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Introduction

In the last two decades, fractional differential equations have become one of the most
important branches in mathematics, due to its wide range of applications in different
fields of sciences and engineering, such as in physics, chemistry, and biology [1-7].

Over the decades, a number of definitions of fractional derivatives are presented such
as the most prevalent definitions of Riemann-Liouville and Caputo. Differential inclu-
sions established as a part of the general theory of differential equations and penetrated
different areas of sciences as a consequence of their numerous applications [8—19].

Many authors are interested in studying different classes of differential inclusions by
using several forms of accompanying conditions. Nonlocal conditions have a leading
role in describing some peculiarities of chemical, biological, physical, or other processes
occurring at various positions inside the domain, which is clearly not possible with
the end-point (initial/boundary) conditions. In fact, nonlocal conditions give more pre-
cise measurements, accurate results, and better effect than the classical conditions. For
instance, to describe the diffusion phenomenon of a small amount of gas in a transpar-
ent tube, Deng [20] used the final nonlocal condition u(x, T) — Gu(x) = Z;il bju(x, tj),
where G is given function and #; € J and b; are real numbers. Also, the integral boundary
conditions have various applications in blood flow problems, theorem-elasticity, chemical
engineering, populations dynamics, etc. 8, 21].
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Chang and Nieto [12] studied the existence of solutions for the class of fractional
differential inclusion

DOy(t) € F(t,y(t)), t €[0,1]

with the boundary conditions y(0) = «, y(1) = B, a, 8 # 0, where °D? is the Caputo
fractional derivative of order § € (1, 2).

Lian et al. [22] discussed the existence of mild solutions for the fractional differential
inclusions

“DAu(t) € Au(t) + F(t, u(t)), q € (0,1), ¢ €[0, 5]
with the nonlocal condition
u(0) = g(u),

where A : D(A) — X is the infinitesimal generator of a strongly continuous semigroup
{T(¢)}t>0 on X, F is an upper-Carathéodory set-valued function, and the nonlocal term g
is a given function from C(J, X) into X.

Wang et al. [16] gave two existence results to the nonlocal semilinear differential
inclusions with fractional order

‘Diu(t) € Au(t) + F(t,u(t)), g € (0,1), t €[0,1]

with the nonlocal condition
m
u©) =Y aulty), O=to<t <th<..<ty=1,
k=1

when the nonlinear term F :[0,1] XxE — P(E) — {¢} is a multifunction, E is a separable
Banach space and A is a bounded operator.
El-Sayed et al. [23] discussed the existence of solutions to the differential inclusion

X' (¢) € F(t,x(t)), ae t € (0,1)

under the new nonlocal conditions, the deviated-advanced nonlocal condition,

m n

D (@ (t) = Y bix(¥ (1)), a, by > 0.

k=1 j=1
where F(,,.) is a set-valued function from [0, 1] xR into P(R™) (the power set of RY), & >
0 is a parameter, 7, 1; € (0,1), and ¢, ¥ are, respectively, deviated and advanced given
functions. In [23], some special cases of nonlocal and integral conditions are displayed
such as Y L, axx(¢ (1)) = 0 where 1 € (0,1), Y [ aix(¢p () = ax(y(n)), where
% n € (0,1) and [ x(¢p(s))ds = & [y x(4 (s))ds.

The aim of this paper is to discuss the existence of solutions to the following class of

deviated-advanced nonlocal semilinear fractional differential inclusions

Du(t)y — Au(t) € F(t,u(t)), ae, te]:=[0,T],T < ox;
Y oker ak(@(t) = A 3L biu(y (1)), ax, bj > 0.

where F: ] x R — P(R1) is Ll—Carathéodory set-valued function, 7x,7; € /, A > 0 isa

(1)

parameter, and ¢, v are, respectively, deviated and advanced given functions. D% denotes
the Caputo fractional derivative of order « € (0, 1), and A(¢) is a bounded linear operator
on a Banach space X with domain D(A) C X. We develop our results to the following
class of nonlocal problems with deviated-advanced integral conditions
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D*u(t) — Au(t) € F(t,u(t)), a.e, tej;
[ u(g(s))ds = 1 [} u(y(s))ds,

This paper is organized as follows: In the “Preliminaries” section, we display some

(2)

preliminary definitions and theorems which are used throughout this paper. In the
“Existence results” section, we study the existence of at least one continuous mild solution
to Problem (1) by applying the nonlinear alternative fixed point theorem of Leray-
Schauder type, and we promote our outcomes to Problem (2) by giving an example to
illustrate our results.

Preliminaries
Here, we introduce the main definitions and theorems which are used throughout this
paper.

