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Abstract

This study introduces a stable central difference method for solving second-order
self-adjoint singularly perturbed boundary value problems. First, the solution
domain is discretized. Then, the derivatives in the given boundary value problem
are replaced by finite difference approximations and the numerical scheme that
provides algebraic systems of equations is developed. The obtained system of
algebraic equations is solved by Thomas algorithm. The consistency and stability
that guarantee the convergence of the scheme are investigated. The established
convergence of the scheme is further accelerated by applying the Richardson
extrapolation which yields sixth order convergent. To validate the applicability of
the method, two model examples are solved for different values of perturbation
parameter ε and different mesh size h. The proposed method approximates the
exact solution very well. Moreover, the present method is convergent and gives
more accurate results than some existing numerical methods reported in the
literature.
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Introduction
Any differential equation obtained from a given differential equation and having the

property that its solution is an integrating factor of the other is known as adjoint dif-

ferential equation. Self-adjoint singularly perturbed differential equation is a differential

equation whose highest order derivative is multiplied by a small positive parameter

and that has the same solution as its adjoint equation [1, 2]. In a singularly perturbed

problem, small positive parameter affects the highest order derivative(s) of the differen-

tial equation which gives rise to large gradients in the solution over narrow regions of

the domain, so that the presence of a small perturbation parameter in the differential

equation typically leads to boundary layers in the solution, which makes the conver-

gence analysis very difficult [3]. As Miller et al. [2], boundary layer is a region of the in-

dependent variable over which the dependent variable changes rapidly.
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Singularly perturbed second-order boundary value problem occur very frequently in

fluid motion, chemical reactor theory, elasticity, diffusion in polymer, reaction-diffusion

equation, control of chaotic system, and so on [4]. Upon setting ε = 0, if the order of

singularly perturbed differential equations is reduced by one, then the problem is called

convection-diffusion type and if the order is reduced by two, it is called reaction-

diffusion type. Hence, second-order singularly perturbed self-adjoint ordinary differen-

tial equations are types of reaction-diffusion problems. Since the solution of this

problem exhibits one or two layers, the existing numerical methods give good results

only when the mesh size h is smaller than the perturbation parameter ε (i.e., h ≤ ε). But

it is an expensive and time-consuming process. If we take h ≥ ε, the existing classical

numerical methods produce oscillatory solution and pollute the solution in the entire

interval, because of boundary layer behavior. In connection to this, there are some

numerical methods suggested by various authors for solving self-adjoint singular per-

turbation problems, namely, initial value technique [5], quintic spline method [6], non-

polynomial spline functions method [7], difference scheme using cubic spline [8], finite

difference method with variable mesh [9], fitted mesh B-spline collocation method [10],

higher order numerical methods [11].

More recently, Fasika et al. [12–14] and Feyisa and Gemechis [15] have developed a

higher (fourth, sixth, eighth, and tenth) order compact finite difference method to solve

singularly perturbed reaction-diffusion problems. These authors developed higher order

compact finite difference methods for the constant coefficients of diffusion and reaction

terms of the problem. Even though their methods give more accurate numerical solu-

tions, it is restricted to treat constant coefficient problem. Also, other scholars, Terefe

et al. [16] and Yitbarek et al. [17], have presented fourth- and sixth-order stable central

difference method, respectively, for solving self-adjoint singularly perturbed two-point

boundary value problem. Therefore, the main objective of this study is to develop a

stable and more accurate numerical method that works for solving both constant and

variable coefficient second-order self-adjoint singularly perturbed boundary value

problems.

In this paper, we planned a fourth-order stable central difference with Richardson

extrapolation method for solving second-order self-adjoint singularly perturbed bound-

ary value problems. First, the derivative in the given differential equation is replaced by

the finite difference approximations. Then, the ordinary differential equation converts

to a linear system of algebraic equations, and these algebraic equations are transformed

to a tri-diagonal system, which can easily be solved by the Thomas algorithm. Further,

coding of the program in MATLAB software for the obtained tri-diagonal system has

been performed. To validate the applicability of the method, some model examples are

considered for numerical experimentation. Both the theoretical and numerical rates of

convergence of the scheme have been investigated.

