_{j}^{\cdot 1}(\underline{w}) \delta y, P_{5 j} \cong F_{j}^{1,1}(\underline{w}) \delta x \delta y=f_{j}(\underline{w}) \delta x \delta y, P_{6 j} \cong\left(f_{2, j}(y)-F_{j}^{\cdot, 1}(\underline{w}+\delta \underline{w})\right) \delta y$, where $f_{2, j}(y)=\frac{\partial F_{2, j}(y)}{\partial y}, j=1,2, \ldots, n, \partial \underline{w}=(\delta x, \delta y), \underline{w}+\delta \underline{w}=(x+\delta x, y+\delta y), P_{7 j}=F_{1, j}(x)-$ $F_{j}(x, y+\delta y), P_{8 j}=\left(f_{1, j}(x)-F_{j}^{1, .}(\underline{w}+\delta \underline{w})\right) \delta x, P_{9 j}=1-F_{1, j}(x+\delta x)-F_{2, j}(y+\delta y)+F_{j}(\underline{w})$. Thus, we get

$$
\begin{align*}
f_{k, k^{\prime}: n}(\underline{w}) & =\sum_{\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}=0}^{1} \sum_{r=r_{*}}^{r^{*}} \sum_{\rho_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}, \omega, r} \Pi_{j=1}^{\theta_{1}} P_{4 i_{j}} \Pi_{\theta_{1}+1}^{\theta_{1}+\varphi_{1}} P_{2 i_{j}} \Pi_{j=\theta_{1}+\varphi_{1}+1}^{\theta_{1}+\varphi_{1}+\theta_{2}} P_{6 i_{j}} \Pi_{j=\theta_{1}+\varphi_{1}+\theta_{2}+1}^{\theta_{1}+\varphi_{1}+\theta_{2}+\varphi_{2}} P_{8 i_{j}} \\
& \Pi_{j=\theta_{1}+\varphi_{1}+\theta_{2}+\varphi_{2}+1}^{\theta_{1}+\varphi_{1}+\theta_{2}+\varphi_{2}+\omega} P_{5 i_{j}} \Pi_{j=\theta_{1}+\varphi_{1}+\theta_{2}+\varphi_{2}+\omega+1}^{\theta_{2}+\varphi_{1}+\theta_{2}+\omega+k-r-1} P_{7 i_{j}} \Pi_{j=\theta_{2}+\varphi_{1}+\varphi_{2}+\omega+k-r}^{\varphi_{1}+\theta_{2}+\varphi_{2}+\omega+k-1} P_{1 i_{j}} \Pi_{j=\varphi_{1}+\theta_{2}+\varphi_{2}+\omega+k}^{\theta_{2}+\varphi_{2}+\omega+k+k^{\prime}-r-2} P_{3 i_{j}} \\
& \Pi_{j=\theta_{2}+\varphi_{2}+\omega+k+k^{\prime}-r-1}^{n} P_{9 i_{j}}, \tag{1}
\end{align*}
$$

where $r_{*}=0 \vee\left(k+k^{\prime}+\theta_{2}+\varphi_{2}+\omega-r-1-n\right), r^{*}=\left(k-\theta_{1}-1\right) \wedge\left(k^{\prime}-\varphi_{1}-1\right), \sum_{\rho}$ denotes summation subject to the condition ρ, and $\sum_{\rho_{\theta_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}, \omega, r}}$ denotes the set of permutations of i_{1}, \ldots, i_{n} such that $i_{j_{1}}<\ldots<i_{j_{n}}$ for each product of the type $\Pi_{j=j_{1}}^{j_{2}}$. Moreover, if $j_{1}>j_{2}$, then $\Pi_{j=j_{1}}^{j_{2}}=1$. But (1) can be written in the following simpler form

