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Introduction

Throughout the paper unless otherwise stated, let H be a real Hilbert space with inner
product {(.,.) and induced norm ||.||. Let C be a nonempty closed convex subsets of H. Let
{x,} be a sequence in H, then x, — x (respectively, x,, — x) denotes strong (respectively,
weak) convergence of the sequence {x,} to a point x € H. We denote by N and R the sets
of all positive integers and all real numbers, respectively. For every point x € H, there
exists a unique nearest point of C, denoted by Pcx, such that

lx — Pcx|| < |lx —y| forally € C.

Such a Pc is called the metric projection from H onto C.
A mapping T : C — C is said to be asymptotically nonexpansive [1] if there exists a
sequence {k,} C[1,00) with lim k, = 1 such that
n— 00

IT"x — T"yll < knllx — yl, ¥x,5 € C.
T is said to be a uniformly k-Lipschitzian for a positive constant k if
| T"x — T"y|| < k|lx —y|l,Vx,y € C,¥n € N.

If k, = 1,Vn € N, then T is said to be a nonexpansive mapping. A point x € X is called
a fixed point for T if Tx = .

. © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
@ S ringer O en International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
pringer Op nal L pi//creatiy _ es/by/AC pe ,and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-019-0051-8&domain=pdf
mailto: drsengar2002@gmail.com
http://creativecommons.org/licenses/by/4.0/

Osward et al. Journal of the Egyptian Mathematical Society (2019) 27:43 Page 2 of 16

The fixed point problem (in short, FPP) for the mapping T : C — Cisto findx € C
such that

Tx = x. (1)
The solution set of FPP (1) is denoted by F(T), that is,
F(T)={xeC:Tx =x}.

Let F : C x C — R be a bifunction and A : C — H be a nonlinear mapping. The
generalized equilibrium problem is to find z € C such that

F(z,y) + (Az,y —z) = 0,Vy € C. )
The set of the solution of the problem (2) is denoted by EP(F, A), that is,
EP(F,A) ={ze C:F(z,y) + (Az,y —z) = 0,Vy € C}.

If A = 0 in (2), then problem (2) reduces to the equilibrium problem of finding an
element z € C such that,

F(z,y) > 0,Vy € C. 3)

The set of solutions of problem (3) is denoted by EP(F).
If F = 0 in (2), then the generalized equilibrium problem (2) is reduced to finding a
point z € C such that,

(Az,y —z) = 0,Vy € C, (4)

which is called the classical variational inequality problem. The set of solution of the
problem (4) is denoted by VI(C, A).

If we define F(x,y) = (Ax,y —«) for all x,y € C, then z € EP(F) if and only if
(Az,y —z) > 0for ally € C and hence z € VI(C,A).

The problem (2) is very general in the sense that it includes many special cases such as
optimization problems, variational inequalities, minimax problems, and the Nash equi-
librium problem in noncooperative games; see Blum and Oettli [2], Kazmi and Rizvi [3],
Meche et al.[4], Moudafi and Théra [5], Zegeye et al. [6], and the references therein.

Throughout this paper, let us assume that a bifunction F : C x C — R satisfies the
following conditions:

(A1) F(x,x) =0forallx € C;
(A2) Fismonotone,ie., F(x,y) + F(y,x) < 0forallx,y € C;
(A3) foreachx,y,z € C;

ltiﬁ)lsupl-"(tz + (1 =09 < Fxy);

(A4) foreachx € C,y+— F(x,y) is convex and lower semi-continuous.

Definition 1 A mapping A : C — H is called a-inverse strongly monotone if there exists
a positive real number o such that,
(Ax — Ay, x — y) > a||Ax — Ay|, Vx,y € C.

Remark 1 Every a-inverse strong monotone mapping is é-Lipschitz mapping; however,
the converse may not hold.
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Takahashi and Takahashi [7] obtained the following strong convergence theorem to find
a common solution of generalized equilibrium problem and the fixed point problem of a

nonexpansive mapping in a Hilbert space.