Formulation of the method
Consider the singularly perturbed self-adjoint boundary value problem of the form:

−ε a xð Þy0
xð Þ

� �0

þ b xð Þy xð Þ ¼ g xð Þ; x∈Ω≔ 0; 1ð Þ ð1Þ

subject to the boundary conditions:
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y 0ð Þ ¼ α

and
y 1ð Þ ¼ β ð2Þ

where ε is a perturbation parameter that satisfies 0 < ε < < 1, α, β are given constants

and the functions a(x) ≠ 0, b(x) ≠ 0 and g(x) are assumed to be sufficiently continuous

differentiable functions. By product rule differentiation, Eq. (1) can be re-written as:

−εy″ xð Þ þ p xð Þy0
xð Þ þ q xð Þy xð Þ ¼ f xð Þ ð3Þ

where

p xð Þ ¼ −εa
0
xð Þ

a xð Þ ; q xð Þ ¼ b xð Þ
a xð Þ

and
f xð Þ ¼ g xð Þ
a xð Þ :

In order to develop the finite difference method, the interval [0, 1] is divided into N

equal sub-intervals with set of grid points xi = x0 + ih, for i = 0, 1, 2, ..., N, where h ¼ 1
N .

For convenience, let pðxiÞ ¼ pi; qðxiÞ ¼ qi; yðxiÞ ¼ yi; y
0 ðxiÞ ¼ y

0
i; :::; y

ðnÞðxiÞ ¼ yðnÞi :

Assume that y(x) has continuous higher order derivatives on [0, 1], and to develop

the fourth-order stable central difference scheme, we use Taylor’s series expansion in

order to get central difference formula for yi
′′ andyi

′.

yiþ1 ¼ yi þ hyi
0 þ h2

2!
yi

0 0 þ h3

3!
yi

0 00 þ h4

4!
y 4ð Þ
i þ h5

5!
y 5ð Þ
i þ h6

6!
y 6ð Þ
i þ ::: ð4Þ

yi�1 ¼ yi−hyi
0 þ h2

2!
yi

0 0−
h3

3!
yi

0 00 þ h4

4!
y 4ð Þ
i −

h5

5!
y 5ð Þ
i þ h6

6!
y 6ð Þ
i þ ::: ð5Þ

From Eqs. (4) and (5), we have:
yi
0 ¼ yiþ1−yi−1

2h
−
h2

6
y‴i −

h4

120
y 5ð Þ
i þ τ1 and yi

0 0 ¼ yiþ1−2yi þ yi−1
h2

−
h2

12
y 4ð Þ
i þ τ2 ð6Þ

where τ ¼ −h6 y ð7Þ and τ ¼ −h4 y ð6Þ

1 7! i 2 360 i

Substituting Eq. (6) into the discrete form of Eq. (3) gives:

qiyi þ
pi
2h

yiþ1−yi−1
� �

−
ε

h2
yiþ1−2yi þ yi−1
� �

−
pih

2

6
y‴i þ εh2

12
y 4ð Þ
i −

pih
4

120
y 5ð Þ
i þ τ0 ¼ f i ð7Þ

where
τ0 ¼ piτ1−ετ2

Differentiating Eq. (3) successively and considering at the nodal points yields:
yi
0 00 ¼ 1