As usual, let R be the set of all real numbers and N be the set of all positive integers.
For a Banach space (X, |.||x), let P(X) be the family of all subsets of X, B(X) be the class
of all bounded linear operators on X with the norm [|S||g := sup {||Sv| : |v|]| = 1}, C(J, X)
be the set of all continuous functions # : /] — X with the norm ||u|| ¢ := sup{|lu(®)| : u €
C(,X),t €]}, C"(J, X) be the set of all n-differentiable functions with #™ € C(J,X), n €
N, AC(J, X) be the set of all absolutely continuous functions from J into X, and L' (J, X) be
the class of Lebesgue integrable functions v : /] — X with the norm ||v|;1 := f] lv(®)| dt.

Let ¢ : ] — ] be a deviated continuous real valued function (i.e., ¢ (¢) < t)and : ] — ]
be an advanced continuous real valued function (i.e., ¥ (£) > £). As an example of the
deviated function ¢, we can take ¢ () = 6t, 6 € (0,1) orop(t) =t—6,60 €], t > 6.
As an example of the advanced function ¥, we can consider ¥ (¢) = ot, 0 > 1 or
Y(@)=t+0,0¢e],t<6.

Definition 1 ([4]) The fractional integral of order « > 0 with the lower limit 0 for a
function u is defined as

1

t
/ t — 9 u@s)ds, t > 0.
0

provided that the right-hand side is pointwise defined on (0, 00), where I'(.) is the gamma
function.

Definition 2 ([4]) The Caputo fractional derivative of order « where 0 < a < 1 with the
lower limit O for a function u € AC(J, X) is defined as

‘DYu(t) = I'*D'u(e), t > 0, D' = d/dk.

Define Ppg(X) = {W € PX) : W isbounded}, P,(X) = {W € PX)
W is compact}, Pey(X) := {W € P(X) : W is convex}, and Pgy (X)) := {W € P(X) :
W is compact and convex]}.

For two sets Z and Y, a (set-valued) function F : Z — P(Y) assigns to each z € Z some
F(z) C Y. A fixed point of F is a point # € Z such that u € F(u). The graph of F is
G(F) := {(z,y) eZxY;ye F(z)}. A function f : Z — Y is said to be a selection of F if
G(f) € G(F).

A set-valued function F : X — P(X) is convex (closed) valued if F(x) is convex (closed)
for all x € X. F is bounded on bounded sets if F(W) := UxewF(x) is bounded in X for
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all W e Pyy(X), thatis, sup,cy {supflz| : z € F(x)}} < oo. F is said to be completely
continuous if F(W) is relatively compact for every W € Py;(X) . If F is completely contin-
uous with nonempty compact values, then F is upper semicontinuous if and only if G(F)
is closed. For more details, see [10, 24].

Definition 3 ([25]) A set-valued function F : ] x R — P(R) is called L'-Carathéodory if

(a) t — F(t,u) is measurable for each u € R;
(b) u — F(t,u) is upper semicontinuous for almost all t € J;
(c) Foreachr > 0, there exists 7, € L'(J,R) such that

|F(t, w)| = supf{|v| : v € F(t,u)} < s,(t) for ae t €] andall |u| <r. (3)

Definition 4 ([26]) For each u € C(J,R), define the set of L'-selections of F by

Stu =1 € L', R) 1 f(t) € F(t,u(t)) forae. t €]}. (4)

Theorem 1 ([26]) The set of selections S}:’u is nonempty for any L'-Carathéodory set-
valued function F : ] x R — P(R) for each u € C(J, R).

Theorem 2 ([25, 27]) Let X be a Banach space, M be a closed convex subset of X, A be
an open subset of M and 0 € A. Suppose that F : A — Pey ¢, (M) is upper semicontinuous
and compact map. Then, either

(i) F has a fixed point in A, or
(ii) Thereisau € A ando € (0,1) withu € o Fu.

Lemma 1 ([26]) Let X be a Banach space, F : ] X R — Py, ., (X) be an L'-Carathéodory
set-valued map, and Q : L'(J,X) — C(,X) be a linear continuous map. Then, the
operator

Qo0S}: CU,X) = Pope(CUL X)), ur> Q(Sg,)

is a closed graph operator in C(J,X) x C(J, X).

Existence results
Consider the following assumptions:

(H1) A(t) is a bounded linear operator on R where ¢ — A(¢) is continuous in the strong
operator topology and N = max{|A(¢)|: £ € J}.

(Hy) F:]J] xR — P(R)is Ll—Carathéodory and has nonempty, compact, and convex
values;

(H3) ¢:]— ], ¢(t) <t isadeviated continuous function.

(Hy) ¥ :]— ], ¥(t) >t isan advanced continuous function.

(Hs) There exists a constant v > 0 such that

vI(1l+a)
T (vN + ||5[ 1) [ 1+ 1yl <|A| Z;l=1 b+ 1 “k) ]

> 1.

1
where y = <Z/rf=1 ag — A Z?:l b/') .