$$
\begin{gathered}
P(E)=\sum_{\theta, \varphi=0}^{1} \sum_{r=r * *}^{r * *} \sum_{\theta, \varphi, r} \Pi_{j=1}^{\theta} P_{4 i j} \Pi_{j=\theta+1}^{1} P_{6 i_{j}} \Pi_{j=2}^{\varphi+1} P_{2 i_{j}} \Pi_{j=\varphi+2}^{2} P_{8 i j} \Pi_{j=3}^{k-\theta-r+1} P_{7_{i} j} \Pi_{j=k-\theta-r+2}^{k-\theta+1} P_{1 i_{j}} \\
\Pi_{j=k-\theta+2}^{k+k^{\prime}-\theta-\varphi-r} P_{3 i_{j}} \Pi_{j=k+k^{\prime}-\theta-\varphi-r+1}^{n} P_{9_{i j}}+\sum_{r=0 \vee\left(k+k^{\prime}-n-1\right)}^{(k-1) \wedge\left(k^{\prime}-1\right)} \sum_{\rho_{r}} P_{5 i_{3}} \Pi_{j=2}^{k-r} P_{7_{i j}} \Pi_{j=k-r+1}^{k} P_{1 i_{j}} \Pi_{j=k+1}^{k+k^{\prime}-r} P_{3 i_{j}} \Pi_{j=k+k^{\prime}-r}^{n} P_{9_{i j}}, \\
\text { where } r_{* *}=0 \vee\left(k+k^{\prime}-\theta-\varphi-n\right), r^{* *}=(k-\theta-1) \wedge\left(k^{\prime}-\varphi-1\right) . \text { Therefore, }
\end{gathered}
$$

$$
\begin{array}{r}
f_{k, k^{\prime}: n}(\underline{w})=\sum_{\theta, \varphi=0}^{1} \sum_{r=r_{* *}}^{r^{* *}} \sum_{\theta, \varphi, r} \Pi_{j=1}^{\theta} P_{4 i_{j}} \Pi_{j=\theta+1}^{1} P_{6 i_{j}} \Pi_{j=2}^{\varphi+1} P_{2 i_{j}} \Pi_{j=\varphi+2}^{2} P_{8 i_{j}} \Pi_{j=3}^{k-\theta-r+1} P_{7 i_{j}} \\
\Pi_{j=k-\theta-r+2}^{k-\theta+1} P_{1 i_{j}} \Pi_{j=k-\theta+2}^{k+k^{\prime}-\theta-\varphi-r} P_{3 i_{j}} \Pi_{j=k+k^{\prime}-\theta-\varphi-r+1}^{n} P_{9 i_{j}}+\sum_{r=0 \vee\left(k+k^{\prime}-n-1\right)}^{(k-1) \wedge\left(k^{\prime}-1\right)} \sum_{\rho_{r}} P_{5 i_{3}} \Pi_{j=2}^{k-r} P_{7 i_{j}} \\
\Pi_{j=k-r+1}^{k} P_{1 i_{j}} \Pi_{j=k+1}^{k+k^{\prime}-r} P_{3 i_{j}} \Pi_{j=k+k^{\prime}-r}^{n} P_{9 i_{j}} . \tag{2}
\end{array}
$$

