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Abstract
In this paper, a numerical technique for solving new generalized fractional order
differential equations with linear functional argument is presented. The spectral Tau
method is extended to study this problem, where the derivatives are defined in the
Caputo fractional sense. The proposed equation with its functional argument
represents a general form of delay and advanced differential equations with fractional
order derivatives. The obtained results show that the proposed method is very effective
and convenient.
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Introduction
Spectral methods have been developed through the last years for the numerical solu-
tions of fractional differential equations. Compared to other numerical methods, spectral
methods give high accuracy and have a wide range of applications in many mathematical
problems and physical phenomena [1]. The Chebyshev first kind Tn(x) are the most com-
mon basis function used with the spectral methods deal many applications in numerical
analysis, and numerous studies show the merits of them in various applications[2–7].
In recent years, several studies have used spectral methods to solve delay differential

equations of integer order such as, numerical approximations based on Chebyshev poly-
nomials [8], Bernoulli polynomials [9], hybrid of block-pulse functions and Taylor series
[10], and Legendre wavelet [11]. Additionally, the numerical solution of delay differential
equations of fractional order have been reported by many researchers [12–23]. Differen-
tial equations of advanced argument had fewer contributions in mathematics research,
compared to delay differential equations, which had a great development in the last
decade [24, 25]. The general form of argument (mixed type equations) have been reported
by several mathematicians, where Grbz et al. used Laguerre collocation method for solv-
ing Fredholm integro-differential equations with functional arguments [26]. Yuzbasi has
reported a solution of the generalized pantograph type delay differential equations with
linear functional arguments[27]. Reutskiy used the backward substitution method for
multi-point problems with linear Volterra-Fredholm integro-differential equations of the
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neutral type [28]. All previous works considered a generalization of delay and advanced
differential equations (a kind of unification) with integer order derivative.
In this paper, we introduce a generalized form of delay and advanced differential

equations with fractional order derivative. Our proposed problem is called general frac-
tional order differential equations (GFDEs) with linear functional argument. Now, we
consider the GFDEs with linear functional argument as follows:

f (x, y(x),Dνi y(pix + ξi), y(i)(qix + τi)) = 0, (1)

where a ≤ x ≤ b, νi > 0 and n − 1 < νi < n, i = 0, 1, 2 . . . , n, qi, pi, ξi, τi ∈ � under
the following conditions

y(i)(0) = μi, (2)

where (1) and the subject conditions (2) are general form of delay and advanced differen-
tial equation with fractional order.
As we focus on linear equations, we consider f (x) a linear function. Concerning the

existence of solutions for delay and advanced differential equations, we refer the readers
to references [24] and [25], so the solution of the proposed formula (1) exists. The gen-
eral formula (1) is chosen to be multi-term of fractional order derivatives and the terms
contain linear functional argument which are taken to be multi-term of fractional order
derivatives as well. Chebyshev polynomials of the first kind are used here to approximate
the solution of the proposed Eq. 1. The Chebyshev polynomials are defined on [−1, 1], so
the argument in (1) also in [−1, 1]. The operational matrices of fractional derivatives are
presented and employed to deal with a generalized form with the spectral Tau method.
The presented operational matrices are used with the Tau method as a matrix discretiza-
tion method. The obtained numerical results are compared with other methods, where
they show that the proposed method gives good accuracy.

Definitions of fractional derivatives
In this section, we present notation, definitions, and recall well-known results about
fractional differential equations and the Chebyshev polynomial of the first kind.

The Caputo fractional derivative

Definition 1 The Caputo fractional derivative operator Dν of order ν is defined in the
following form:

Dν f (x) = 1
�(m − ν)

∫ x

0

f (m)(t)
(x − t)ν−m+1 dt, ν > 0, (3)

where m − 1 < ν ≤ m, m ∈ N, x > 0.