We need the following lemma to define a mild solution for Problem (1).
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Lemma2 Let ) /" | ax # A Z;I:I bj. For a given single-valued function i € C(J,R), the
solution of the nonlocal problem

D*u(t) = A@)u(t) + u(t) ae. tej;
” \ (5)
> ke axu( () = A3y bju( (1)), ax, bj > 0.
can be expressed by the integral equation
S [V ) — 9! - /Wﬂ W () — 9!
) = yr )y b; —A ds+yir ) b; _ d
u(t) = yry, ,/ @ (u(s)ds + v ]_Zl i ), F@ M@ ds
m () _ oo o (tx) _ aa—1
Y f S Y A " )) A@u(s)ds — y Z / %um ds
t (t _ s)oz—l ( _ )a 1
+ A WA(s)u(s)ds—l— : Wﬂ(s) ds.

(6)

Proof Let u(t) be a solution for Problem (5). Operating I* on both sides of the fractional
differential equation of Problem (5), we get
)a 1
I'(a)
Putting ¢t = ¢ (%) in (7), we obtain
P (@ () — )
INCY)

u(t) —u(O)—I—/ ¢ A(s)u(s)ds—i—/ (¢ = F( ) /L(S) ds. 7)

1¢79) _ -l
A(s)u(s)ds—i—/ ‘ Mu(s) ds,
0

=u(0
(b (1)) = 1(0) + /0 L

then

m m m (k) _ a1
S et = Y@+ Y a [ A ds
k= k=1

Pt ()
[P @) -9
Y / ) ds. ®)
Putting t = ¥ (1;) in (7), we obtain
V() N gyl ¥ () 3 — g1
(Y () = u(0)+ / PO =T 4 Gt dst / PO =T 6 ds
0 [(e) 0 INCY)
then
- - - v (yr(nj) — )7
LY bu(r(y)) = AY_ bu©) +iy b /0 WA(s)u(s) ds
j=1 j=1 j=1
- Vo) (y(nj) — )t
+A ; bj /0 @ M@ ds. ©)
From (8), (9), and the nonlocal condition of Problem (5), we get
. - V) (g () — )t - Vo) (g () — 5)% !
u(0) =y Z bj/ WA(S)M(S) ds+ yi ;b,-/o WM(S) ds
- P (p(tx) —5)* ! < /Wk) (¢(r) —9)*
- AL ds — R T () ds.
y ijuk/() @ (s)u(s) ds — y ];ﬂk \ T PO ds
(10)

Substituting (10) into (7), we get the required. O

Page 5 of 15
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Definition 5 A function u € C(J, R) is said to be a mild solution for Problem (1), if

m n

Y ar up() =1 b u(y (), ax, by > 0

k=1 j=1
and there exists a function f € LY(J,R) such that f(t) € F(t,u(t)) a.e. on ], and u(t)
satisfies the integral equation

LY ) -9 LY ) -9
u®) = ykij/ ’FTA(s)u(s) ds+yxj§bj/0 ’FTf(s) ds

m m

@ (¢ (rg) —5)* ! T (¢ (ry) —5)* !
—y Za / WA(S)M(S) ds—y ];ak/o Wf@ ds

_ -1 _ aa—1
/(t 9) A(s)u(s)ds—i—/( EZ9" ) as.
0

() ()
(11)

In view of the nonlinear alternative fixed point theorem of Leray-Schauder type

(Theorem 2), we will discuss the existence of at least one mild solution for Problem (1).

Theorem 3 Let the assumptions (Hy)-(Hs) be satisfied and Y ], ay # A Z}qzl bj. Then,
Problem (1) has at least one mild solution u € C(J,R).

Proof Since assumption (Hy) is satisfied, then by applying Theorem 1, there exists a
single-valued selection f € S}E,u. So, consider the set-valued operator K : C(J,R) —
P(C(J,R)) such that

v Z] 1b fllf(://))(lﬁ(ﬂf?(aj) A(s)u(s) ds
+y}\‘ Z} lb ‘/“// nj (‘/f("l}—‘)(ai) f( )dS
Ku(@®) = \g€ CULR) :g) = \ —y Y7 ay [$ 7@’@( S As)u(s)ds o f € Ska
—y Zk— ax ¢(TI<) (d)(t]f‘)(o;) f(S) ds
+fo G A(s)u(s)ds + fy L f () ds
(12)
That is, for each g € Ku, u € C(J,R), there exists f € Sll_n'u such that
_ - Ve (nj) —5)*7! - V@D (g (nj) —5)*7!
g = ya Z b,/ WA(s)u(s) ds+ yA ;b,/o Wf@ ds
" () _ g1 & (i) _ g1
—y de/ (¢(Tk13( )S) A@S)uls) ds — y Z / %f@ ds
t (t _S)a 1 (t S)a 1
+ A F@) ——AB)u(s) d5+/ r@ ———f(s) ds.
(13)