Theorem 1 [7] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C x C — R be a bifunction satisfying (Al), (A2), (A3), and (A4). Let A : C — H be
an o-inverse strongly monotone mapping, and let T : C — C be a nonepansive mapping
such that F(T) N EP(F,A) # @. Letu € C and x1 € C and let {z,} C C and {x,} C C be
sequence generated by

F(zn,y) + (A%, = 2n) + 50 () = Zns 20 — %n) = 0,¥y € C,
X1 = Puxn + 1 = B)Tlayu 4+ (1 — ay)zy],Vn € N,
where {a,} C[0,1], {8,} C[0,1] and {Ar,,} C[0,2«a] satisfy

o
1. nan;Oan =0and ngl oy, = 00,
2. lim (Ay; — Ayy1) =0, and
n—00

3. 0<c<By<d<1l,0<a<r,<b<2a.
Then, {x,} converges strongly to z = Pr(rynEpP(F,A) ().

In this paper, motivated by Takahashi and Takahashi [7], we construct an iterative algo-
rithm for approximating a common solution of a generalized equilibrium problem and

the fixed point problem for asymptotically nonexpansive mapping. It is also proved that
the proposed algorithm converges strongly to a common solution.

Preliminaries
We now introduce preliminaries which will be used in this paper.

Recall that a mapping f : C — Cis called a contraction mapping if there exists p €[ 0, 1)
such that

f&x) —fWI < pllx—yll, Vx5 € C.

Lemma 1 [2] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F: C x C — R be a bifunction satisfying (A1), (A2), (A3), and (A4). Letr > 0 and x € H.
Then, there exists z € C such that

1
F(z,y)+ -(y—2z,z—x) >0,Vy e C.
r

Lemma 2 [8] Let C be a nonempty closed convex subset of H and let F : C x C — R be
a bi-function satisfying (A1), (A2), (A3), and (A4). Then, for any r > 0 and x € H, there
exists z € C such that

1
F(z,y)+ —-(y—zz—x) >0, Vye C.
r
Furthermore, if
1
Tyx = {ze C:Flz,y)+—-(y—2z,z—x) >0,Vy € C},
r

then the following hold:

(1) T, is single valued,
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(2) T, is firmly non-expansive, i.e.,

| Tyx — Tryll? < (Tyx — Try, % — y),¥x,y € H,
(3) F(Ty) = EP(F),
(4) EP(F) is closed and convex.

Remark 2 Replacing x with x — rAx € H in Lemma 1, there exists z € C, such that
1
Flz,y) + (Ax,y —2) + —(y — 2,z —x) = 0,¥y € C.
r
Definition 2 [9] Let C be a closed convex subset of a Hilbert space H. A mapping T :
C — C s called asymptotically regular at x if and only if,
lim || T"x — T" x| = 0.
n— o0

Lemma 3 [10] Let F : C — C be a bifunction satisfying the conditions (A1) and (A2).
Let T, and T be defined as in Lemma 2 with r,s > 0. For any x,y € H, then

r—s
1Try = Toxll = lly =l + 1 —— 1 Try = 1.

Lemma 4 [11] Let {8,,} be a sequence of non negative real numbers, satisfying
1 < (1 —81)8y + 8Py + vV, Yn > 0,

where {s,}, {Bn} and {y,} satisfies the conditions:

o0 o0

(i) sy} C[0,1], Y sy = oo or equivalently, [] (1 —s,) =0,
n=1 n=1

(ii)) lim sup B, <0,

n—0o0

o0
(iii) Vﬂ 2 0, Z Vy[ S Q.

n=1

Then,

lim 6, =0.

n—0o0

Lemma 5 [12] Let T be an asymptotically nonexpansive mapping on a closed and convex
subset C of a real Hilbert space H. Then, I — T is demiclosed at 0. That is, for a sequence
{xn}in C, ifxy — x and x, — Tx, — O, then x € F(T).

Lemma 6 [13] Let H be a real Hilbert space. Then, for any given x,y € H, we have the
following inequality:

Il + 1% < 2 + 203, x + 9).

Lemma 7 [14] Let {t,} be a sequence of nonnegative real numbers such that
i1 <A —awty +auPy, >0

where {ay} is a sequence in (0, 1) and {B,} is a sequence in R such that

.5 0
(C1) > a, = oo orequivalently [[(1—a,) =0,
n=0 n=0
(C2) limsup g, < 0.

n—oo
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Then

lim ¢, = 0.
n— 00

Main results

Let F : C x C — R be a bifunction satisfying (A1), (A2), (A3), and (A4).LetA: C - H
be «-inverse strongly monotone mapping. Then, it follows from Lemma 2 that for each
r > 0and x € H there is w € C such that

T,(x) = {w}

where T)x ={z € C: F(z,y) + %(y —z,z—x) > 0,Vy € C} = {w}, so that we identify T,x
as simply w.

