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Introduction

We consider the nonlinear matrix equation

m n
*yr—1 w3 —1
X—ZAiX Ai—i—ZIB/.X B =1 (1)
i= j=

where A;, i=1,2, ..., m, B, j=1, 2, ..., n are M x M nonsingular complex matri-
ces and m, n are nonnegative integers.  is an M x M identity matrix. The conju-
gate transpose of the matrices A; and B; are A;jand B}, respectively. This type of

equations emerges in several areas of applications, such as ladder networks [1, 2],
dynamic programming [3, 4] and control theory [5, 6]. Several authors [7-15]
have studied the existence of positive definite solutions of comparable types of
matrix equations. Perturbation analysis for various forms of matrix equations is
studied in [16-20] respectively. Ramadan and El-Shazly [21] presented the exist-
ence of the maximal solution of Eq. (1). Perturbation bounds for the Hermitian
positive definite solutions to the matrix equations X+ A" X " A =Q are derived in
[22—-24]. Chen and Li [25] obtained the perturbation bound of the maximal solu-
tion for the equation X+A°X 'A=P using the differential methods. Ran and
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Reurings [26, 27] studied the existence of a unique positive definite solution of the

m n
equations X— Z AX'A;=Tand X + Z B;X’lBj = [ using fixed point theorem. Sun
i=1 =1
[28] presented the perturbation bound for the maximal solution of the equation X =Q +
A"(X-C)'A. Li and Zhang [29] evaluated a perturbation bound to the unique solution
of the equation X - A"X?A = Q. Chen and Li [30] derived perturbation bounds for the
Hermitian solutions to the equations X + A°X A = I. Duan and Wang [31] considered the

i=

m n
perturbation estimate of the equation X- ZA}‘XA,- + ZB}TX Bj =1, based on the
=1 j=1

matrix differentiation.

Liu [32] studied the perturbation bound of the M-matrix solution for the equa-
tion Q(X)=X>-EX-F=0. In this paper, we symbolized the maximal solution of
Eq. (1) by X;. We denote H(M) the set of M x M Hermitian matrices. We organize
this paper as follows: onset, in the “Preliminaries” section, some notations, a lemma
and theorems which we will need to develop our work are presented. In the “Per-

»

turbation analysis for the matrix equation (1)” section, the differential bound for
the maximal solution of the matrix equation (1) is derived. Moreover, a perturb-
ation estimate and an error bound for this solution is given. In the “Numerical test
problem” section, a numerical test is given to clarify the sharpness of the perturb-

ation bound and the reliability of the obtained results.

Preliminaries
For square nonsingular matrices P and Q, the following conditions hold:

i IfP>Q>0thenP*<Q™.

ii. The spectral norm is monotonic norm, i.e, if 0<P<Q,then | P Il < | Q II.

iii. The mathematical expression P> Q (P> Q) means that P - Q is a Hermitian
positive semi-definite (definite) matrix and [P, Q] ={Y:P<Y<Q}.

Definition 2.1: [33] Let H = (h;)), « s, then differentiating of the matrix H is defined by
dH = (dhy), « s . For example,

V2 v-1 w+2v

let H=| w*-3v 2v w+2 (2)
w-v 5w w® 4P

2vdyv 3dv dw + 2dv
Then,dH = | 2wdw-3dv  2dv dw (3)
dw-dy —5dw  3wtdw + 3v*dv

Lemma 2.1: [33]. The matrix differentiation has the following properties:
1) d(HitHy)=dH,+dH,;
2) d(c H) = c(d H),where c is a complex number ;
3) d(H)=(dH);
4) d (H\HyHs) = (d Hy)HyH3 + Hy(d Hy)Hs + HyHo(dHs);
5 d(HY= -HYdH H
6) dH=0, where H is a constant matrix and 0 is the zero matrix of the same
dimension of H.
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Theorem 2.1: [34] Let (Y, <) be a partially ordered set granted with a metric space d
such that (Y, d) is complete. Let G:Y x Y — Y be a continuous mapping with the mixed
monotone property on Y. If there exists ¢ € [0, 1), where d(G(y,z), G(v,w))<5 [d(y,v)
+d (z,w)] for all (y,z), (v,w) €Y xY where y>v and z<w. Moreover, there exist y,,
zo € Y such that yo < G (¥, z0) and zy > G (2o, o). Then,

(a) G has a coupled fixed point (y,z)eY x Y;
(b) The sequences { y} and {z;} defined by ¥, 1 =G (¥ 2x) and zx, 1= G (21 Yi)
converge to y and z, respectively ;

In addition, suppose that every pair of elements has a lower bound and an upper

bound, then

(c) G has a unique coupled fixed point (y,z)eY x Y;
(d) ¥ =z; and
(e) We have the following estimate:

&k

max{d(yk’j’)7d(zk75}) }S 2(1—8) [d(G(yO7ZO)7yO) + d(G(Z()yyO)aZO]'

Theorem 2.2 (Theorem of Schauder Fixed Point) [35]

Every continuous function g: T— T mapping T into itself has a fixed point, whereT'
be a nonempty compact convex subset of a normed vector space.