Thus, we get

$$
\begin{align*}
& f_{k, k^{\prime}: n}(\underline{w})=\sum_{\theta, \varphi=0}^{1} \sum_{r=r_{* *}}^{r^{* *}} \sum_{\rho_{\theta, \varphi, r}} \Pi_{j=1}^{\theta} F_{i_{j}}^{, 1}(\underline{w}) \Pi_{j=\theta+1}^{1}\left(f_{2, i_{j}}(y)-F_{i_{j}}^{\cdot 1}(\underline{w})\right) \Pi_{j=2}^{\varphi+1} F_{i_{j}}^{1, .}(\underline{w}) \\
& \Pi_{j=\varphi+2}^{2}\left(f_{1, i_{j}}(x)-F_{i_{j}}^{1, \cdot}(\underline{w})\right) \Pi_{j=3}^{k-\theta-r+1}\left(F_{2, i_{j}}(x)-F_{i j}(\underline{w})\right) \Pi_{j=k-\theta-r+2}^{k-\theta+1} F_{i_{j}}(\underline{w}) \Pi_{j=k-\theta+2}^{k+k^{\prime}-\theta-\varphi-r}\left(F_{2, i_{j}}(y)-F_{i j}(\underline{w})\right) \\
& \Pi_{j=k+k^{\prime}-\theta-\varphi-r+1}^{n} G_{i j}(\underline{w})+\sum_{r=0 \vee\left(k+k^{\prime}-n-1\right)}^{(k-1) \wedge\left(k^{\prime}-1\right)} \sum_{\rho_{r}} f_{i_{3}}(\underline{w}) \Pi_{j=2}^{k-r}\left(F_{1 i_{j}}(x)-F_{i_{j}}(\underline{w})\right) \\
& \left.\Pi_{j=k-r+1}^{k} F_{i j}(\underline{w}) \Pi_{j=k+1}^{k+k^{\prime}-r}{ }_{\left(F_{2, i}\right.}(y)-F_{i j}(\underline{w})\right) \Pi_{j=k+k^{\prime}-r+1}^{n} G_{i j}(\underline{w}) . \tag{3}
\end{align*}
$$

Hence, the proof.
Relation (3) may be written in term of permanents (c.f [9]) as follows:

$$
\begin{align*}
& f_{k, k^{\prime}: n}(\underline{w})=\sum_{\theta, \varphi=0}^{1} \sum_{r=r_{* *}}^{r^{* *}} \frac{1}{(k-\theta-r-1)!r!\left(k^{\prime}-\varphi-r-1\right)!\left(n-k-k^{\prime}+\varphi+\theta+r-1\right)!} \\
& \operatorname{Per}\left[\underline{U}_{1,1}^{, 1} \quad\left(\underline{U}_{., 1}^{1}-\underline{U}_{1,1}^{, 1}\right) \quad \underline{U}_{1,1}^{1, .}\left(\underline{U}_{1, .}^{1}-\underline{U}_{1,1}^{1, .}\right) \quad\left(\underline{U}_{1, .}-\underline{U}_{1,1}\right) \quad \underline{U}_{1,1} \quad\left(\underline{U}_{., 1}-\underline{U}_{1,1}\right)\right. \\
& \begin{array}{lllllll}
\theta & 1-\theta & \varphi & 1-\varphi & k-\theta-r-1 & r & k^{\prime}-\varphi-r-1
\end{array} \\
& \left.\left(1-\underline{U}_{1, .}-\underline{U}_{1, .}+\underline{U}_{1,1}\right)\right] \\
& n-k-k^{\prime}+\theta+\varphi+r-1 \\
& +\sum_{r=r_{*}}^{r^{*}} \frac{1}{(k-r)!r!\left(k^{\prime}-r\right)!\left(n-k-k^{\prime}+r\right)!} \quad \operatorname{Per}\left[\underline{U}_{1,1}^{1,1} \quad \underset{1}{\left(\underline{U}_{1, .}-\underline{U}_{1,1}\right)} \begin{array}{c}
k-r
\end{array} \underline{U}_{1,1} \quad \underset{r}{\left(\underline{U}_{, 1}-\underline{U}_{1,1}\right)} \quad\left(1-\underline{U}_{1,-}-\underline{U}_{1, .}+\underline{U}_{1,1}\right)\right], \tag{4}
\end{align*}
$$

where $\underline{U}_{1, .}=\left(F_{11}\left(x_{1}\right) F_{12}\left(x_{1}\right) \ldots F_{1 n}\left(x_{1}\right)\right)^{\prime}, \underline{U}_{.1}=\left(F_{2,1}\left(x_{2}\right) F_{2,2}\left(x_{2}\right) \ldots F_{2, n}\left(x_{2}\right)\right)^{\prime}, \underline{U}_{1,1}=$ $\left(F_{1}(\underline{x}) F_{2}(\underline{x}) \ldots F_{n}(\underline{x})\right)^{\prime}$ and $\underline{1}$ is the $n \times 1$ column vector of ones. Moreover, if $\underline{a}_{1}, \underline{a}_{2}, \ldots$ are column vectors, then