Letf : C — C be p-contraction mapping and let 7 : C — C be asymptotically nonex-
pansive mapping. Let {&,,} C[0,1] and X,, € (0, 2«). For any x; € C, we find z; € C such
that

z1 = Ty, (¥1 — A14x1).
Then, we can compute x; € C by
x = a1f(x1) + (1 — o) Tz1.
Also, we can find z5 € C such that
zy = Ty, (%2 — A2Ax2).
After that, we can compute x3 € C by
x3 = agf (02) + (1 — arp) T2z,.
Inductively, we can generate the sequence {x,} C C as follows:

X1 € C,
zp = Ty, Xy — ApAxy),n =1,2,3, ... (5)
X1 = opf () + (1 — ) T"2y,n =1,2,3, ...

Now, we state and prove our convergence theorem as follows:

Theorem 2 Let C be a nonempty closed convex subset of a real Hilbert space H and let
F : C x C — R be a bifunction satisfying (A1), (A2), (A3), and (A4). Letf : C — C
be p-contraction mapping, A : C — H be an wa-inverse strongly monotone mapping, and
T : C — C be asymptotically nonexpansive mapping. Assume that T is asymptotically
regular on C such that F(T) N EP(F,A) # 0. Let {«,} C[0,1] and {1} C[0,2c] satisfy

o0
(i lim o, =0, ) a, =00,
n— 00 n=1

(i) O<a<:t,<b<2a,
(iii) lim (Ay — Apt1) =0,
n—0o0
(v) lim &=l —o,
n—o0 n
Forx1 € C, if {x,} is the sequence defined by the iterative scheme (5), then {x,} converges
strongly to z = Pp(rynepE.af (2).



Osward et al. Journal of the Egyptian Mathematical Society (2019) 27:43 Page 6 of 16

Proof We first show that {x,} is bounded. Let z € F(T) N EP(F,A). Since z = T ,(z —
AnAz), A is a-inverse strongly monotone and 0 < X, < 2« for all # € N, we have

lzn = zl1* = | Ty, (n — AnAxn) — T, (z — AnA2)|?
< [ Gn — 2nAxy) — (2 — AuA2)|I?
= |(%n — 2) — Mn(Axy — A2)||?
= %y — 2|1* — 2hn(xy — 2, Axy, — AZ) + 22| Ax, — Az]||?
%0 — 2II* — 2hnet | Ay — Azl|* + A5 | Ax, — Az|®
%0 — 2lI* 4+ An(hn — 20) | A%y — Az

IA

2
llxn — zI|”
Hence, we have

llzn — zll < llxn — zl|. (6)

ky—1
on

Take € € (0,1 — p). Since — 0as n — 00, there exists N € N such that
(k, — 1) < eay, foralln > N,

From (5) and (6) it follows that, for all # > N

lens1 —zll = ”(xrlf(xn) +1- O5r1)TnZn —z|
llof xn) — onf (2) + anf(2) — anz +apz+ (1 — )Tz, — z||
o (f (%) — f(2) + aun(f(2) —2) + (1 — o) (T"z, — 2)||

1

< anllfxn) = f@I + aulf (@) — 2zl + (1 — an) I T2, — 2|l

< anpllxn =zl + oullf (@) — 2zl + (1 — an) | 7"z, — 2|l

< anpllxn =zl + anllf (2) — 2zl + A — awknllzy — 2|l

< anpllxn — zll + anllf (2) — 2zl + A — aknllx, — 2]

= 1 —an(1 = p))lxn — 2l + anllf (2) — 2l + (1 — ) (ky — Dlxn — Il
< A —an(d = p)lxn —zll + anllf (2) — zll + anellxn, — 2|l

= 1 —ay(1—p—e)lxn —zll + anlf(2) -zl

< max { % — zlI, ﬁllf@) - ZII} .

By induction, we see that, for all # > 1

1
% — 2l < max{|lx1 —zl|, 1< If () — zIl}.