Suppose that the set of matrices ¥ defined by ¥ = { XeH(M) : X>11}.

let the mapping G: ¥ x ¥ — ¥ associated with Eq. (1) is defined by

G(X,Y)=1-Y BIX'B;j+> A;Y'A, (4)
j=1 =1

Theorem 2.3: [21] Suppose that the following assumptions hold

- 2 1 = 2 1
YBIF <= Do llAlP <= (5)
j=1 4 i=1 4
n i m . 3
61;:31.3;—2 ;AiAis i 6)
m n 3
6;AfAi—2 ;B;‘.BJ»S 5! 7)

Then Eq. (1) has a unique maximal solution X; with

& * 2 - * 2 = * - *
X.e|I-2 Z;Bij —l—ng:AiAi,I—gZ;Bij + ZZ;AiA,- :
j= i= j= i=

Proof: [21] We demand that there exists (X,Y)e HM) x HM) a solution to the

system
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n m
X=I1-) BX'Bj+> AjY'A,
j=1 i=1

* v —1 * v—
Y:I-z;BjY B,+Z;AiX 14 (8)
Jj= i=

Now, taking Xo =3/ and Yo = 31.

From condition (6) we have

4 * - * 3 - * 2 - * 1
6> BiBi-2) AjA;< 51 then 2ZBij—§ZAiA,»s 51 so we have G(3/,31) =1
j=1 i=1 j=1 i=1

-2) BiB;+ §ZAiAiz o1 thatis, Xo = 31<G (51.31).
=1 i=1
Moreover from condition (7) we get

m . n i 3 m . 2 n . 1
6Z;AiAi‘2z;B;B/5§I then 2 E AiAi‘g g B;Bj< 51 so we have
i= j= i=1 j=1

n m
3
GG 3 =1-3) BjB;j+2) AiAisland Yo =312G (31, 31).

j=1 i=1

From Theorem 2.1 (a), there exists (X,Y)e H(M)x HM)where G(X,Y)=X and
G(Y,X) =Y that is, (X, Y) is a solution to (8). On the other hand, for every X, Ye
H(M) there is a greatest lower bound and a least upper bound. Note also that the
partial order G is a continuous mapping, by Theorem 2.1, (X,Y) is the unique
coupled fixed point of G that is X=Y=X].

Thus, the unique solution of Eq. (1) is X;.

Now, using the Theorem of Schauder Fixed Point, we state the mapping F : [G (31, 3

1),GGL, L1)—>¥ by

n m
F(Xp) = G(X1,Xp) =1-) BX['Bj+ Y AIX;'A,,

j=1 i=1

For all X;€[G(31, 21),G(31, LI)).

We want to prove that

(oo 3l ) 2ol )

Let X;€[G(31, 31),G(31, 1I)], thatis G(3I, 31)<X,<G(3I, iI).

Applying the property of mixed monotone of G yields that

1.3 3.1 3.1 1.3
G(G(=I, 21),G(21, =1))<F(X,)=G(X.,X,)<G|G(=1, =I1),G(=1, 21)),
27 2 27 2 27 2 27 2

since G(31, 3I)>3Iand GBI, 3I)<31.
Applying the property of the mixed monotone of G again implies that

G(GGL 21)@@17 %1)>2G(%17 ;1) 9)
o(o(2n L).olln. 20))=o(in i) 0

From (9) and (10), it follows that

\S]
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1.3 3 1
G<§I, EI)SF(XL)SGGI, 51).

Thus, our claim that

(o 3ol 2]l 23]

Now, we have a continuous mapping F that maps the compact convex set [G(%I ,
31),G(31
least one fixed point in this set, but a fixed point of F is a solution of Eq. (1), and
we proved already that Eq. (1) has a unique solution in Y. Thus, this solution

must be in the set [G(31, 31),G(31, }I)]. That is,

, 31)] into itself, from Schuader fixed point theorem we get that F has at

n 2 m 2 n m
Xe|I-2) BB+ §ZA}‘A,»,I—§ZBjTB,» +2) AA.
=1 i—1 =1 i—1
Which completes the proof of the theorem.