$$
\operatorname{Per}\left[\begin{array}{ccc}
\underline{a}_{1} & \underline{a}_{2} & \ldots . . \\
i_{1} & i_{2} & \ldots
\end{array}\right.
$$

will denote the matrix obtained by taking i_{1} copies of \underline{a}_{1}, i_{2} copies of \underline{a}_{2}, and so on.
Finally, when $k=k^{\prime}=1$, in (3), we get

$$
\begin{array}{r}
f_{1,1: n}(\underline{w})=\sum_{\rho_{\theta, \varphi, r}}\left(f_{2, i_{1}}(y)-F_{i_{1}}^{,{ }^{1}}(\underline{w})\right)\left(f_{1, i_{2}}(x)-F_{i_{2}}^{1, n}(\underline{w})\right) \Pi_{j=3}^{n} G_{i_{j}}(\underline{w})+\sum_{\rho_{r}} f_{i_{3}}(\underline{w}) \\
\left(F_{2, i_{2}}(y)-F_{i_{2}}(\underline{w})\right) \prod_{j=3}^{n} G_{i_{3}}(\underline{w}) .
\end{array}
$$

Also, for $k=k^{\prime}=n$, we get

$$
\left.f_{n, n: n}(\underline{w})=\sum_{\rho_{\theta, \varphi, r}} F_{i_{1}}^{\cdot, 1}(\underline{w}) F_{i_{2}}^{1, \cdot}(\underline{w}) \Pi_{j=3}^{n} F_{i_{j}}(\underline{w})+\sum_{\rho_{r}} f_{i_{3}}(\underline{w}) \Pi_{j=2}^{n} F_{i_{j}}(\underline{w})\right)\left(F_{2, i_{n+1}}(y)-F_{i_{n+1}}(\underline{w})\right) .
$$

Joint distribution of the new sample rank of $X_{r: n}$ and $\boldsymbol{Y}_{\boldsymbol{s}: n}$

Consider n two-dimensional independent vectors $\underline{W}_{j}=\left(X_{j}, Y_{j}\right), j=1, \ldots$, n, with the respective df $F_{j}(\underline{W})$ and the $j p d f f_{j}(\underline{W})$. Further assume that $\left(X_{n+1}, Y_{n+1}\right),\left(X_{n+2}, Y_{n+2}\right)$, $\ldots,\left(X_{n+m}, Y_{n+m}\right),(m \geq 1)$ is another random sample with absolutely continuous df $G_{j}^{*}(x, y), j=1, \ldots, m$ and $j p d f g_{j}(x, y)$. We assume that the two samples $\left(X_{n+1}, Y_{n+1}\right),\left(X_{n+2}, Y_{n+2}\right), \ldots,\left(X_{n+m}, Y_{n+m}\right),(m \geq 1)$ and $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are independent.

For $1 \leq r, s \leq n, m \geq 1$, we define the random variables η_{1} and η_{2} as follows:

$$
\eta_{1}=\sum_{i=1}^{m} I_{\left(X_{r: n}-X_{n+i}\right)}
$$

and

$$
\eta_{2}=\sum_{i=1}^{m} I_{\left(Y_{s: n}-Y_{n+i}\right)},
$$

where $I(x)=1$ if $x>0$ and $I(x)=0$ if $x \leq 0$ is an indicator function. The random variables η_{1} and η_{2} are referred to as exceedance statistics. Clearly η_{1} shows the total number of new X observations $X_{n+1}, X_{n+2}, \ldots, X_{n+m}$ which does not exceed a random threshold based on the r th order statistic $X_{r: n}$. Similarly, η_{2} is the number of new observations $Y_{n+1}, Y_{n+2}, \ldots, Y_{n+m}$ which does not exceed $Y_{s: n}$.