So {x,} is bounded, hence {Ax,}, {f (x,)}, {z,} and {T"z,} are bounded.
Next, we have to prove that

lim [ly4+1 — %]l = 0.
n—00
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Since I — 1,A is non-expansive and by Lemma 3, then we have

lznr1 — zull = |l TAWH Fnt1 — Ant1A%nt+1) — Txn (xXn — AnAxy) ||
< N ng1 — Anr1Axpy1) — (6 — ApAxy) ||
)&n+1 - )\n
+ SV 1 Thps @1 — Aut14%041) — Knt1 — Apr14%x,41) ||
n

= [(nt1 — Anr1A%n41) — (K — Apr1Ax,) + Ay — App1)Axy ||

)Ln+1 - )\n
+ || 1Tos @1 — A1 A%n41) — Ent1 — Apr1A%n11) ||
)\n—o—l
< N1 — Anr1Axpg1) — Gn — App1Ax) | + |2y — At || Axy ||
)"Vl-'rl - )\n
+ R 1 Tn, 1 Fnt1 — Anp1A%n41) — @1 — Apr1A%n11) ||
n+

< %n1 = %all + [An = Angr 1A% |l

Antl — A
+ |2 I Ty (1 — A1 A%41) — Gl — Aup1A%u) |
)‘n—b—l
[Ant1 — Al
< %1 — ®ull + 1A — A 1A% || + ——"=Py 1 7)
)Wt+1

where by P,y1 = sup{l| T5,,,; ®nt1 — Any1A%n11) — Knt1 — Anr1Axar D}
On the other hand, from z, = T}, (%, — A,A%,) and 2,41 = Th,,; Kng1 — App1A%nt1),

we have

F(zny) + (A%, y — za) + i(y—zn,zn —xn) =2 0,Vy € C. (8)
and

F(zpy1,9) + (A%py1,Y — Zny1) + L(J’ — Zpt1,Zn41 — Xnt1) = 0, Vy € C. %)

Anti
Putting y = z,,41 in (8) and y = z, in (9), we have
1

F(zy, zp11) + (Axp, Znr1 — 2n) + T(szrl — Zn,Zn — %) = 0. (10)
n
and
1
F(zut1,20) + (AXp41, 20 — Znt1) + et (Zn — Zut1,Zn41 — Xn41) > 0. (11)
n+

So, from (A2), we have,

> 0.

Zy — Xpn Zp+1 — Xn41
(Axpi1 — A%y 2w — Zps1) + <Zn+1 — Zy, -

An )\n—o—l
And hence,

A
0=< <Zn — Zn 1 An(Axpg1 — Axy) + Y “ (Znt1 — %ng1) — (zn — xn)>
n+1

A
= <Zn+1 — Zn,Zp — Zp+1 + <1 - z ) Zpt1 + Kpp1 — )\nAxn+1)>
)\n—b—l
An
+ {Znt1 — Zny AnAxy — Xy) — Xpt1 + —Xp41
Ant1
An
={Zn+1 —Zmw2Zn — Zn+1 + |1 — (Zn+1 — %n+1)
Anti

+ (Zut1 — zn g1 — ApAxnyg1) — (X — ApAxy)) .
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It then follows that

An

2
IZn41 = zull” < 21 — 2ull Hl BT Lan R A e xnll}

n+1

And so, we have

A
lzni1 — zull < ‘1 - == lznr1 — Xpprll + o1 — xnll. (12)
}\n+1
Using condition (ii), we obtain
lznt1 — zull < l%nt1 — Xnll + ——Ant1 — Anlllznt1 — Xnr1 |l
)\n—o—l
1
=< [%p+1 — xnll + ;I?»n+1 — AnlM, (13)
where M = sup||z, — x,||. Hence, we have
n>1
1
|z — zn—1ll < ll%n — Xp—1ll + ;Mn — An—1IM. (14)
Consider
1Tz, — T" 2y all < 1T"20 — T" 201l + 1T 201 — T 201 |
< kallzw = Zoal + 1 T" 201 — T" 25| (15)

From (5), (14) and (15), we have that
%1 — %ull = lletnf (on) + (1 — @) T"20 — ctp1f 1) — 1 — aty—1) T" 21|

< @npllxn = xn1ll+lon — ana | (I G | + 1 7" 21 1l)
+ A=) T"2 = T" 'zl
< auplltn — X1l +len — a1 |K + (1 — a) | T"20 — T" 'z |
< anpllxn — xp—1ll+lan — oy-11K + (1 — ap)knllzn — zu-1|
+ A=) T"2p 1 — T" 'z
< anpllxn — xp—1ll+lan — ap-11K + (1 — o) (ky — Dllzn — zn—1l
+ (L= T"zp1 — T" 21l + A — @) 20 — zn1 |

< anplxn — xp—1ll+lan — an—11K + (kp — Dy — %41l

1 _
+ (k= D= on = dopa IM A | T2y — T |
1
+ (1 —ay) |:||xn — X1l + ;Mn - )\n—1|Mi|