Perturbation analysis for the matrix equation (1)
Theorem 3.1

& 1 = 1
1) |1B)|" < gz and Y[ AP < 5 (1)
j=1 i=1

then the maximal solution X; of Eq. (1) exists and satisfies

41> lAllldAl +> 1Bl ||dB,||]
ldX s ———— = (12)
s [S1ar s Yl
i=1 j=1
Proof: Differentiating Eq. (1) yields that
dXi= Y (dA) XA AL (X)) A > AX dA) + Y (dB)) X;'B;
i=1 i=1 i=1 j=1
+> Bj(dX;")B;+> B;X['(dB)j) =0.

j=1 j=1

(13)

Applying Lemma 2.1 to Eq. (13) we get that

dX=Y (dA7)X['Ai+ Y AIXTHAX) X A=Y ATXG (dA)

i=1 i=1 i=1

n n n
+3° (dB;) X;'B;- Y BX;'(dX.)X;'B;+ Y BX;' (dB)) = 0.
=1 =1 =1

(14)

Eq. (14) can be rewritten as:

Page 5 of 13
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dXp+ ) AXNAX) X A=Y BIXNAX)X'B =) (dA]) XA
i=1 j=1 i=1
m
+3 A (dA)- Z(dB*) X;B;- ZB X7
i=1 j=1
(15)
Taking spectral norm for Eq. (15), we have
ldXx, + Z AIX[NdX) X[ A=Y BiX[NdX) X;'B)l
i= j=1
= I (@A) X A+ Y AX N dA)- Y (dB)) X'B- Y B! (dB))
i=1 i=1 j=1 =1
<30 H(@A)XAN+ S AN dA) + 3 1 (dB) X))
i=1 i=1 j=1
+Y IBX;' (d Z A NIXZ AN + Z A7 X 2 Al
j=1 i=1
+Z ldB;IIX; B, ||+Z B IIX; Bl
Jj= j=1
(16)

By Theorem 2.3, it is clear that a unique maximal solution X; to Eq. (1) exists with
X€[31,31], that is, 1 X'l <2, substituting with this value in (16) we get

m n
ldX,+> AIXAX) XA > BiX; (d X)X, Byl
i=1 j=1

m n
> HAddAN+ 1B 4Bl
i=1 j=1

(17)
Also, we have
IIdXL+zm:A,.*X;1(dXL) LA- ZBX (dXp)X; Bl
zlldXLlEiIIZm:A;*XZ YdX,)X 1A lI- IIZB* YdX,)X;'Bl
=
>|IdXLII—ZlAX (dX1)X;A; II—ZIIB* Y(dX,)X;'B)l
zlldXLII—Xm: NAZI 131 ||de||-2 B | X" Hd X,
P =t
o[5S hae -3 2
> lM(i Ai* + Z HB,HZN ld X
- B (18)

Combining (17) and (18), we have

Page 6 of 13
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i—1 =1

m n
[1—4 (Z s HB,«W)
i—1 =1

ldX <4 [Z AN HdAN+ S 1B B |

From (11), we get that

[1—4 (Z 14 +Zl ||B,-||2>
i= j=

>1
7

Then,

4

i=1 j=1

S IANIdAN+> BN dB,II}
Z||Aﬂ+ZHB/||2]
i=1 j=1

ld X<

1-4

Thus the proof of the theorem is completed.
Theorem 3.2: Assume that A,r and B j eC™"™ be the perturbed matrices of A;, i =1, 2,
womand B, j=1,2, ..., n, respectively, and if E; —Ai-A;,i=1,2,...,m, Ej= Bj—Bj,j

=12,....n
n 2 1 m 9 1
1Y B <z D Al < 2 (19)
j=1 i=1
m m 1 m
DAl + Y I < 72> (IAMIEN) (20)
i=1 i=1 i=1

n n n

§ :||Bi||2 + § :||15f||2 < *12 —2§ :("Bi" IE;II) (21)
4

j=1 j=1 j=1

then the maximal solutions X; and X of the equations

=

m n m
XY AXA+ Y BX'Bj=Iand X;- Y AX; A+ ) B
i=1 =1 i=1

X, Bij=1 (22)

exist and satisfy

m n
1 1-4 ZAi||2+Z||B;||2]
I%,-X 0= In . — = =S (23)
1-4 l (AN + 1D + 37 (18,1 + IE1)?
i=1 j=1