Properties 1 1– Dν (λ f (x) + μ g(x)) = λDν f (x) + μDν g(x), where λ and μ are
constants.
2– Dν C = 0, where C is aconstant,

3– Dν xn =
{
0, for n ∈ N0 and n < �ν�,

�(n+1)
�(n+1−ν)

xn−ν , for n ∈ N0 and n ≥ �ν�, , where �ν� denote to the

smallest integer greater than or equal to ν, and N0 = {0, 1, 2, . . .}.
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Chebyshev polynomials of the first kind

The Chebyshev polynomials Tn(x) of the first kind are orthogonal polynomials of degree
n in x defined on the [−1, 1]

Tn = cosnθ ,

where x = cosθ and θ ∈[ 0,π ].
The polynomials Tn(x) be generated by using the recurrence relations

Tn+1(x) = 2xTn(x) − Tn−1(x), T0(x) = 1, T1(x) = x, n = 1, 2, . . . .

The Chebyshev polynomials Tn(x) can be expressed in terms of the power xn in different
forms found in [29], one of them is

Tn(x) =
[n/2]∑
k=0

c(n)

k xn−2k , (4)

where

c(n)

k = (−1)k2n−2k−1 n
n − k

(
n − k
k

)
, 2k ≤ n.

From the previous relation, we can define that:
• If n is even, we find

Tn(x) = T2l(x) =
l∑

j=0
(−1)l−j22j−1 2l

l + j

(
l + j
l − j

)
x2j.

• If n is odd, we can write

Tn(x) = T2l+1(x) =
l∑

j=0
(−1)l−j22j

2l + 1
l + j + 1

(
l + j + 1
l − j

)
x2j+1.

Form above we can write T(x) as a general matrix form as [29]

T(x) = X(x)MT , (5)

where T(x) and X(x) are matrices have the form:

T(x) =
[
T0(x) T1(x) . . . TN (x)

]
, X(x) =

[
x0 x1 . . . xN

]
,

andM is (N + 1) × (N + 1) matrix given by
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M=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝ 0

0

⎞
⎟⎠ 0 0 0 . . . 0 0

0

⎛
⎜⎝ 1

0

⎞
⎟⎠ 0 0 . . . 0 0

−
⎛
⎜⎝ 1

1

⎞
⎟⎠ 0 2

⎛
⎜⎝ 2

0

⎞
⎟⎠ 0 . . . 0 0

0 − 3
2

⎛
⎜⎝ 2

1

⎞
⎟⎠ 0 22

⎛
⎜⎝ 3

0

⎞
⎟⎠ 0 0

. . . . . .

. . . . . .

. . . . . .

(−1)l

⎛
⎜⎝ l

l

⎞
⎟⎠ 0 (−1)l−12 2l

l+1

⎛
⎜⎝ l + 1

l − 1

⎞
⎟⎠ 0 . . . 22l−1

⎛
⎜⎝ 2l

0

⎞
⎟⎠ 0

0 (−1)l 2l
l+1

⎛
⎜⎝ l + 1

l

⎞
⎟⎠ 0 (−1)l−122 2l+1

l+2

⎛
⎜⎝ l + 2

l − 1

⎞
⎟⎠ . . . 0 22l

⎛
⎜⎝ 2l + 1

0

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case, we are going to use the last row for odd values of N = 2l+ 1, otherwise the
previous one will be the last row of matrix M (N = 2l). Now, from (5) we can obtain the
kth derivative of the matrix T(x) as:

T (k)(x) = X(k)(x)MT , k = 0, 1, 2, .... (6)

Operational matrices
In this section, we introduce the operational matrcies for DνiT(qix+ τi) and T (j)(qjx+ τj)

according to fractional calculus using relations (6) and (5). The (k)th order derivative of
the row vector T(x), can be written in the following relation form [30]:

X(k)(x) = X(x)Hk , (7)

where H is squar matrix writen as:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 2 . . . 0
...
...

...
...