Now, we will show that K satisfies the hypotheses of Theorem 2.
The proof will be given in 4 steps:
Step 1: (K is convex for each u € C(J,R))

Page 6 of 15
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Using assumption (Hy), we have F has a convex values, then the set of selections S}:,M is
convex. Therefore, the step is obvious.
Step 2: (K is a completely continuous operator)
Firstly, we have to show that K maps bounded sets into bounded sets in C(J, R).
For a positive number 7, let B, C C(J, R) be defined as

={ueCUR): lull <r}. (14)

Clearly, B, is a bounded ball in C(J, R).
Using (13) with applying (H3) and (Hy), we get

. a—1
g < y)\Zb/ ’7)A(s)u(s)ds+y12b/ uf()als

*(tg —8)*” % (15 — )
_y];ak/o WA(s)u(s)ds—yZukA Wf(s) ds

Lt —s)e1 t—9*"
+/o WA(s)u(s) ds—i—/o F @ ———f(s) ds, (15)

then for u € B,,

(nj — 9%~ (1 — )"
lgll < ("N + 152l |Ay|2bf ’7“)ds+(w+n%ng |y|Zakf0 kers
k=1

t a—1
+ (I + l1l0) / ( F(S)) ds

T (rN + |\%||L1)
=< l—'(l+ot)|:1+| |(|)V|lzlh +Zak) :|

Thus, K maps bounded sets into bounded sets in C(/, R).

Secondly, we have to prove that K maps bounded sets into equicontinuous sets of
C(J,R).

Let 0 <t; <ty < T,foreachg € Ku and u € B,

ty _ -1 151 _ a—1
glts) — g(tr) = /0 %A(s)u(s) ds— | %A(s)u(s) ds

2 () — )@t / (th —s)*!
s)ds — d
+/0 @) ————f(s)ds F() ————f(s) ds
/tz (ty — )71 2 (ty —5)*71
t

1 F@) A(S)u(s) ds + s Ta)f(s) ds

T R Gt
_|_/0 ( T — @) >A(s)u(s) ds

bty —s)* b (g —s)*!
+f0< @ T@ )f(s)ds’
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then

2 (-9 2 (ty — 9!
o) gl = N [T B ol ds + ft E—rolds

L9t -9t
+N/o< @) T@ )'”(S)'ds

h/(ty—s)*t (h—s)°!
+/0( F@  T@ )V(S)'ds

2 (6 — 5)* ! ORI e

1

IA

1
— (N ty —ty|.
NCESY ("N + Il 1) 185 — £

(16)

Obviously, the right-hand side tends to 0 independently of u € B, as £ tends to ;.
That is, K maps bounded sets into equicontinuous sets of C(J, R). Applying Arzela-Ascoli
theorem, we have that K is a completely continuous operator.

Step 3: (K is an upper semicontinuous operator)
From (H3) and step 2, K is completely continuous with nonempty compact values. So, we
have to show that K has a closed graph to be an upper semicontinuous operator.

Let u, — i, g — ¢ where g, € Ku,. We need to prove that ¢ € Kiz. Associated with
gy € Kuy, there exists f;, € S}E, n such that for each ¢ € J, we have

- Yo (y () —)* ! - /"’(”") () —5)* !
" = yA bj —A u(s) d A b n(s) d
&) =y Z ,/ T A©u) ds+y ,:Zl’ A T ds
[P @m) — 9! [P @) — 9!
—y ;akfo WA(S)MK(S) ds—vy gak/o an(s) ds
t (t _ S)a 1 (
+[0 F@ ———AS)uy(s) ds+/ 1"( ) f,,(s) ds.
17)
We want to prove that there exists f € S}f,h such that for all ¢ € J, we have
. (YO ) 9T - fwﬂ W) ="
£) = yry b — A4 ds+yr) bj ————f(s) d
6 =yry, ,f @ (5)is(s) ds +y ]le 7 ], T @
dd & (1) — ¢ () _ga-1,
-y Zak / AL ( )s) AGs)ints) ds — y Z f %f (5) ds
(t—s)“1 . -9
/ @) ————A(s)u(s) ds —1—/0 Wf(s) ds.

(18)

In view of Lemma 1, define the continuous linear operator  : L' (J,R) — C(/,R) as

i V() ) gl i V() N _ gyl
Q@) = yAZb//(; ’ %A@)u@) ds+yAZb,/0 ’ %f@) ds
=1 =

" b (z) a-1 b (%) el
—y Zﬂk/ (¢(ka2( )S) A@S)u(s) ds — y Z / %f@) ds
k=

t(t_s)ot—l ( _ )oz 1
+/0 T A(s)u(s)ds-i—/o @ — S ds.