Proof: Using the hypothesis (19), (20), (21) together with Corollary 3.2 in [17], then
the maximal solutions of the equations (22) exists.
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Now, by the condition (20), we get

m m
STHA =S 14+ ElP< S (1Al + 1EN)?
i=1 i=1

i=

m m m 1 m
SONANP D IEN +2> MAdlIED < 22 > IAMEN
i=1 j i=1 i=1

i=1

m
1 i

m
(11A:1% + 21AMNEN + [|E:]|?)
=1

m

1

2 ) IAMEN =
i=1

(24)
In the same way we can prove
n
~ 1
SIB* < (25)
j=1 4

By (24), (25) and Theorem 3.1, we get that the equation Xi- ZA? NZIA, + B;
=1 =1
5(;13 j = I has a unique maximal solution X;.
LetAi(t) :Aj+tEi7Bj(t) :Bj+tEl‘7 tE[O, 1] (26)

Using (20), we get

m

NN + DM =~ (Al + 2¢ AN NEN + 2| E|*)
i=1

m m
DA =D A+ eEd*
i=1 i=1

m

(
1
m m
(A + 2 BANEN + [|E(?) =D [lAil* + > |1E?
1 i=1 i=1

<
<

>

m
1
+2 _IAMIEN < 5

i=1

(27)
Similarly we can prove that
n ) 1
21501 <4 (28)
=1 4

Therefore, by (27), (28) and Theorem 2.3, we can see that for every t€ [0, 1], the
equation

Page 8 of 13
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X=Y A XTA() + Y B ()X 'Bi(t) =1 (29)

has the maximal solution X;(¢), particularly, we have
X.(0) = X7, X (1) = X (30)

By Theorem 3.1, we get

1K L-XL = X (1)=X, ()l = I / AX,(6) 1< / ldX.(0)]

4

ZIIA IIIIdA(tII+ZIIB IIIIdB()II]

4 ZAi<t>|2+Z||B;<t>\\2]

In
O\»—‘

L4 ZIIA IIIIEII+ZIIB £ IE;
Noting that / at
oting tha
0 14[2”/& )|1? +ZHB 1
IA:(£) 1| = A, + eENl <A + ¢ NEN, i =12, .
IBAE) = 1B+ CEN<IB + IEL = 1.5 o (32)

Substituting with (32) in (31), we have

1

||XL—XL||< /
0

ZIIA £) Il dA(t ||+Z||B £)llldB;(t @
S 1aw P+ S 1B
i=1 j=1

4 {Z(IIA I+ NEDIED+ 3 (LB -+ (E ) 1E ]

1
g/ —~ =1 dt
0 —4{Z("Ai"+t||Ei||)2+Z(IIB,-I|+tI|Ej||)2]
i=1 j=1
X -4 Z;I\A,-||2+Z;I\B;H2
:E In p - ]; = Serr
-4 [Z(uAin HIEN? + > (1B, + ||E,.||)2}
i=1 j=1

(33)

Which ends the proof of the theorem.

Page 9 of 13
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Numerical test problem

(2020) 28:6

In this section, a numerical test is presented to clarify the acuteness of the perturbation

bound for the unique maximal solution X;of Eq. (1) and ensure the correctness of The-
orem 3.2. We performed the algorithms in MATLAB and ran the programs on a PC

Pentium IV.

Example 4.1: Consider the nonlinear matrix equation

X -Aj XA -ASX Ay + BiX;'By + B3X;'By = 1

and its perturbed equation

XA K, A -ALK, Ao+ BX, By + BoX By = 1

where

-0.02
-0.01

0.03
-0.05
-0.02

Ay

0.04
0.01
0.03
0.03
0.02

B

A=A +10°

Ay = Ay + 107

B, =B, + 10"

By =By +10°

-0.01
-0.02

-0.01
0.03
0.03

0.01
0.04
0.01
-0.02
0.02

1.5
0.3
0.6
0.9
0.9

0.8
0.2
0.6

0.01

0.01

-0.02
-0.01
-0.04

0.02

0.01

0.04
0.01
-0.03

0.2
0.8
0.2
-0.4
0.4

0.3
0.9

0.9
0.6

0.1
0.2
0.1
-0.3
-0.3

-0.03
-0.04
-0.01
-0.02
-0.01

0.03

0.02

0.01
0.04
0.01

0.4
0.2
0.8
0.2
-0.6

0.6
0.3
0.9
0.3
-0.3

-0.1
-0.1
0.2
0.1
0.4

-0.02 -0.03 -0.01 -0.02
-0.03 -0.01 -0.03 -0.01
-0.04 |,A, = | -0.04 -0.01 -0.03
0.01 0.02 -0.03 -0.01
-0.02 -0.04 -0.02 0.01
-0.02 0.05 0.01 0.01
-0.04 0.01 0.05 0.01
-0.02 |,B, = | 0.02 0.01 0.05
0.01 0.03 0.04 0.01
0.04 0.03 0.02 0.04