0 0 0.. N
0 0 0.. 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

And the row vector T(qix + τi), represents in terms of the vector X(x) in the following
form:

T(qix + τi) = X(qix + τi)MT , (9)

The (k)th order derivative of the row vector T(qix + τi), can be represented as:

T (k)(qix + τi) = X(k)(qix + τi)MT

= X(x)BτiHk(MEqi)T .
(10)

Where the elements of the diagonal matrix Eqi can be written as:
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ers =
{
0 if r �= s;
qri if r = s

,

where

Bτi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0
0

)
(τi)0

(
1
0

)
(τi)1−0

(
2
0

)
(τi)2−0 . . .

(
N
0

)
(τi)N−0

0
(
1
1

)
(τi)1−1

(
2
1

)
(τi)2−1 . . .

(
N
1

)
(τi)N−1

0 0
(
2
2

)
(τi)2−2 . . .

(
N
2

)
(τi)N−2

...
...

...
...

0 0 0 . . .

(
N
N

)
(τi)N−N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The νthi order fractional derivative of the vector T(x) can be written as:

DνiT(x) = Xνi(x)HνiMT , (11)

where

Xνi(x) =[ 0, 0, . . . 0, xn−νi , .....xN−νi ] , n − 1 < νi < n, n ∈ N , (12)

and

Hνi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
0 0 . . .

�(n+1)
�(n+1−νi)

0
...

...
...

...
0 0 . . . 0 �(N+1)

�(N+1−νi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n − 1 < νi < n, n ∈ N , (13)

as special case, if 0 < νi < 1, then (12) and (13) can written as:

Xνi(x) =[ 0, x1−νi , x2−νi , .....xN−νi ] , (14)

Hνi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0 �(2)

�(2−νi)
0 . . . 0

0 0 �(3)
�(3−νi)

. . . 0
...

...
...

...
0 0 0 . . .

�(N+1)
�(N+1−νi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Application to fractional order differential equation
In this section, the general form of operational matrices of all terms for (1) and (2)
will be obtained. Now, consider the approximate solution according to Chebyshev
approximation as:

y(x) ∼= yN (x) =
N∑
i=0

aiTi(x), (16)

where the coefficients ai are given by:
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ai =
{

1
π

∫ 1
−1 y(x)T0(x)w(x)dx, if i = 0,

2
π

∫ 1
−1 y(x)Ti(x)w(x)dx, if i = 1, 2, . . . ,N ,

(17)

where w(x) = 1√
1−x2

.
Form (16) we get,

yN (x) = T(x)A, (18)

y(i)
N (qix + τi) = T (i)(qix + τi)A, (19)

Dνi yN (pix + ξi) = T (νi)(pix + ξi)A, (20)

where

A =[ a0, a1, a2, . . . , aN ]T .

By using (5) and (18), we get

yN (x) = X(x)MTA, (21)

also, by using (10) and (19), we get

y(i)
N (qix + τi) = X(qix + τi)HiMTA

= X(x)HiBτi(MEqi)TA,
(22)

and by substituting (11) in (20), we get

Dνi yN (x)(pix + ξi) = X(pix + ξi)HνiMTA

= Xνi(x)HνiBξi(MEpi)TA
. (23)

For non-homogeneous term g(x), using Eqs. (5), (16), and (17) can be written in the
matrix form as:

G = X(x)MTA
′
,

A
′ =

⎛
⎜⎜⎜⎜⎝

1
π

∫ 1
−1 g(x)T0(x)w(x)dx

2
π

∫ 1
−1 g(x)T1(x)w(x)dx

...
2
π

∫ 1
−1 g(x)TN (x)w(x)dx

⎞
⎟⎟⎟⎟⎠ .

For terms that contain variable coefficients, we may use it in the matrix form as:

Qi(x) ∼

⎛
⎜⎜⎜⎜⎝

Qi(x) 0 0 . . . 0
0 Qi(x) 0 . . . 0
...

...
...

...
...

0 0 0 . . . Qi(x)

⎞
⎟⎟⎟⎟⎠ .