ε
piyi

0 0 þ pi
0 þ qi

� �
yi

0 þ qi
0
yi− f i

0� �
ð8Þ

yi
4ð Þ ¼ 1

ε
piyi

0 00 þ 2pi
0 þ qi

� �
yi

0 0 þ pi
0 0 þ 2qi

0
� �

y
0
i þ qi

0 0yi− f i
0 0

� �
ð9Þ
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yi
5ð Þ ¼ 1

ε
piyi

4ð Þ þ 3p
0
i þ qi

� �
y‴i þ 3pi

0 0 þ 3qi
0

� �
yi

0 0 þ p‴i þ 3q″
� �

y
0
i þ qi‴yi− f

‴
i

� �
ð10Þ

Using Eq. (10), the term which contains yi
(5) from Eq. (7) becomes:
−pih
4

120
yi

5ð Þ ¼ −
pi

2h4

120ε
yi

4ð Þ−
pih

4ð Þ

120ε
3pi

0 þ qi
� �

yi
0 00−

pih
4ð Þ

120ε
3p″i þ 3q

0
i

� �
y″i

−pih
4

120ε
p‴i þ 3q″i
� �

y
0
i−

piqi
0 00h4

120ε
yi þ

pih
4

120ε
f ‴i

ð11Þ

Also, from Eqs. (4) and (5), we have the central finite difference approximation:
yi
0 ¼ yiþ1−yi−1

2h
þ τ3

and

yi
0 0 ¼ yiþ1−2yi þ yi−1

h2
þ τ4 ð12Þ

where
τ3 ¼ −h2

6
y‴i

and

τ4 ¼ −
h2

12
y 4ð Þ
i

Putting Eq. ((12), into Eq. (11) gives:

−pih
4

120
yi

5ð Þ ¼ −
pi

2h4

120ε
yi

4ð Þ−
pih

4ð Þ

120ε
3pi

0 þ qi
� �

yi
0 00

−
pih

2

120ε
3p″i þ 3q

0
i

� �� �
yiþ1−2yi þ yi−1
� �

−
pih

3

120ε
p‴i þ 3q″i
� �� �

yiþ1−yi−1
� �

−
piqi

0 00h4

120ε
yi þ

pih
4

120ε
f ‴i þ τ5

ð13Þ

where
τ5 ¼ −
pih

4

120ε
p‴i þ 3q″i
� �

τ3−
pih

4

120ε
3p″i þ 3q

0
� �

τ4:

Substituting Eq. (13) into Eq. (7) and rearranging, we get:
qi−
piq

‴
i h

4

120ε

� �
yi þ

pi
2h

−
pih

3

240ε
p‴i þ 3q″i
� �� �

yiþ1−yi−1
� �

−
ε

h2
þ p2i
120ε

3p″i þ 3q
0
i

� �� �
yiþ1−2yi þ yi−1
� �

−
pih2

6
þ pih4

120ε
3p

0
i þ qi

� �� �
y‴

þ εh2

12
−
p2i h

2

120ε

� �
y4i þ τ6 ¼ f i−

pih
4

120ε
f ‴i

ð14Þ

where

τ6 ¼ τ0 þ τ5

Again, using Eq. (9), the term which contains yð4Þi from Eq. (14) becomes:
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εh2

12
−
p2i h

4

120ε

� �
yi
4 ¼ pih

2

12
−
p3i h

4

120ε2

� �
y‴i þ q″i h

2

12
−
p2i q

″
i h

4

120ε2

� �
yi þ τ7

þ 1
12

−
p2i h

2

120ε2

� �
2p

0
i þ qi

� �� �
yiþ1−2yi þ yi−1
� �

þ h
24

−
p2i h

3

240ε2

� �
p″i þ 2q

0
i

� �� �
yiþ1−yi−1
� �

−
h2

12
−
p2i h

4

120ε2

� �
f ″i

ð15Þ

where τ7 ¼ ðh212− pi
2h4

120ε2Þð2p
0
i þ qiÞτ4 þ ðh212− pi

2h4

120ε2Þðp″i þ 2q
0
iÞτ3

Substituting Eq. (15) into Eq. (14) yields:

qi−
piq

‴
i h

4

120ε
þ q‴i h

2

12
−
p2i q

‴
i h

4

120ε2

� �
yi

þ pi
2h

−
pih

3

240ε
p‴i þ 3q″i
� �þ h

24
−
p2i h

3

240ε2

� �� �
p″i þ 2q

0
i

� �
yiþ1−yi−1
� �

−
ε

h2
þ pih

2

120ε
3p″i þ 3q

0
i

� �
−

1
12

−
p2i h

2

120ε2

� �� �
2p

0
i þ qi

� �
yiþ1−2yi þ yi−1
� �

þ pih
2

12
þ pih

4

120ε
3p

0
i þ qi

� �
−
pih

2

6
þ pi

3h4

120ε2

� �
y‴ þ τ8

¼ f i þ
h2

12
þ pi

2h4

120ε2

� �
f ″i −

pih
4

120ε
f ‴i

ð16Þ

where

τ8 ¼ τ6 þ τ7:

For simplicity, let
Ai ¼ qi−
piq

‴
i h

4

120ε þ q‴i h
2

12 − p2i q
‴
i h

4

120ε2 ; Bi ¼ pi
2h−

pih
3

240ε ðp‴i þ 3q″i Þ þ ð h24−
p2i h

3

240ε2Þðp″i þ 2q
0
iÞ

Ci ¼ ε

h2
þ pih

2

120ε
3p″i þ 3q

0
i

� �
−

1
12

−
p2i h

2

120ε2

� �
2p

0
i þ qi

� �

Di ¼ pih
2

12 − pih
4

120ε ð3p
0
i þ qiÞ− pih

2

6 − pi
3h4

120ε2 ; HhðiÞ ¼ f i þ ðh212 þ pi
2h4

120ε2 Þ f ″i − pih
4

120ε f
‴

Then, Eq. (16) re-written as:

Aiyi þ Bi yiþ1−yi−1
� �

−Ci yiþ1−2yi þ yi−1
� �þ Diy

‴
i þ τ8 ¼ Hh ið Þ ð17Þ

Lastly, using Eq. (8), the term that contains y‴ from Eq. (17) becomes:
i

Diyi
0 00 ¼ piDi

ε
yiþ1−2yi þ yi−1
� �þ Di

2hε
pi

0 þ qi
� �

yiþ1−yi−1
� �þ Diqi

0

ε
yi−

Di

ε
f i

0 þ τ9 ð18Þ

where

τ9 ¼ piDi

ε
τ4 þ Di

ε
τ3

Putting Eq. (18) into Eq. (17), and write in three-term recurrence relation:

−Eiyi−1 þ Fiyi−Giyiþ1 þ τ10 ¼ Hi ð19Þ

whereEi ¼ Ci−
piDi

εh2
þ Bi þ Di

2hε ðpi
0 þ qiÞ; Fi ¼ Ai þ Diq

0
i

ε þ 2ðCi−
PiDi

εh2
ÞGi ¼ Ci−

PiDi

εh2
−Bi−

Di
2hε

ðpi
0 þ qiÞ and Hi ¼ HhðiÞ þ Di

ε f
0
iwith truncation error: τ10 = τ8 + τ9.
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Richardson extrapolation
The basic idea behind extrapolation is that whenever the leading term in the error for

an approximation formula is known, we can combine two approximations obtained

from the formula using different values of the mesh sizes h and 0.5h to obtain a higher

order approximation and the technique is known as Richardson extrapolation. This

procedure is a convergence acceleration technique which consists of a linear combin-

ation of two computed approximations of a solution (applied on two nested meshes).

The linear combination turns out to be a better approximation.

Since the truncation error of the formulated method Eq. (19) is O(h4), we have

j y xið Þ−YN j ≤C h4
� � ð20Þ

where y(xi) and YN are exact and approximate solutions respectively, C is constant in-

dependent of mesh sizes h.

Let Ω2N be the mesh obtained by bisecting each mesh interval in ΩN and denote the

approximation of the solution on Ω2N by Y2N. Consider Eq. (20) works for any h ≠ 0,

which implies:

y xið Þ−YN ≤C h4
� �þ RN ; xi∈ΩN ð21Þ

So that it also works for any h
2 ≠0 and yields:

y xið Þ−Y 2N ≤C
h
2

� �4
 !