EA
< (I—ay(1 — p — )l — xp—1ll+loty — a1 |K + 7’%, — An—1lM

_ (1 —ay)
+ 1T 201 — T" Y zy1 || + T"Mn — hn—1IM,

Mn _)\nfll
< A—-oyI—=p—e)lwy —xpall +ay(1—p—€)————M

Mn - )‘n—ll
+ 1+ ay(2€ + p))TMJrlan —au-11K

+ 1T 201 — T" 201,

where K = sup{|[f )l + IT"zull}. Put s, = au(1 — p — €), Bu = Z221=1pf and
Yo = (14 an(2e + p) 22=22UM 4 |, — a1 |K + | 7251 — T" 2,1 . Then,

loent1 —wull = A = s llwn — xn—1ll + $2Bn + VY
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Using Lemma 4, we have

lim [[x,41 — xull = 0. (16)
n— 00

Further by (13) with the condition that limy,_, oo (A4 — Ay+1) = 0, we get
lim |[zy+1 — zu[l= 0. 17)
n— 00

Since x, = a—1f (xp—1) + (1 — ay—1)T" 1z,_1, we have
%0 = T"2all < lltw = T" 2l + 17" 201 — Tzl

< v — T" Yzl + 17" 2ney — T"2a | 4+ 1T 201 — T"24ll

ap1 |lf Gne1) — T" Lz |

-1
+ ||Tn Zp—1 — TnZn—l” + knllzn—1 — zull.

IA

From (17) with o, — 0 as n — oo and T is asymptotically regular on C.
It follows that

lim || 7"z, — x,||= 0. (18)
n—o0
Now, we have to prove that
lim || Tx; — x,| = 0.
n—0o0
To show this, we first prove that
lim ||z, — x4|| = 0.
n— o0
With the fact that A is «-inverse strongly monotone, let us consider the following:

2y — 2% = I T5,(d — 2pA)xy — T, (I — A, A)z)?

< U = hnA)xn — (I — ApA)z]?

= [[(&n — 2) — An(Ax, — Az|?

= %y — 2l1® = 2hn{xy — 2, Axy — AZ) + 22| Ax, — Az||?
< lxn — 201> = 2hnel|Axy — Az||* + )| A, — Azl

= [l%n — 2l + An(hn — 20) | Az, — Az, (19)
From the convexity of ||.||%, (18), and (19), we have
%1 — 2l> = Nlotaf (n) — otnz + otz + (1 — a) T2y — 2|
lltn (f (xn) — 2) + (1 — 0t) (T2 — 2) ||
anll (f @n) — 2l + (1 — ) | T"2n — 2I|>
anll (f ) — 2l + (1 — )k | zn — 21| (20)
anllf @n) — 2l + (1 — k2l loen — 2]
+ An(hn — 20)[|Ax, — Az|)?]
= aullf () — 2l + (1 — a)kal|x, — 2
+ A — 20) (1 — a))K2 || Ax,, — Az|? (21)
= aulf @) — 2lI* + A — o) (k3 — 1) lxn — 2]
+ (1= a)lln — 2l + An(hn — 20) (1 — at)ki | Axy — Az|?
< aullfGen) — 201> + (1 — ) (K2 — 1) 00 — 2] + [l — 2]
+ dnOn — 20) (1 — a2 || Axy — Az|> (22)

IAN A

IA
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which implies that

M2 — X)) (1 — k2| Axy — Az|? < aullf (n) — 2l1* + (1 — an) (k2 — D)||lx, — 2|

+ llxn — 2l = i1 — 2%
Since lim o, =0, lim k, = 1 and both {f(x,)} and {x,} are bounded by (16), we have
n— o0 n— o
lim ||Ax, — Az|| = 0. (23)
n— o0
Since (I — A,A) is non-expansive and by Lemma 2, we have

Izn — 21> = |5, (%0 — ApAxy) — Ta, (2 — 1,A2) |
< (zy — z, (xy — MyAxy) — (2 — L A2))

1 2 2
=3 (& = AnAxn) — (2 — 1A + llzn — 2[%)

1
-3 (I1Gen — AnAxn) — (2 — AnA2) — (20 — D7)