Matrix relation for the conditions

Finaly, we can obtain the matrix form for the conditions (2) by using (18) on the form:

X(0)HiMTA = μi, i = 0, 1, 2 . . . ,m − 1. (24)
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Method of solution
Now, we are ready to construct the fundamental matrix equation corresponding to (1) for
this purpose, we substitute (21), (22), and (23), into (1). Thus, we have the fundamental
matrix equation as:

f
(
x,X(x)MTA,X(x)HiBτi(MEqi)TA,Xνi(x)HνiBξi(MEpi)TA

)
= 0, (25)

so, the residual R(x) of Eq. 1, can be written as:

R(x) = f
(
x,X(x)MTA,X(x)HiBτi(MEqi)TA,Xνi(x)HνiBξi(MEpi)TA

)
. (26)

As in a typical Tau method, we generate (N − m + 1) algebraic equations by applying

〈R(x),Ti(x)〉 =
∫ 1

−1
R(x)Ti(x)w(x)dx, i = 0, 1, . . . ,N − m + 1. (27)

Equations (24) and (27) generate (m) and (N − m + 1) set of algebraic equations,
respectively. Consequently, the unknown coefficients of the vector A in (16) can be
calculated.

Error estimation

If the exact solution is known, then the error will be estimated from the following:

eN (x) = |y(x) − yN (x)|, (28)

where y(x) is the exact solution and yN (x) is the approximate solution. We can easily
check the accuracy of the suggested method by the residual error, since the truncated
Chebyshev series (16) is an approximate solution of (1), when the solution yN (x) and its
derivatives are substituted in (1), the resulting equation must be satisfied approximately,
that is, for x ∈[−1, 1], l = 0, 1, 2, . . .

eN =
∣∣∣f (xl, yN (xl),Dνi yN (pixl + ξi), y(i)

N (qixl + τi))
∣∣∣ ∼= 0, (29)

and eN ≤ 10$ ($ positive integer). If max 10$=10−L ($ positive integer) is prescribed, then
the truncation limit N is increased until the difference eN at each of the points becomes
smaller than the prescribed 10L. On the other hand, the error can be estimated by the
function If eN −→ 0,when N is sufficiently large enough, then the error decreases.

Applications and numerical results
In this section, we introduce some numerical examples for fractional order differential
equation to illustrate the above results. All results are obtained by using Mathematica 7
program.

Example 1 Consider the second-order linear fractional differential equation (mixed type
delay-advanced):

y′′(3x + 2) + y′′(x) + (x2 + 1)Dνy(x − 0.3) + Dαy(x) + y(x) = g(x), (30)

the connected conditions are y(0) = 0, y′(0) = 1, g(x) = 20.+0.445697x0.3+1.12706x0.4+
x + 1.71422x1.3 + 1.61009x1.4 + x2 + 0.445697x2.3 + 1.71422x3.3 and the exact solution
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when ν = 0.7, α = 0.6 is y(x) = x2 + x. By using the truncated Chebyshev series (16) with
the present method, we get algebraic equations using the following residual:

R(x) =
[
XH2B2(E3M)T + XH2MT + Q0 Xν HνB−0.3MT + XαHαMT + XMT

]
A − G,

(31)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x
x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,X0.7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x0.3

x2.3

x3.3

x4.3

x5.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,X0.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x0.4

x2.4

x3.4

x4.4

x5.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 4 8 16 32
0 1 4 12 32 80
0 0 1 6 24 80
0 0 0 1 8 40
0 0 0 0 1 10
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 3 0 0 0 0
0 0 9 0 0 0
0 0 0 27 0 0
0 0 0 0 81 0
0 0 0 0 0 243

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + x2 0 0 0 0 0
0 1 + x2 0 0 0 0
0 0 1 + x2 0 0 0
0 0 0 1 + x2 0 0
0 0 0 0 1 + x2 0
0 0 0 0 0 1 + x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

H0.7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1.11424 0 0 0 0
0 0 1.71422 0 0 0
0 0 0 2.23594 0 0
0 0 0 0 2.71023 0
0 0 0 0 0 3.15143