þ R2N ; xi∈Ω2N ð22Þ

where the remainders, RN and R2N, are of O(h6). A combination of inequalities in Eqs.
(21) and (22) leads to 15y(xi) − (16Y2N − YN) ≈O(h6), which suggests that

YNð Þext ¼ 1
15

16Y 2N−YNð Þ ð23Þ

is also an approximation of y(xi). Using this approximation to evaluate the truncation

error, we obtain:

j y xið Þ− YNð Þext j ≤Ch6 ð24Þ

Now, using the solutions obtained by the scheme given by Eq. (19), we get another

third solution in terms of the two by Eq. (23). This is Richardson extrapolation method

for the fourth-order finite-difference scheme only to accelerate the rate of convergence

to sixth order.

Consistency of the method
Local truncation errors refer to the differences between the original differential

equation and its finite difference approximations at grid points. Local truncation errors

measure how well a finite difference discretization approximates the differential

equation [18]. In our case, the last truncation error in Eq. (19) is τ10 = τ8 + τ9.

But, from Eqs. (16) and (17), we have τ8 = τ6 + τ7and τ9 ¼ piDi

ε τ4 þ Di
ε τ3, So that:

τ10 ¼ τ6 þ τ7 þ piDi

ε
τ4 þ Di

ε
τ3
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τ10 ¼ τ0 þ τ5 þ τ7 þ piDi

ε
τ4 þ Di

ε
τ3;

because of Eq. (13)

Also, from Eqs. (13) and (15), we have:

τ5 ¼ −
pih

4

120ε
p‴i þ 3q″i
� �

τ3−
pih

4

120ε
3p″i þ 3q

0
� �

τ4

τ7 ¼ h2

12
−
pi

2h4

120ε2

� �
2p

0
i þ qi

� �
τ4 þ h2

12
−
pi

2h4

120ε2

� �
p″i þ 2q

0
i

� �
τ3

Hence, the truncation errors are re-written as:

τ10 ¼ τ0 þ Di

ε
þ h2

12
−
pi

2h4

120ε2

� �
p″i þ 2q

0
i

� �
−
pih

4

120ε
p‴i þ 3q″i
� �� �

τ3

þ piDi

ε
þ h2

12
−
pi

2h4

120ε2

� �
2p

0
i þ qi

� �
−
pih

4

120ε
3p″i þ 3q

0
� �� �

τ4

ð25Þ

Again, from Eqs. (6), (7), and ((12) into Eq. (25) and after rearranging yields:

j TE j ≤Ch4 ð26Þ

where TE = τ10 and

C ¼j 1
6
y‴i

pi
12ε

þ pih
2

120ε2
3p

0
i þ qi

� �
þ pi

3h2

120ε3
þ 1

12
−
pi

2h2

120ε2

� �
p″i þ 2q

0
i

� �
−
pih

2

120ε
p‴i þ 3q″i
� �� �

þ 1
12

y 4ð Þ
i

p2i
12ε

þ p2i h
2

120ε2
3p

0
i þ qi

� �
þ pi

4h2

120ε3
þ 1

12
−
pi

2h2

120ε2

� �
2p

0
i þ qi

� �
−
pih

2

120ε
3p″i þ 3q

0
� �� �

þ ε
360

yi
6ð Þ−

pih
2

5040
yi

7ð Þ j

Thus, the developed scheme without applying Richardson extrapolation is fourth

order accurate or order of convergence is O(h4). As Zhilin et al. [18], a finite difference

scheme is called consistent if the limit of truncation error (TE) is equal to zero as the

mesh size h goes to zero. Hence, this definition of consistency on the proposed method

which is given in Eq. (19) with the local truncation error in Eqs. (24) and (26) satisfied

as:

lim
h→0

TE ¼ lim
h→0

Ch4 ¼ lim
h→0

Ch6 ¼ 0

Thus, the proposed method is consistent.