(19)

Page 8 of 15
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Thus,

v D ) - s
0w (t) — < |YAIN ) b —_—
60 =501 < AN b [ o

j=1

14, (s) — i1(s)| ds

n ¥ (nj) Y — g)e—1 .
+ Iyl ij./o %vm —jolds
j=1

m (k) _ a1
HYINY o %mw —i(s)]| ds

k=1 0 o

mo e _ el )
+ |y|2ak/0 O o)~ ol ds
k=1

fru(s) — f(s)] ds.
(20)

t (t _ S)a—l B t (t _ s)a—l
+N./0 an(s)—u(s)lds—l—/o T

That is, g, (¢) — g(¢) as n — 00. Applying Lemma 1, we have Q o S}:M as a closed graph
operator in C(J,R) x C(J,R) and g, € (S}_n,un), Since u, — 1, then we have g(¢) satisfies
(18) for some jv" € S}ru Therefore, K is an upper semicontinuous operator.

Step 4: (There exists an open set A C C(J,R) with u ¢ Ku for o € (0,1) and u € dA)
Let 0 € (0,1) and u € ¢ Ku. Then, there exists f € L'(J,R) with f € S}:’M, such that, for
t € J, we have g € Ku satisfies (13). As in proving step 2, we get

T (Nlull + [l 11)

n m
lgll < raTw Ly I b+
j=1 k=1

Thus,
QL+ )u
7 (Nl + el ) [ 1+ 11 (13155 By + X0y ) |

In view of (Hs), there exists v such that v # |lu]|. Set

<1

A={ueCUR): |ull <v+1}.

From the definition of A, there is no u € dA such that u € ¢ Ku for some ¢ € (0, 1).
Further, we have that the operator K : A — Py, (B,) is an upper semicontinuous and
completely continuous operator.

Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem 2), we
deduce that K has a fixed point # € A which is a mild solution for Problem (1). O

To prove the existence of at least one mild solution for Problem (2), we give the following
lemma.

Lemma 3 Let Y} ax # A Y bj. For a given single-valued function y € C(J,R), the
solution of the nonlocal problem

D%u(t) = A)u(t) +y(t) ae. te];

Jo w(@(s)ds = [y u(y(s))ds ey

can be expressed by the integral equation
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(s a—1 T ry(s) _ pya—1
u(t) = ﬁk/ / W —6) A(@)u(@)d@ds%—ﬂk/ f My(@)d@ds
o Jo

INCY) I (er)
" (p(s) - 0)*! T 9 (gs) — 0)* !
/ f F @ A(G)u(@)d@ds—ﬂfo /0 Wy(@)d@ds
(t _ 9)0{ 1 t (t _ 9)0{71
—A@)u(9)do —Fy(0)de,
+ . TT@ (0)u®)do + T y()
(22)

where B = ﬁund A#£L

Proof Let u(t) be a solution for Problem (21). Operating I on both sides of the
fractional differential equation of Problem (21), we get

B t (t _ 0)0{*1 t (t _ 0)0{71
u(t) = u(0) + A WA(@)M(@)d@ + A Wy(@)d@. (23)

Putting ¢ = ¢(s) in (23), we obtain

¢ () _ gyl #(s) a1
u(@(s)) = u(0)+/ MA(@)u(@)d@—l—/ M)](Q)d@,
0 I'(a) 0 INGY)
then
r () a1
/0 u(p()ds = /0 u(0)ds + / / (‘“S)F ” )) A©)u(6)dods
ECIORI
/ / ) y(0)dOds. (24)

Putting ¢ = v (s) in (23), we obtain

¥ (s) _ nya—1 ¥ (s) _ mya—1
U () =(0)+ / WO = s 0yu)do+ / WO =" o ue)as,
0 I'(a) 0 I'(@)
then
T T T v(s) _ pye—1
A f u(()ds = A [ w(0)ds + 2 / / WO =" 4 0yu®)dods
0 IN'a)
v (s) a—1
+a / / (w(s)r( )) Y©O)dods, % £ 1. (25)

From (24), (25), and the nonlocal condition of Problem (21), we get

Y (s) a—1 T pry(s) _ pya—1
u(0) = ﬁk// W) —6) A(e)u(e)deds+ﬁ/\// My(@)d@ds

I'(a) ['(a)
26 (p(s) — ) / /‘“S) (¢(s) —0)* !
— ———————A@®)u(9)dod. 0)dbds.
5/0 / F@) (Ou®)dods — B T@) y(0)dbds
(26)
where A #1land 8 = ﬁ

Substituting (26) into (23), we get (22). Then, the proof is completed. O

Definition 6 A function u € C(J,R) is said to be a mild solution for Problem (2), if

T T
/0 u(qb(S))ds:/\/O u(y(s))ds,
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and there exists a function f € L'(J,R) such that f(t) € F(t,u(t)) a.e. on J, and u(t)
satisfies the integral equation

¥ (s) a—1 T pry(s) _ pya—1
ut) = B / / W —6) S AO)u(0)dods + B / / Mf(e)deazs
0 0

T(a) (@)
2 (¢p(s) — )% T 26 (¢p(s) —0)*!
—ﬂ/ / F@) A(G)u(@)d@ds—ﬂfo /0 Wf(@)d@ds
fae-o! / -
————AB)u(0)do ———f(0)do.
2 S 0)u(6)do + r()f()

As in proving Theorem 3, we infer the existence of at least one mild solution for
Problem (2).