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0

−1 0 2 0 0 0
0 −3 0 4 0 0
1 0 −8 0 8 0
0 5 0 −20 0 16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

H0.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1.12706 0 0 0 0
0 0 1.61009 0 0 0
0 0 0 2.01261 0 0
0 0 0 0 2.36777 0
0 0 0 0 0 2.69065

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,A

′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12.0055 − 0.00901411i
5.92462 + 0.101376i
1.1573 − 0.216974i

0.510798 + 0.172611i
−0.100338 − 0.0118752i
0.0154373 − 0.0681158i
0.0503126 + 0.0151133i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,B−0.3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.3 0.09 −0.027 0.0081 −0.00243
0 1 −0.6 0.27 −0.108 0.0405
0 0 1 −0.9 0.54 −0.27
0 0 0 1 −1.2 0.9
0 0 0 0 1 −1.5
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Also, by using the conditions, we can generate two algebraic equations as:

y(0) = X(0)MTA = 0, (32)

y′(0) = X(0)BMTA = 1, (33)

by solving this algebraic equations, we have
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Table 1 Comparison of the values of exact and approximate solutions of the problem (36) for x
values for example 2

x Exact Present method [12] (N = 8), [12] (N = 8),

solution (N = 5) a = 0, b = 0 a = −0.5, b = 0.5

0 0.0000 0.0000 − 0.0000 − 0.0000

0.2 0.0400 0.0400 0.0400 0.0400

0.4 0.1600 0.1600 0.1600 0.1600

0.6 0.3600 0.3600 0.3600 0.3600

0.8 0.6400 0.6400 0.6400 0.6400

1 1.0000 1.0000 1.0122 1.0208

A =
[

1
2 1 1

2 0 0 0 0
]
. (34)

Then the solution of the problem (30) is

y6(x) = 1
2
T0(x)+1T1(x)+ 1

2
T2(x)+0T3(x)+0T4(x)+0T4(x)+0T6(x) = x2 +x,

(35)

which is the exact solution of the problem (30).

Example 2 Consider the linear fractional order delay differential equation [31]

D
1
2 y(x) + y(x) − y(x − 1) = 2x + �(3)

�(1.5)
x1.5 − 1, (36)

the given condition is y(0) = 0 and the exact solution is y(x) = x2, in [31] the solution
obtained by using the shifted Jacobi polynomial scheme, the results are shown by deriving
operational matrix for the fractional differentiation and integration. We will employ the
present method to (36) at N = 5.
We get algebraic equations by using the following residual:

R(x) =
[
X0.5H0.5MT + XMT − XB−1MT

]
A − G. (37)

Also, by using the given condition, we can generate algebraic equation as:

Fig. 1 The behavior of the exact solution and the approximate solution at N = 5 for example 2
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Table 2 Comparison of the residual errors by using proposed method at different N for x values for
example 2

x e10 e8 e6

0 − 8.88× 10−16 − 3.88× 10−14 − 5.34× 10−13

0.2 − 3.93× 10−16 − 1.80× 10−14 − 2.48× 10−13

0.4 2.15× 10−16 7.00× 10−15 9.65× 10−14

0.6 9.00× 10−16 3.49× 10−14 4.80× 10−13

0.8 1.64× 10−15 6.51× 10−14 8.95 × 10−14

1 1.33× 10−13 9.72× 10−14 2.44× 10−15

y(0) = X(0)MTA = 0. (38)

By solving this algebraic equations, we have

A =
[

1
2 0 1

2 0 0 0
]
. (39)

Then, the solution is

y5(x) = 1
2
T0(x) + 1

2
T2(x) = x2. (40)

Comparison of the values of the exact and approximate solutions of the problem (36) is
given in Table 1 and Fig. 1; in addition, comparison of the residual errors (depended on
Eq. 29) by using the proposed method at different N is obtained in Table 2 and Fig. 2.