Stability of the method
Consider the developed scheme in Eq. (19) which is given by:

−Eiyi−1 þ Fiyi−Giyiþ1 ¼ Hi

But, the coefficients Ei, Fi and Gi are given in terms of Ai, Bi, Ci and Di with its

values stated in Eq. (17). If we multiply both sides of Eq. (17) by h2 and consider the

limit ash→ 0, we get:

Ai ¼ Bi ¼ Di ¼ 0andCi ¼ ε ð27Þ

Using the values in Eq. (27), the coefficients Ei, Fi, and Giin Eq. (19) becomes:
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Ei ¼ Gi ¼ ε and Fi ¼ 2ε ð28Þ

Considering both Eqs. (27) and (28), into Eq. (19), which can be written in matrix
form:

MY ¼ H ð29Þ

where the matrices:
M ¼

2ε −ε 0 ⋯ ⋯ 0
−ε 2ε −ε 0 ⋮ ⋮
0 −ε 2ε ⋱ 0 0
0 0 ⋱ ⋱ −ε 0
⋮ ⋮ 0 −ε 2ε −ε
0 ⋯ 0 0 −ε 2ε

2
6666664

3
7777775
, Y ¼

y1
y2
⋮
⋮

yN−2
yN−1

2
6666664

3
7777775

and H ¼

h2H1 þ εy0
h2H2

⋮
⋮

h2HN−2

h2HN−1 þ εyN

2
6666664

3
7777775

Here, M is a tri-diagonal matrix. M is irreducible if its co-diagonals contain non-zero

elements only. The co-diagonal contains Ei, Gi. It is easily seen that, for sufficiently

small h(i. e. h→ 0), Ei ≠ 0 and Gi ≠ 0, ∀i = 1, 2, ⋯, N − 1.

Hence, M is irreducible. Again, one can observe that ∣Ei ∣ > 0 and ∣Gi ∣ > 0 and in

each row of M, the sum of the two off-diagonal elements is less than or equal to the

modulus of the diagonal element (i.e., ∣Fi ∣ ≥ ∣ Ei ∣ + ∣Gi∣). This proves the diagonal

dominance of M. Under these conditions, the Thomas algorithm is stable for suffi-

ciently small h, as shown in [19].

As proved by Smith [20], the eigenvalues of a tri-diagonal matrix (N − 1) × (N − 1) of

matrix M are:

λs ¼ Fi−2
ffiffiffiffiffiffiffiffiffi
EiGi

p
cos

sπ
N

¼ 2ε 1− cos
sπ
N

� �
; s ¼ 1; 2;…;N−1 ð30Þ

Also, from trigonometric identity, we have 1− cos sπN ¼ 2 sin2 sπ
2N . Hence, the eigen-

values of matrix M can be re-written as:

λs ¼ 2ε 2 sin2
sπ
2N

� �
¼ 4ε sin2

sπ
2N

≤4ε ð31Þ

A finite difference method for the BVPs is stable if M is invertible and
‖M−1‖≤C; ∀0 < h < h0 ð32Þ

where C and h0are two constants that are independent of h,[20].
Table 1 Comparison of maximum absolute errors for Example 1

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

Present method

2−3 8.4257e− 08 1.3480e− 09 2.1109e− 11 3.3035e− 13 1.2490e− 14 7.4385e− 15

2−5 8.5202e− 07 1.4078e− 08 2.2312e− 10 3.5109e− 12 5.4401e− 14 2.3620e− 14

2−8 6.6238e− 05 1.6978e− 06 2.8399e− 08 4.5168e− 10 7.0878e− 12 1.0836e− 13

2−12 4.5141e− 03 4.1790e− 04 2.1462e− 05 9.9671e− 07 1.8913e− 08 3.0955e− 10

Method in [16]

2−3 1.44e− 03 3.64e− 04 9.06e− 05 2.26e− 05 5.66e− 06 1.41e− 06

2−5 3.71e− 03 8.57e− 04 2.08e− 04 5.09e− 05 1.26e− 05 3.16e− 06

2−8 4.63e− 03 1.65e− 03 2.33e− 04 6.09e− 05 1.73e− 05 4.37e− 06

2−12 6.76e− 02 3.76e− 02 7.40e− 03 6.17e− 04 3.54e− 05 4.74e− 06
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Fig. 1 The behavior of exact and numerical solution for Example 1 at ε = 10−3 and N = 100
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Since, matrix M is symmetric also its inverse matrix M−1 is symmetric and the eigen-

values M−1 is given by 1
λs
, we have

‖M−1‖ ¼ 1
λs
¼ 1

4ε ≤C; where C is independent of h.