Theorem 4 Let the assumptions (H1)—(Ha) be satisfied. Then, Problem (2) has at least
one solution u € C(J,R) if there exists a positive constant w such that

o I'2+a)
>1
T*2+a) (@ N + [|7|,)

(27)

Proof Since the assumption (Hy) be satisfied, then by applying Theorem 1, there exists
a single-valued selection f € S}’u. So, consider the set-valued operator Q : C(J,R) —
P(C(J,R)) such that

T e “AO)u(H)dods
+BA fy f"’“) W= £(6)dods
Qu(t) = 1h e CUR) :h() = 1 B [ [© 7@“) 0% A@©)u(9)dods fest,
ﬂfo B (s) (¢(Sl[(5))“ £(0)dOds

+/o “F@“) LAOu©)d0 + [{ T (0)db.

(28)
We have to show that Q satisfies the hypotheses of Theorem 2.

Step 1:
In view of (H3), F has convex values, then Sll_-’u is a convex set. So, Q is convex for each
ue C(,R).
Step 2:
Consider the bounded ball B, C C(J,R) such that

By ={ueC(y,R): |ul| <o, o >0}. (29)

Then, for each 1 € Qu, u € B,, there exists f € S}T » such that

¥(s) a—1 T pY(s) _ pgye—1
h(t) = ﬂk/ / W =) A(Q)u(@)d@ds—i—ﬂk/ / Mf(e)deds

T (@) (o)
96 (p(s) — )4 ! / /W (p(s) —0)* !
— — A B)u(0)dods — 0)dod.
ﬁ/O/ T O)u(®)dods — p @) —————————f(0)dbds
t(t_e)al f ( 9)011
—— A u®)db 0)do.
+/0 o AOwes + [ )

(30)
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Applying (H3) and (Ha),

h(®)

IA

s (S— )ot—l /T s (S— 9)01—1
A ———AO)u(®)dod. A ———f(0)dbd
B / T T@ (O)u(®)dbds + p L)y T T@ f(0)dods

(S )a 1 T ps (S _ 9)0(71
- ﬂ/ / r@) —AO)u(0)dbds — ﬂ/o : Wf(@)d@ds
(t _ )a 1 a—1

(t—0)
AO)u(0)do 79619
[ —Aoue) +f o/ ©

5@—1)/ / (=)™ lA(G)u(G)des—i—ﬂ(k—l)/ / wf(e)deds
INGY) [(a

)
(t — 6y (t — 6!
——AO)ud)do —f(O)db.
+/0 Tl OO +/0 ra 7@

IA

(31)

For u € B,, we obtain

a—1 a—1
(O] < (N + I15I11,) (Iﬁ(k—l)I/ /&ded +/ “‘”d@)

XC) r@

T (N + |11, <T|/3(k—1)| +1>
= ra-+o) 1+«

T2+ (oN +|lxlIL,) (32)
= r2+a) '

Thus, Q maps bounded sets into bounded sets in C(J, R).
Let0 <t <ty < T, foreach i € Quand u € B,. Using (30), as in proving (16), we get

oN + ||| 1 e

|h(t2) — h(t1)] < @t t5 — 1] —> 0 as ty —> 4.

Therefore, Q maps bounded sets into equicontinuous sets of C(J, R). Applying Arzela-
Ascoli theorem, we have that Q is a completely continuous operator.
Step 3:
Letu, — 1, h, — 1 where hy € Qu,,. We have to prove that /1 € Qi

Associated with /1, € Qu,,, there exists f;, € Szlf,un such that for each ¢ € J, we have

v(s) a-1 T,y a1
() = m/ / W —9) A(@)un(e)deds+ﬂkf / Mf,,(@)d@ds
() o Jo I'(a)

@ (s) a—1 T ro(s) _ pya—1
/ | S —aomoasas—p [ [ g @asas
0 0

I'(a)
_ pya—1
[ = L ayun@rde + / Lfn(e)de
0 I'(a)

T ps (s— 9)0{ 1 (S _ 9)01—1
< ,B)L/O ; WA(Q)M,,(Q)deS-I—ﬂA/O Wﬁ,(@)d@ds

s (s— 0)0[—1 /T s (s— 9)0(—1
- ——AO)u,(9)dbds — ——f1(0)dod.
'B./o./o @) (©)un(6) Sﬂo T fn(0)dbds
t(t_e)a—l