_ L g 2 )
= 2(||(I MA)xy — (I — AyA)z|* + llzn — 2I|%)
1 2
5 (”(xn = zp) — Mn(Axy, — A2)| )
<1(|| —z]|? —z|2 - —2,) — Ay(Ax, — A2)|?
=5 Xy — z||"+llzn — 2|l | (xXn — z) n(Axy 2)17)
1
= 5 (e = 2l*+llzn — 2l* = %0 — 20 |* + 2hn(xn — 20, Axy — Az))
1

- ikf,HAx,, — Az|?
which implies that
lzn — zl* < llen — 201 = %0 — Zull* + 22n (00 — 2, Ay — Az) — A2 || Axy — Az|%.
(24)

From (20) and (24), we have

%ns1 — 2% < ullf o) — 20> + (1 — @)k (Ilvn — 211> = 1% — 2al1?)
+ 20, (1 — )2 (%0 — 2ny Ay — Az) — 22| Ay — Az||?)
< anllf@n) — 21> + A — ki lwn — 2l — (1 — o)k 1%, — za >
+2(1 — @ k2 Aullxn — zallllAxy — Azll — (1 — @) k222 || Axy, — Az||?
< aulf @) — zl* + (1 — a)kallen — zl* — (1 — a)kall%n — zall®
+ 21 — ) kihnllxn — zull | Axy — Azl
= anllf @n) — 21> + A — ) (ki = Dllxn — 201> + (1 — o) lln — 211
— (1= akal%n — zull* + 2(1 — e)kihnllxn — 2l | A%y — Azl)
< aullf @) — 2l1* + (1 — a) (ks — Dllxy — 2II* + |60 — 2]
— (1 = an)kyll%n — zull* + 2(1 — ) kphull%n — zull | Axy — Az].

Hence,

(1 — o) k2 %0 — zall* < anllf ®n) — 2l* + (1 — o) (k2 = 1) [l — 2)1* + [l — 2]
— %1 = 2l1* + 21 — o) k2 Anllxn — zulll|Axy — Az].

Page 10 of 16
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Since o, — 0, k, — 1 asn — oo and {x,}, {z,,} are bounded with
lim ||lx, — z]|1> — ||%ut1 — 2| = 0, we have
n— 00
lim ||x, — z4]| = 0. (25)
n— 00

Combining (16) and (25) we have, ||z;, — %111l < llzn — xull + |2n — xp+1 |l

which implies that
lim ||z, — x411l = 0. (26)
n— 00
Since | T"z,, — zu|l < 17"z, — x4 + %1 — 24|l and from (18) and (25)
lim || 7"z, — z,|| = 0. (27)
n—0o0
Let k = sup,cn kn < 00. Consequently, by (17) and (27)
1Tzn = zull < 1 T2n = Tzl + 17" 20 = T 24|
+ 1T 2041 — Zug1 |l + I2ns1 — zal
< killzn — Tnzn” + kn+1||zn — Zps1ll
F T Zug1 — Zugall + lznp1 — 2zl

kllzn = T"znll 4+ knt1 + Dllzn — Zor1ll + 1T 2541 — zaga

Kllzw = T"znll 4+ (k + Dllzn — zat1 |l + 17" 25g1 — zapa |

IA

This implies that
lim |7z, — z,|| = 0.
n—0o0
Further, we have the following result:

1Txn — xnll < 1 Txn — Tzull + 1720 — zull + 120 — %l

< killxn — zull + 1 T2n — zull + llzn — %l

< (ki + Dllxn — zull + 1 T20 — 2ull
which implies that
lim || Tx, — x| = 0. (28)
n— o0

Since Pr(rynepra)f @ C — C is a p-contraction mapping, therefore, by Banach
contraction principle, there exists a unique zgp € F(T) N EP(F,A) such that zp =
Pr(rynEp(F.A)f (z0). We shall show that

lim (f(z0) — z0,%n — z0) < 0. (29)
n— 00
Since {x,} is bounded sequence, we can choose a subsequence {x,,} of {x,} such that
lim sup(f (z0) — 20, %» — z0) = lim {f(20) — 20, X, — 20)- (30)
n—0o0 1I— 00

Without loss of generality, we may assume that x,, — w. Since C is closed and con-
vex, C is weakly closed. So, we have w € C. Now, we will show that w € F(T). In fact,
since x,, = w and x, — Tx, — 0 by Lemma 5, we find that w € F(T).

Next, we show that w € EP(F, A). From (25), we have z,,, — w.