Thus, the developed scheme in Eq. (19) is stable.

A consistent and stable finite difference method is convergent by Lax’s equivalence

theorem [20]. Hence, as we have shown above, the proposed method is satisfying the
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Fig. 2 The physical behavior of the solution for Example 2 at N = 64 and ε = 10−3
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Fig. 3 Point-wise absolute errors of Example 1 at ε = 2−12 with different mesh size h
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criteria for both consistency and stability which are equivalents to convergence of the

method.

Numerical examples and results
In order to test the validity of the proposed method and to demonstrate their conver-

gence computationally, we have taken two model examples of singularly perturbed self-
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Fig. 4 Point-wise absolute errors for Example 1 at N = 32 and different perturbation parameters



Table 2 Comparison between with and without Richardson methods of maximum absolute errors
for Example 1

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

With Richardson extrapolation

2−3 8.4257e− 08 1.3480e− 09 2.1109e− 11 3.3035e− 13 1.2490e− 14 7.4385e− 15

2−5 8.5202e− 07 1.4078e− 08 2.2312e− 10 3.5109e− 12 5.4401e− 14 2.3620e− 14

2−8 6.6238e− 05 1.6978e− 06 2.8399e− 08 4.5168e− 10 7.0878e− 12 1.0836e− 13

2−12 4.5141e− 03 4.1790e− 04 2.1462e− 05 9.9671e− 07 1.8913e− 08 3.0955e− 10

Without Richardson extrapolation

2−3 1.9663e− 05 1.2739e− 06 8.1142e− 08 5.0815e− 09 3.1775e− 10 1.9855e− 11

2−5 1.4465e− 04 9.7270e− 06 6.1899e− 07 3.8861e− 08 2.4324e− 09 1.5212e− 10

2−8 7.1344e− 03 5.8790e− 04 3.6784e− 05 2.3006e− 06 1.4381e− 07 9.0025e− 09

2−12 7.6315e− 02 3.7522e− 02 7.8643e− 03 6.9834e− 04 4.4580e− 05 2.8040e− 06

Siraj et al. Journal of the Egyptian Mathematical Society           (2019) 27:50 Page 11 of 14
adjoint second-order two-point boundary value problems with exact solutions. The

maximum absolute errors (AE) at the nodal points are given by j AE j¼ max
1≤ i≤N−1

j yðxiÞ−
ðYNÞext j. And the rate of convergence (R) can be calculated by the formula:

R ¼ log YNð Þext− log Y 2Nð Þext
log2

where y(xi) and (YN)
ext are exact solution and numerical solution, respectively, at the

nodal point xi. And for the rate of convergence YN and Y2N are the numerical solutions

obtained on the mesh size h and h
2, respectively.

Example 1: Consider the singularly perturbed self-adjoint problem:

−ε 1þ x2
� �

y
0
xð Þ

� �0

þ 1þ x−x2
� �

y xð Þ ¼ f xð Þ; 0 < x < 1

subject to the boundary conditions y(0) = y(1) = 0, where f (x) is chosen such that the

exact solution is given by: yðxÞ ¼ 1þ ðx−1Þe−xffi
ε

p
−xe

ð1−xÞffi
ε

p

Example 2: Consider the following self-adjoint singular perturbation problem:

−εy″ xð Þ þ 4

xþ 1ð Þ4 xþ 1ð Þ ffiffi
ε

p� �
y xð Þ ¼ f xð Þ; 0 < x < 1
Table 3 Comparison of rate of convergence for Example 1