0.9 -0.6

0.6 0.9

03 09 |,

1.5 0.3

0.3 1.5

0.6 -0.4

0.4 -0.8

0.2 -0.4

0.8 0.2

0.2 0.8

0.3 1.2

-0.6 09

0.3 -0.6 |and

0.9 0.3

0.3 0.9

0.3 0.2

0.4 0.3

01 04 |,ten

0.2 -0.1

0.1 0.2

It is clear that all the conditions of Theorem 3.2 hold, that is,

n m
> |IB;||* = 0.02466 < %and S OlAlP = 0014083 < %
j=1 i=1

that is, inequality (19) of Theorem 3.2 is satisfied.

m

1
22

m

m

STUANIEDN =Y A>T IE? ) = 0.03728 >0,
i=1 i=1 i=1

that is, inequality (20) of Theorem 3.2 is satisfied.

(34)

(35)

-0.01

0.02

-0.01
-0.03
-0.01

-0.04
-0.03

0.02
-0.01
-0.03

0.03
0.02
0.01
0.05
0.01

-0.02
0.03
0.03
0.01
0.05
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<412 Z (IBINE; I ) ZHB I° —ZHE I ) —0.03011 >0,

=1

that is, inequality (21) of Theorem 3.2 is satisfied. Thus, the matrix equation (34) and
its perturbed equation (35) have unique maximal positive definite solutions X; and X,
respectively. Now, we considered the sequences { X;} and { Y;} derived from the follow-
ing iterative process
1 3
X() =—Tand Y() Z*I,
2 2
n m
Xep =1-3_BiX('Bj+ Y _AYi'A;
j=1 i=1

n m
Yipr=1-> BYi'Bi+ Y AX;'A; k=0,1,2,..
=1 =1

(37)

For each iteration k, let the errors

n m
R(Xy) = IXx-I + > BiX;'Bi- > A;X M Aill, R(Yy)
j=1

i=1

n m
=Yi-I+> BY{'B- > A/Y Al
j=1 i=1

after 8 iterations, we get

1.0002  -0.0047332 -0.0032458 -0.004648  0.00012669
-0.0047332  0.99748 -0.0032128 -0.0032367 0.0013173
X =Xg =Yg = -0.0032458 -0.0032128  0.99637 -0.0026448 0.00032692
-0.004648 -0.0032367 -0.0026448 0.99756  0.0019438
0.00012669 0.0013173 0.00032692  0.0019438  0.99841

)

eig (X;) = (0.98671 , 1.0047, 0.99793, 0.99975, 1.0009),

with Rg =2.318617e - 016. In the same way, we can get the unique maximal positive

definite solution X of the perturbed equation (35) as follows:

0.99537 -0.0076648 -0.0050541 -0.0081866 —0.0019838

N -0.0076648 0.99702 -0.0037008 —-0.0047039 0.00028184

Xy = —-0.0050541 —-0.0037008 0.99257 -0.0043999 -0.00071791 |,
-0.0081866 —-0.0047039  -0.0043999 0.99415  -0.0009023
—-0.0019838 0.00028184 -0.00071791 -0.0009023  0.99686

eig (X1) = (0.9775, 1.0049,1.0004,0.99646,0.99675 ).

Numerical results which are listed in Table 1 confirm that the inequality (23) of The-
orem 3.2 holds.

Table 1 Numerical results for the different values of k.

The Value of k

perturbation 5 3 P 5 6

bounds

LX, =l 1.1307 x 1072 12043% 1073 12116x107* 12123%x 107 12124 % 107°

X

i 465641072 39301 x 1073 3.863x 107" 38564 x 107 38557 % 107°

Page 11 of 13
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Conclusion

In this paper, the perturbation estimate of the maximal solution for the equation

m n
X- ZA:.‘X’lAi + ZB;X’lB ; =1 using the differentiation of matrices is presented.
=1 =1

We derived the differential bound for this maximal solution. Moreover, a perturb-
ation estimate and an error bound for this maximal solution is obtained. Finally, a
numerical test is given to clarify the reliability of the obtained results.
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