Example 3 Consider the following fractional delay differential equation [32, 33]:

Dαy(x) + y(x) + y(x − 0.3) = e−x+0.3, 2 < α ≤ 3, (41)

with the conditions y(0) = 1, y′(0) = −1, ξ0 = −0.3 and the exact solution when α = 3 is
y(x) = e−x. By the same way, we get the following residual:

R(x) =
[
XαHαMT + XMT + XB−0.3MT

]
A − G. (42)

Also, by using the subjected conditions we can generate two algebraic equations as:

y(0) = X(0)MTA = 1, (43)

Fig. 2 Residual errors by using the proposed method at different N and α = 0.5 for example 2
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Table 3 Comparison of the approximate solutions Hermite wavelet method [33], Bernoulli wavelet
method [32], and the present method with the exact solution for example 3

x Exact Present method [33] (N = 7) [32] (N = 7) Present method Present method

solution (N = 6) α = 3 α = 3 α = 3 (N = 6) α = 2.8 (N = 6) α = 2.6

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2 0.8187 0.8187 0.8187 0.8187 0.8185 0.8185

0.4 0.6703 0.6703 0.6703 0.6703 0.6685 0.6682

0.6 0.5488 0.5488 0.5488 0.5488 0.5480 0.5488

0.8 0.4493 0.4493 0.4494 0.4493 0.4366 0.4281

y′(0) = X(0)BMTA = −1, (44)

by solving these algebraic equations at α = 3, we have the solution as:

A =
[
1.26604 −1.12997 0.27146 −0.04426 0.00546 −0.00056 0.00004

]
. (45)

Table 4 displays the residual errors at different N, while the approximate solutions
obtained for various values of x by using the present method with N = 6, the Hermite
wavelet method [33] for N = 7 and the Bernoulli wavelet method [32] together with the
exact solution are listed in Table 3. Table 3 also contains the numerical results for (41) at
α = 2.8 and 2.6. In addition, Fig. 3 shows the approximate solutions at different α and the
exact solution (α = 3) and Fig. 4 shows the residual errors at different N (Table 4).

Example 4 Consider the fractional delay differential equation [32, 33]:

Dαy(x) − y(x − τ) + y(x) = 2
�(3 − α)

x2−α − 1
�(2 − α)

x1−α + 2τx − τ 2 − τ , (46)

with the conditions y(0) = 0, y′(0) = 0 and the exact solution is y(x) = x2 −x when α = 1,
τ = 0.001, by using (16) at N = 7, then the fundamental matrix equation of the problem
is defined by[

Q0(x)XαHαMT + Q∗
0(x)XM

T − P∗
0(x)XH−τMT

]
A − G. (47)

Fig. 3 Solutions by the proposed method at different α and exact solution at α = 3 N = 6 for example 3



Raslan et al. Journal of the EgyptianMathematical Society           (2019) 27:33 Page 12 of 16

Fig. 4 Residual errors by using the proposed method at different N and α = 3, for example 3

The numerical results are presented in Table 5, and the absolute errors also listed and
compared with Hermite wavelet method [33].
Figure 5 displays the approximate solutions obtained for values of α = 1, 0.8, 0.7, 0.6,

and the exact solution with N = 7 and τ = 0.001. From these results, it is seen that the
approximate solutions converge to the exact solution.

Example 5 Consider the fractional order delay differential equation [34]:

D
3
10 y(x) − y(x − 1) + y(x) = 1 − 3x + 3x2 + 2000x2.7

1071�(0.7)
. (48)

The subjected condition y(0) = 0 and the exact solution is y(x) = x3. By using the
truncated Chebyshev series (16), then the fundamental matrix equation of the problem is
defined by

R(x) =
[
XνHνMT + XB−1MT + XMT

]
A − G. (49)

After the augmented matrices of the system and condition are computed, we obtain the
coefficient matrix on the form:

Table 4 Comparison of the residual errors by using proposed method at different N and α = 3 for x
values for example 3

x e8 e10 e15

0 − 4.48× 10−5 1.98× 10−5 1.39× 10−8

0.2 − 1.28× 10−5 − 1.82× 10−8 7.90× 10−9

0.4 3.58× 10−5 − 1.90× 10−7 − 6.91× 10−9

0.6 7.30× 10−5 8.85× 10−8 − 3.04× 10−8

0.8 − 3.30× 10−6 7.47× 10−8 − 6.26× 10−8

1 4.49× 10−5 1.88× 10−7 − 1.05× 10−7
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Table 5 Comparison of the values of exact, approximate solutions for different values of x and the
absolute errors at τ = 0.001 for example 4

x Exact Suggested method absolute error absolute error

solution (N = 7) (N = 7) [33]

0 0.00000 0.00000 0 0

0.2 − 0.16000 − 0.16000 5.82× 10−16 1.94× 10−16

0.4 − 0.24000 − 0.24000 5.55× 10−16 3.33× 10−16

0.6 − 0.24000 − 0.24000 4.44× 10−16 8.60× 10−14

0.8 − 0.16000 − 0.16000 3.33× 10−16 8.57× 10−14

1 0.00000 0.00000 0 0

A =
[
0 3

4 0 1
4 0 0 0

]
. (50)

Then, the solution is of Eq. 48

y6(x) = 3
4
T1(x) + 1

4
T3(x) = x3, (51)

which is the exact solution of the problem (48).

Example 6 Consider the linear fractional order delay differential equation [35]:

Dνy(x) − 1
2
y′(x − π) + 1

2
y(x) = 0, (52)

with the initial condition y(0) = 0, y′(0) = 1 and the exact solution when ν = 2 is
y(x) = sin(x), which is second-order delay differential equation with oscillatory in nature.
By using (16) with N = 6, we get algebraic equations by using the following residual:

R(x) =
[
XνHνMT + Q1 XHB−πMT + Q0 XMT

]
A. (53)

Fig. 5 The comparison of yN(x) for N = 7, τ = 0.001, with α = 1, 0.8, 0.7, 0.6 and the exact solution for
example 4
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Table 6 Comparison of the values of exact and approximate solutions for x values for example 6

x Exact present method

solution (N = 6) ν = 2

0 0.0000 0.0000

0.2 0.1975 0.1985

0.4 0.3894 0.3892

0.6 0.5646 0.5645

0.8 0.7173 0.7173

1 0.8414 0.8414

Also, by using the initial condition, we can generate two algebraic equations as:

y(0) = X(0)MTA = 0, (54)

y′(0) = X(0)BMTA = 1, (55)

by solving this algebraic system at ν = 2, we have the solution as:

A =
[
0 0.880196 0 −0.039119 0 0.000488 0

]
, (56)

then, the solution of Eq. (48) is:

y6(x) = 0.880196T1(x) − 0.039119T3(x) + 0.000488T5(x). (57)

Table 6 compares the values of exact and approximate solutions, x ∈[ 0, 1] , while Table 7
lists the residual errors by using the proposed method at different N and ν = 2.

Conclusion
In this work, the general form of fractional order differential equations with linear func-
tional argument is presented. The spectral Tau method is used for solving the proposed
equation. All terms in the proposed equation reduced by operational matrices based
on Chebyshev polynomials to matrix form. The accuracy of this method is obtained by
many numerical examples. Finally, we used the Mathematica 7 to calculate our numerical
results.

Table 7 Comparison of the residual errors by using the proposed method at different Nand ν = 2
for example 6

x e10 e15 e18

0 2.35× 10−3 − 7.17× 10−4 − 1.95× 10−4

0.2 1.88× 10−4 − 2.52× 10−4 − 1.03× 10−4

0.4 4.72× 10−4 − 8.16 × 10−5 − 5.25× 10−5

0.6 1.89× 10−4 − 2.38 × 10−5 − 2.50× 10−5

0.8 6.93 × 10−5 − 6.2 × 10−6 − 1.10× 10−5

1 2.25× 10−5 − 1.38× 10−6 − 4.57× 10−6
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