ε N = 8 N = 16 N = 32 N = 64

With Richardson extrapolation

2−5 5.9194 5.9795 5.9898 6.0121

2−8 5.2859 5.9017 5.9744 5.9938

2−12 3.4332 4.2833 4.4285 5.7197

Without Richardson extrapolation

2−5 4.0747 4.0277 4.0061 4.0011

2−8 3.6016 3.9980 3.9989 3.9997

2−12 1.0472 2.2541 3.4933 3.9694



Table 4 Comparison of maximum absolute errors for Example 2

N ε ¼ ð1NÞ
0:25 ε ¼ ð1NÞ

0:5 ε ¼ ð1NÞ
0:75 ε ¼ ð1NÞ

1:0

Present method

16 1.3049e− 06 1.2226e− 06 1.2374e− 06 1.6007e− 06

32 1.7972e− 08 1.7143e− 08 2.1783e− 08 5.6182e− 08

64 2.6954e− 10 2.7457e− 10 5.3161e− 10 5.7507e− 09

128 4.1296e− 12 4.7784e− 12 2.1287e− 11 5.4866e− 10

256 6.0396e− 14 2.8866e− 13 1.4388e− 12 5.0873e− 11

Method in [17]

16 2.9718e− 04 4.9658e− 04 8.9268e− 04 1.7181e− 03

32 2.0905e− 05 4.1607e− 05 9.0798e− 05 2.3653e− 04

64 1.4884e− 06 3.4999e− 06 9.8228e− 06 3.9036e− 05

128 1.0650e− 07 3.0026e− 07 1.1659e− 06 7.4775e− 06

256 7.6403e− 09 2.6424e− 08 1.5321e− 07 1.5612e− 06
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with boundary conditions y(0) = 2 and y(1) = − 1, where f(x) is chosen such that the

exact solution is given by: yðxÞ ¼ − cosð4πxxþ1Þ þ 3ð expð
−2xffi
ε

p ðxþ1ÞÞ− exp
ð−1ffi

ε
p ÞÞ

1− exp
ð−1ffi

ε
p Þ

Discussion and conclusion
In this paper, we described the fourth-order stable central difference method with Rich-

ardson extrapolation for solving second-order self-adjoint singularly perturbed bound-

ary value problems. To demonstrate the competence of the method, we applied it on

two model examples by taking different values for the perturbation parameter, ε, and

mesh size, h. Numerical results obtained by the present method have been associated

with numerical results obtained by the methods in [16, 17], and the results are summa-

rized in Tables 1 and 4. Moreover, the maximum absolute errors decrease rapidly as

the number of mesh points N increases. Further, as shown in Figs. 1 and 2, the pro-

posed method approximates the exact solution very well for h ≥ ε, for which most of

the current methods fail to give good results. To further verify the applicability of the

planned method, graphs were plotted aimed at Examples 1 and 2 for exact solutions

versus the numerical solutions obtained. As Figs. 1 and 2 indicate good agreement of

the results, presenting exact as well as numerical solutions, which proves the reliability

of the method. Also, Figs. 3 and 4 specify the effects of perturbation parameter and

mesh sizes of the solution domain.

Further, the numerical results presented in this paper validate the improvement of

the proposed method over some of the existing methods described in the literature.

Both the theoretical and numerical error bounds have been established for the fourth
Table 5 Rate of convergence for Example 2

N ε ¼ ð1NÞ
0:25 ε ¼ ð1NÞ

0:5 ε ¼ ð1NÞ
0:75 ε ¼ ð1NÞ

1:0

16 6.1820 6.1562 5.8280 4.8325

32 6.0591 5.9643 5.3567 3.2883

64 6.0284 5.8445 4.6423 3.3898

128 6.0954 4.0491 3.8870 3.4309
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and sixth-order methods. Hence, the Richardson extrapolation method accelerates

fourth order into sixth order convergent as given in Table 2. The results in Tables 3

and 5 further confirmed that the computational rate of convergence and theoretical es-

timates are in agreement (Tables 4 and 5). Generally, the present method is consistent,

is stable, and gives more accurate numerical solution for solving second-order self-

adjoint singularly perturbed boundary value problems.
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