S AW®)u (9)d9+/t Mf (6)do
o T " o T
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We want to prove that there exists j’ € Sll_. ;» such that for all z € J, we get

¥ (s) _ -1 T ¥ _gye—1,
h(t)_ﬂx// W —6) A(e)a(e)dederﬁx// Mf(@)d&ds

') I'(a)
P (p(s) — )%t 96 (p(s) —0)* L,
ﬁ/ / r@ A0 u(0)dOds — ,3/ / Wf(@)d@ds
(t—0)1 . t(t—0)*1,
—— A@u9)do —f(0)db.
+/0 fa—A®u©@s + [ EE )
(33)

In view of Lemma 1, define the continuous linear operator ® : L(J,R) — C(J,R) as

Y (s) a—1 T (s _ pye-1
OB = Br / / W —9) 7 AB)u(®)dods + i / / Mf(@)d@ds
0 0

r@ F@
f f " Ws)rz 9))“ " AO)uO)dods - /0 ' /0 " %f(@)d@ds
+ A %A(@) (0)d9+/ (I_‘Tf(e)de.
(34)

Thus,
)= o) < Nl [ ' / o (‘“S)F;f)a_lmn(e) — i(6)] dbds

+|m|/ /W (w()r( ?a 1lfn(e) — £(6)| dods

+N|ﬁ|f fw (d’(s)rz 9))(1 i (®) — (6B ds

+18l / / " WS)F( ?a @O =\ 9y~ Fio)) dods

+Nf GFT' u(0) — u<9>|d0+/ (FTW@) _F(®)) de.

(35)

That is, /,,(t) — iz(t) asn — 00. Lemma 1 gives that ® o SII_-M is a closed graph operator
in C(J,R) x C(J,R) and 4, € <I>(Sll,,un). Since u, — u, then ljz(t) satisfies (34) for some

Therefore, Q is an upper semicontinuous operator.
Step 4:
Let 0 € (0,1) and u € o Qu. Then, there exists f € L1(J,R) with f € S}r,u' such that, for
t € J, we have i € Qu satisfies (30). As in proving (32), we get

T 2+ ) (Nlull +|1lL,)

Al < T
2+

Thus,

I'(2+a) |ul
T2+ a) (Nlul + lzllz,) ~

In view of (27), there exists @ such that @ # ||u||. Set

={ueCUR): |ul <o +1).
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It is clear that there is no u € 9 such that u € o Qu for some ¢ € (0,1). Further, we
get that the operator Q : ¥ — P,,(B,) is an upper semicontinuous and completely
continuous operator.

Consequently, by the nonlinear alternative of Leray-Schauder type, we deduce that Q
has a fixed point # € T which is a mild solution for Problem (2). O

Finally, we give an illustrative example.

Example 1 Counsider the following fractional differential inclusion

jul? +ad 45 "
lu|3 + 3 " lul+1

Here, o = %,A(t)u(t) = Wlo sinu(t), N = ﬁ, T=1]=[0,1]and F : ] x R — P(R) is

a set-valued map given by

P4 _ 0.01sinu(t) € [ + 2t + 1] ae. t €[0,1]. (36)

|uf® 3 |ul }
u— F(t,u) = + 483 + 5, +2t+1].
(&) [|u|3+3 lu| +1
For f € F(t,u), we have
lf|§max{ el 3, I +1}§10,ueR.
lu|3 + 3 lu| + 1
Then,

|F(t u)|lp =sup{|v|:veF(tu), ueR} <10 and || = 10.

Counsider the deviated-advanced nonlocal condition:
2 93
—k 2 —j
;4 uep) = lez Tu(\J4). (37)
= l:

Clearly m = 2, n = 3, ay = 475, Y0 ar = %, by = 27, Yib = La=23,

y = —%, ¢ : ] — ] isdefined by t — 2 andy ] — ] is defined by t — N
Applying assumption (Hs), we get v > 27.5321. Therefore, all conditions of Theorem 3

are satisfied. So, there exists at least one solution for Problem (36) with condition (37).
Now, consider the deviated-advanced nonlocal integral condition:

1 9 1
/ u(s® ds == / u(/s) ds. (38)
0 4 Jo

Here, A = ?1 > 1, then B = —%. In view of (27), there exists w > 19.7017. Therefore, all
conditions of Theorem 4 are satisfied. So, there exists at least one solution for problem (36)
with the integral condition (38).

Remark 1 For ay = ty — ti—1, © €lt—1,4]C J and by = t; — tj1, n; €
[ti—1,t]] C ], the nonlocal condition for Problem (1) will be Yo (b — tr—1) u(P () =
A1t — 1) u(y (). For u € C(J,R), we have mlgn<>o Yo (e — tr—1) u(@ () =
AMILH;O Z;’Zl(tj — ti—1) u(¥(nj)) which can be transformed into the nonlocal integral

condition fOT u(¢p(s))ds = A fOT u(Yy (s))ds of Problem (2).