The random variable $\zeta_{1}=\eta_{1}+1$ indicates the rank of $X_{r: n}$ in the new sample $X_{n+1}, X_{n+2}, \ldots, X_{n+m}$, and the random variable $\zeta_{2}=\eta_{2}+1$ indicates the rank of $Y_{s: n}$ in the new sample $Y_{n+1}, Y_{n+2}, \ldots, Y_{n+m}$. We are interested in the joint probability mass function of random variables ζ_{1} and ζ_{2}. We will need the following representation of the compound event $P\left(\zeta_{1}=p, \zeta_{2}=q\right)=P\left(\eta_{1}=p-1, \eta_{2}=q-1\right)$.

Definition 1 Denote $A=\left\{X_{n+i} \leq X_{r: n}\right\}, A^{c}=\left\{X_{n+i}>X_{r: n}\right\}, B=\left\{Y_{n+i} \leq Y_{s: n}\right\}$ and $B^{c}=\left\{Y_{n+i}>Y_{s: n}\right\}$. Assume that in a fourfold sampling scheme, the outcome of the random experiment is one of the events A or A^{c}, and simultaneously one of B or B^{c}, where A^{c} is the complement of A.

In m independent repetitions of this experiment, if A appears together with $B \ell$ times, then A and B^{c} appear together $p-\ell-1$ times. Therefore, B appears together with
$A^{c} q-\ell-1$ times and $B^{c} m-p-q+\ell+2$ times. This can be described as follows:

$A \backslash B$	B	B^{c}
A	ℓ	$p-\ell-1$
A^{c}	$q-\ell-1$	$m-p-q+\ell+2$

Clearly, the random variables η_{1} and η_{2} are the number of occurrences of the events A and B in m independent trials of the fourfold sampling scheme, respectively. By conditioning on $X_{r: n}=x$ and $Y_{s: n}=y$, the joint distribution of η_{1} and η_{2} can be obtained from bivariate binomial distribution considering the four sampling scheme with events $A=\left\{X_{n+i} \leq x\right\}, B=\left\{Y_{n+i} \leq y\right\}$, and with respective probabilities

$$
\begin{aligned}
P(A B) & =P\left(X_{n+i} \leq x, Y_{n+i} \leq y\right) \\
P\left(A B^{c}\right) & =P\left(X_{n+i} \leq x, Y_{n+i}>y\right) \\
P\left(A^{c} B\right) & =P\left(X_{n+i}>x, Y_{n+i} \leq y\right) \\
P\left(A^{c} B^{c}\right) & =P\left(X_{n+i}>x, Y_{n+i}>y\right)
\end{aligned}
$$

Now, we can state the following theorem.

Theorem 2 The joint probability mass function of ζ_{1} and ζ_{2}, is given by

$$
\begin{aligned}
& P\left(\zeta_{1}=p, \zeta_{2}=q\right)=P\left(\eta_{1}=p-1, \eta_{2}=q-1\right)=\sum_{\ell=\max (0, p+q-m-2)}^{\min (p-1, q-1)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \\
& \Pi_{j=1}^{\ell} G_{i j}^{*}(x, y) \Pi_{j=\ell+1}^{p-1}\left[G_{1, i_{j}}^{*}(x)-G_{i j}^{*}(x, y)\right] \Pi_{j=p}^{q-\ell-1+p}\left[G_{2, i_{j}}^{*}(y)-G_{i j}^{*}(x, y)\right] \Pi_{j=q-\ell+p}^{m+2} \bar{G}_{1, i_{j}}^{*}(x) f_{k, k^{\prime}: n(\underline{w})} d x d y,
\end{aligned}
$$

where, $p, q=1, \ldots, m+1, f_{k, k: n}(\underline{w})$ is defined in (3).
Proof Consider the fourfold sampling scheme described in Definition (1). By conditioning with respect to $X_{r: n}=x$ and $Y_{s: n}=y$, we obtain