Since z, = T, (xy — AnAxy,), that is
F(z,9) + (A%wy —2n) + £/ — 2020 — %) = 0,Yy € C. From (A2), we have
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(A%, y = 2n) + 5=y = Zn 20 — %n) = F(9,20), ¥y € C.
Replacing n with #; in the above inequality, we have,

1
<Axn,"y - Zni) + T(y - Zn,'rzni - xn,'> Z F(%Zni)' (31)
ni

Putz; =ty+ (1 —t)wforallt € (0,1] and y € C. Then, we have z; € C. So, from (31)

we have

Zp; — x,,,.)
A

i

(Zt - Zn,"AZt> > (Zt - an.,AZt) - (Zt - Zrli,Axn,') - (Zt - Zn,': +F(ZL" ZVI,‘)

= (2t — zn;, Azt — Azy;) + (2t — Zn;, AZp; — Axy,)

2, — X
- (Zt - an u) +F(Zt»zni)'
Ay
Since lim ||z, — %y;]| = 0, we have lim ||Az,, — Ax,,;|| = 0.
n—0o0 n— 00
Further from monotonicity of A, we have (z; — z,,;, Az; — Az,;) > 0. It follows from
(A4) that
F(zr,w) < lim F(z,2y,) < lim (Az;, 20 — z;) = (A2, 2t — o) (32)
n—00 n—00

From (A1), (A4), and (32), we have

0=F(z;,2z) < tF(z;,y) + (1 — D)F(z, )
< tF(zp,y) + (1 — ) (zt — w, Azy).

Butz; —w =ty + (1 — t)w — w = t(y — w). So, we have the following 0 = F(z;,z;) <
tF(zp,y) + (1 —t)t(y — w,Az;) and hence 0 < F(z;,y) + (1 —t){(y — w, Az;). Letting t — 0,
we have for each y € C,

0< Flw,9)+ (y — 0, Aw). (33)
— w € EP(F, A).

Since w € F(T) N EP(F, A), from (30) and the property of metric projection, we have

lim sup(f (z0) — z0,%s — z0) = lim (f(20) — 20, %4, — 20)
n—o0 11— 00
= {f(z0) — z0,w — z0) < 0. (34)

Finally, we prove that lim ||x, — zo|| = 0.
n—o0

Page 12 0f 16
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From (5) and Lemma 6, we obtain

%1 — 20ll* = lletn(F@n) — 20) + (1 — ) (T"2n — 20) ||
< (L= o) T"2n — 20l1* + 2{otn(f () — 20)> ¥ns1 — 20)
= (1= a)?IT"zn — 20]|* + 20, (f (%) — 20, Xns1 — Z0)
< [ = an)kal® 20 — 20lI* + 200 {f (54) — 20, %ns1 — 20)

= [ = awknl® llzn — 20l|* + 20 {f (%) — f (20), n41 — 20)

+ 20, {f (z0) — 20, Xpt1 — 20)

< [ = akal® ln — 20ll* + 20 {f (%) — f (20), n41 — 20)

+ 20, (f (z0) — 20, %n41 — 20)

< [ = akal® ln — z0l1* + 2anp 1% — 20|l | %041 — 2o

+ 20, (f (z0) — 20, Xn41 — 20)

< [ = akal® Ixn — z0l* + enp (lxn — 20l + llxns1 — z0l1?)
+ 20, {f (z0) — 20, X1 — 20)

= [(1—an)(kn — 1) + (1 — a)]* lxn — 201> + ctupllxn — 2ol
+ oo ll%ns1 — 201> + 20 {f (20) — 20, %nt1 — 20)

= [1-Q2—pay+ai+ A —a)*A —k)* + auplltnsr — 2ol
+2(1 = a)*(ky — D] llxn — 20lI* + 2en {f (20) — 20, %1 — 20)
< [1=@=pan+ap+ 1 — k) + 2(ky — D] [l — 20l

+ auplixnt1 — z0l* + 20 {f (20) — 20, Xn1 — 20).

Let P, = sup |lx, — 202, so now we have

neN
1—-2-pua o2 + (ky — 1)2 4+ 2(k, — 1)
I%n41 — 201> £ ———— %0 — 20l + 22— P,
1— pay, 1— pay,
20
+ % (f(z0) — 20, %nt1 — 20)
1— pay,
2 —p o2 + (ky — 1)2 4+ 2(k, — 1
1_( Pty ”xn_20||2+ n (kn ) (ky )Pn
1— pay 1— pay
20
+ "—(f(20) — 20, Xn+1 — Z0)
1—pay,
= (1 —anlxn — 20l1* + anPu,
24 (ky—1)%4-2(ky—1 —p)an
where 8, = %Pn + ﬁ(f(zo) — 20, %41 — 20) and a, = %. Since

o0
lim a, =0, }_ a, = oo, and limsup g, < 0 by (34), then by Lemma 7, we conclude
n— 00 n=0 71— 00
that lim |lx, — zo|| = 0. O
n—0o0

Applications
Using our main theorem (Theorem 2), we obtain strong convergence theorems in Hilbert

space.