Acknowledgements
The authors thank the reviewers for their useful comments that led to the improvement of the original manuscript.

Authors’ contributions
Both authors jointly worked on the results, and they read and approved the final manuscript.



Herzallah and Radwan Journal of the Egyptian Mathematical Society (2019) 27:45 Page 15 of 15

Funding
Not applicable.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

Competing interests
The authors declare that they have no competing interests.

Received: 13 June 2019 Accepted: 11 October 2019
Published online: 09 November 2019

References

1. Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Elsevier
Science Publishing Co Inc. (2018). https://doi.org/10.1016/C2015-0-05711-2

2. Fallahgoul, H., Focardi, S., Fabozzi, F.: Fractional Calculus and Fractional Processes with Applications to Financial

Economics : Theory and Application. Elsevier Science Publishing Co Inc, Academic press, Boston (2017)

Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

4. Kilbas, A, Srivastava, M., Trujillo, J.: Theory and Application of Fractional Differential Equations. North Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

Magin, R. L.: Fractional Calculus in Bioengineering. BegellHouse, Connecticut (2006)

Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

7. Samko, S. G, Kilbas, A. A, Marichev, O. |.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and
Breach, Langhorne (1993)

8. Ahmad, B., Ntouyas, S. K. Existence of solutions for fractional differential inclusions with nonlocal strip conditions.
Arab J. Math. Sci. 18, 121-134 (2012)

9. Ahmad, B, Luca, R.: Existence of solutions for sequential fractional integro-differential equations and inclusions with
nonlocal boundary conditions. Appl. Math. Comput. 339, 516-534 (2018)

10. Aubin, J, Ceuina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer-Verlag, Berlin (1984)

11. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions, Contemp. Math. Appls.
Vol.2 (2006)

12. Chang, Y. Nieto, J.: Some new existence results for fractional differential inclusions with boundary conditions. Math.
Comput. Model. 49, 605-609 (2009)

13. Goodrich, C. S.: Positive solutions to differential inclusions with nonlocal nonlinear boundary conditions. Appl. Math.
Comput. 219, 1-11081 (1107)

14. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht, The Netherlands (1991)

15. Tolstonogov, A. A:: Differential Inclusions in a Banach Space. Kluwer Acad. Publishers, Dordrecht (2000)

16. Wang, J, Ibrahim, A. G, Feckan, M.: Nonlocal Cauchy problems for semilinear differential inclusions with fractional
order in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 27(1-3), 281-293 (2015)

17. Wang, J, Ibrahim, A. G, O'Regan, D., Zhou, Y.: Controllability for noninstantaneous impulsive semilinear functional
differential inclusions without compactness. Indag. Math. 29, 1362-1392 (2018)

18. Wu, Z, Min, C,, Huang, N.: On a system of fuzzy fractional differential inclusions with projection operators. Fuzzy Sets
Syst. 347,70-88 (2018)

19. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier Ltd. (2016). https://doi.org/10.
1016/C2015-0-00813-9

20. Deng, K: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math.
Anal. Appl. 179, 630-637 (1993)

21. Boucherf, A: Second-order boundary value problems with integral boundary conditions. 70, 364-371 (2009)

22. Lian, T, Xue, C, Deng, S: Mild solution to fractional differential inclusions with nonlocal conditions. Bound. Value
Probl. 219(1) (2016). https://doi.org/10.1186/513661-016-0724-2

23. El-sayed, A. M. A, Hamdallah, E. M., Elkadeky, Kh. W.: Solutions of a class of deviated-advanced nonlocal problems for
the differential inclusion x"(¢) € F(t,x(¢)). Abstr. Appl. Anal. 2011, 1-9 (2011). https://doi.org/10.1155/2011/476392

24. Deimling, K: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York (1992)

25. Graef, J. R, Henderson, J.,, Ouahab, A.: Topological Methods for Differential Equations and Inclusions. Taylor & Francis,
CRC Press (2019)

26. Lasota, A, Opial, Z: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations.
Bull. Acad. Polon. Sci. Ser. Sci. Math. Astoronom. Phys. 13, 781-786 (1955)

27. O'Regan, D: Nonlinear alternatives for multivalued maps with applications to operator inclusions in abstract spaces.
Proc. Amer. Math. Soc. 127(12), 3557-3564 (1999)

w

o v

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1016/C2015-0-05711-2
https://doi.org/10.1016/C2015-0-00813-9
https://doi.org/10.1016/C2015-0-00813-9
https://doi.org/10.1186/s13661-016-0724-2
https://doi.org/10.1155/2011/476392

	Abstract
	Keywords
	AMS classification

	Introduction
	Preliminaries
	Existence results
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