$$
\begin{array}{r}
P\left(\zeta_{1}=p, \zeta_{2}=q\right) \equiv P\left(\eta_{1}=p-1, \eta_{2}=q-1\right)=P\left\{\sum_{i=1}^{m} I_{\left(X_{r: n}-X_{n+i}\right)}=p-1, I_{\left(Y_{r: n}-Y_{n+i}\right)}=q-1\right\} \\
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left\{\sum_{i=1}^{m} I_{\left(X_{r: n}-X_{n+i}\right)}=p-1, I_{\left(Y_{s: n}-Y_{n+i}\right)}=q-1 \mid X_{r: n}=x, Y_{s: n}=y\right\} \tag{5}\\
\times P\left\{X_{r: n}=x, Y_{s: n}=y\right\} d x d y \\
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left\{\sum_{i=1}^{m} I_{\left(x-X_{n+i}\right)}=p-1, I_{\left(y-Y_{n+i}\right)}=q-1\right\} d F_{r, s: n}(x, y) .
\end{array}
$$

On the other hand,

$$
\begin{equation*}
P\left(\sum_{i=1}^{m} I_{\left(x-X_{n+i}\right)}=p-1, I_{\left(y-Y_{n+i}\right)}=q-1\right)=\sum_{\ell=\max (0, p+q-m-2)}^{\min (p-1, q-1)} \prod_{j=1}^{\ell} P_{i_{j}}(A B) \Pi_{j=\ell+1}^{p-1} P_{i_{j}}\left(A B^{c}\right) \tag{6}
\end{equation*}
$$

Substituting (6) in (5), we get

$$
\begin{gathered}
P\left(\zeta_{1}=p, \zeta_{2}=q\right)=P\left(\eta_{1}=p-1, \eta_{2}=q-1\right)=\sum_{\ell=\max (0, p+q-m-2)}^{\min (p-1, q-1)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pi_{j=1}^{\ell} G_{i_{j}}^{*}(x, y) \\
\Pi_{j=\ell+1}^{p-1}\left[G_{1, i_{j}}^{*}(x)-G_{i_{j}}^{*}(x, y)\right] \Pi_{j=p}^{q-\ell-1+p}\left[G_{2, i_{j}}^{*}(y)-G_{i_{j}}^{*}(x, y)\right] \Pi_{j=q-\ell+p}^{m} \bar{G}_{1, i_{j}}^{*}(x) f_{k, k^{\prime}: n(\underline{w})} d x d y
\end{gathered}
$$

where $p, q=1, \ldots, m+1$. This completes the proof.

Acknowledgements

Not applicable.

Authors' contributions

The author read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The author declares that she has no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 4 December 2018 Accepted: 8 January 2019
Published online: 22 August 2019

References

1. Galambos, J.: Order statistics of samples from multivariate distributions. J. Amer. Statist. Assoc. 70(351), 674-680 (1975)
2. Aitken, A. C., Gonin, H. T.: On fourfold sampling with and without replacement. Proc. Roy. Soc. Edinburgh. 55, 114-125 (1935)
3. David, H. A., O'Connell, M. J., Yang, S. S: Distribution and expected value of the rank of a concomitant of an order statistic. Ann. Statist. 5, 216-223 (1977)
4. Bairamove, I., Kemalbay, G.: Some novel discrete distributions under fourfold sampling schemes and conditional bivariate order statistics. J. Comput. Appl. Math. 248, 1-14 (2013)
5. Barakat, H. M.: On moments of bivariate order statistics. Ann. Instit. Statist. Math. 51(2), 351-358 (1999)
6. Bairamove, I., Kemalbay, G.: Joint distribution of new sample rank of bivariate order statistics. J. Appl. Statist. 42(10), 2280-2289 (2015)
7. Barakat, H. M.: Limit theorems for bivariate extremes of non-identically distributed random variable. Appl. Math. 29(4), 371-386 (2002)
8. Barakat, H. M., Nigm, E. M., Al-Awady, M. A.: Asymptotic properties of multivariate order statistics with random index. Bull. Malaysian Math. Soc. (second series). 38(1), 289-301 (2015)
9. Bapat, R. B., Beg, M. I.: Order statistics for nonidentically distributed variables and permanents. Sankhya Indian J. Stat. Ser. A. 51(1), 79-93 (1989)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