Theorem 3 Let C be a nonempty closed convex and bounded subset of H. Let F : CxC —
R be a bifunction satisfying (A1), (A2), (A3), and (A4). Let f : C — C be p-contraction
mapping, and let T : C — C be asymptotically nonexpansive mapping. Assume that T
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is asymptotically regular on C such that F(T) N EP(F) # §. Let {a,} C[0,1] and {A,} C
[0, 2] satisfy

o0
(i) nli)ngo oy =0, Zl oy = 09,

n=

(i) O0<a<:t,<b<2a,

(i) lim (A, —Xyq1) =0,
n—0o0

(v) lim k=1 —o.

n—oo %n
Forx1 € C, if {x,} is the sequence defined by the iterative scheme (5), then {x,} converges
strongly to z = Pr(rynepE)f (2).

Proof In theorem (2) , put A = 0. We obtain that F(z,,,y)—i—ﬁ (y—zu, zn—xn) = 0,Yy € C.
Then, for all @ € (0, 00), we have (x — y, Ax — Ay) > a||Ax — Ay||®> = 0,Vx,y € C. Thus,
we obtain the desired result by Theorem 2. O

Theorem 4 Let C be a nonempty closed convex and bounded subset of a real Hilbert
space H. Let f : C — C be p-contraction mapping, A be an a-inverse strongly monotone
mapping of C into H, and T : C — C be asymptotically nonexpansive mapping. Assume
that T is asymptotically regular on C such that F(T) N VI(C,A) # 0. Let {«,,} C[0,1] and
{rn} C[0,2¢] satisfy

o

(i) lim o, =0, oy = 00,
n—o0 1

n—=
(i) O0<a<i,<b<2a,
(i) lim (Ay — Apt1) =0,
n—o0
(v) lim Bl -,
n—oo 9%n
Forx1 € C, if {x,} is the sequence defined by the iterative scheme (5), then {x,} converges
strongly to z = Pr(rynvicc,a)f (2).

Proof In Theorem 2, put F = 0. Then, we obtain that (Ax,,y — z,)+ i Y=z zn—xn) >
0,Vye C,Vn e N.

This implies that (x, — A,Ax, — 24,2, — y) > 0,Vy € C. So, we find that z, = Pc(x, —
AAxy,). Then, we obtain the desired result from Theorem 2. O

Browder and Patryshyn [9] introduced k- strictly pseudocontractive mapping which is
as follows:

A mapping S : C — C is called k- strictly pseudocontractive if there exists k €[ 0, 1)
such that

1Sx = SyI* < llx = yII” + kIl = S)x = (I = S)ylI*, Vxy € C.
Putting A = I — S, we know that
1—k 9
(x —y,Ax — Ay) > THAx — Ay||*,¥x,y € C.

By using the above definition and Theorem 2, we can obtain the following theorem.

Theorem 5 Let C be a nonempty closed convex and bounded subset of a real Hilbert
space Hand let F : C x C — R be a bi-function satisfying (Al — A4). Letf : C — C be
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p-contraction mapping, S be a k-strictly pseudo contractive mapping of C into itself, and
T : C — C be asymptotically non-expansive mapping. Assume that T is asymptotically
regular on C such that F(T) N EP(F,A) # 0, where A = I — S. Let {a,} C[0,1] and
{Ay} C[0,1 — K] satisfy

(i) lim @, =0,3772, @, = oo,

(i) O<a<i,<b<l1l-k

(i) lim (o — dps1) = O,

n—0o0
(iv) lim %=1 —o.

n—oo 9n
Forx1 € C, if {x,} is the sequence defined by the iterative scheme (5), then {x,} converges
strongly to z = Pr(rynepE,A\f (2).

Proof SinceA =1 —S'is 151( -inverse strongly monotone mapping. So, by Theorem 2,
we obtain the desired result. O

Remark 3 By replacing asymptotically nonexpansive mapping to nonexpansive single
valued mapping, it gives an improved version of the main result due to Takahashi and
Takahashi [7].
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