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Abstract
In this paper, we study the structural properties of a non-associative algebraic structure
called an AG-groupoid by using soft set theory. We characterize a right regular class of
an AG-groupoid in terms of soft intersection ideals and provide counter examples to
discuss the converse part of various problems. We also characterize a weakly regular
class of an AG***-groupoid by using generated ideals and soft intersection ideals. We
investigate the relationship between SI-left-ideal, SI-right-ideal, SI-two-sided-ideal, and
SI-interior-ideal of an AG-groupoid over a universe set by providing some practical
examples.

Keywords: Left invertive law, Soft-sets, AG-groupoid, Right regularity, Weak regularity
and SI-ideals

Introduction
The concept of soft set theory was introduced by Molodtsov in [16]. This theory can be
used as a generic mathematical tool for dealing with uncertainties. In soft set theory, the
problem of setting the membership function does not arise, which makes the theory eas-
ily applied to many different fields [1, 2, 5–9]. At present, the research work on soft set
theory in algebraic fields is progressing rapidly [19, 21–23] . A soft set is a parameter-
ized family of subsets of the universe set. In the real world, the parameters of this family
arise from the view point of fuzzy set theory. Most of the researchers of algebraic struc-
tures have worked on the fuzzy aspect of soft sets. Soft set theory is applied in the field of
optimization by Kovkov in [12]. Several similarity measures have been discussed in [15],
decision-making problems have been studied in [21], and reduction of fuzzy soft sets and
its applications in decision-making problems have been analyzed in [13]. The notions of
soft numbers, soft derivatives, soft integrals, and many more have been formulated in
[14]. This concept have been used for forecasting the export and import volumes in inter-
national trade [28]. A. Sezgin have introduced the concept of a soft sets in non-associative
semigroups in [24] and studied soft intersection left (right, two-sided) ideals, (general-
ized) bi-ideals, interior ideals, and quasi-ideals in an AG-groupoid. A lot of work has been
done on the applications of soft sets to a non-associative rings by T. Shah et al. in [25, 26].
They have characterized the non-associative rings through soft M-systems and different
soft ideals to get generalized results.
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This paper is the continuation of the work carried out by F. Yousafzai et al. in [29] in
which they define the smallest one-sided ideals in an AG-groupoid and use them to char-
acterize a strongly regular class of an AG-groupoid along with its semilattices and soft
intersection left (right, two-sided) ideals, and bi-ideals. The main motivation behind this
paper is to study some structural properties of a non-associative structure as it has not
attracted much attention compared to associative structures. We investigate the notions
of SI-left-ideal, SI -right-ideal, SI-two-sided-ideal, and SI -interior-ideal in an AG-groupoid.
We provide examples/counter examples for these SI-ideals and study the relationship
between them in detail. As an application of our results, we get characterizations of a
right regular AG-groupoid and weakly regular AG***-groupoid in terms of SI-left-ideal,
SI-right-ideal, SI-two-sided-ideal, and SI-interior-ideal.

AG-groupoids
An AG-groupoid is a non-associative and a non-commutative algebraic structure lying in
a gray area between a groupoid and a commutative semigroup. Commutative law is given
by abc = cba in ternary operations. By putting brackets on the left of this equation, i.e.,
(ab)c = (cb)a, in 1972, M. A. Kazim and M. Naseeruddin introduced a new algebraic
structure called a left almost semigroup abbreviated as an LA-semigroup [10]. This iden-
tity is called the left invertive law. P. V. Protic and N. Stevanovic called the same structure
an Abel-Grassmann’s groupoid abbreviated as an AG-groupoid [20].
This structure is closely related to a commutative semigroup because a commutative

AG-groupoid is a semigroup [17]. It was proved in [10] that an AG-groupoid S is medial,
that is, ab ·cd = ac ·bd holds for all a, b, c, d ∈ S. An AG-groupoid may or may not contain
a left identity. The left identity of an AG-groupoid permits the inverses of elements in the
structure. If an AG-groupoid contains a left identity, then this left identity is unique [17].
In an AG-groupoid S with left identity, the paramedial law ab · cd = dc · ba holds for all
a, b, c, d ∈ S. By using medial law with left identity, we get a · bc = b · ac for all a, b, c ∈ S.
We should genuinely acknowledge that much of the ground work has been done by M. A.
Kazim, M. Naseeruddin, Q. Mushtaq, M. S. Kamran, P. V. Protic, N. Stevanovic, M. Khan,
W. A. Dudek, and R. S. Gigon. One can be referred to [3, 4, 11, 17, 18, 20, 27] in this regard.
A nonempty subset A of an AG-groupoid S is called a left (right, interior) ideal of S if

SA ⊆ A (AS ⊆ A, SA · S ⊆ A). Equivalently, a nonempty subset A of an AG-groupoid S is
called a left (right, interior) ideal of S if SA ⊆ A (AS ⊆ A, SA · S ⊆ A). By two-sided ideal
or simply ideal, we mean a nonempty subset of an AG-groupoid S which is both left and
right ideal of S.

Soft sets
In [23], Sezgin and Atagun introduced some new operations on soft set theory and
defined soft sets in the following way:
Let U be an initial universe set, E a set of parameters, P(U) the power set of U, and

A ⊆ E. Then, a soft set (briefly, a soft set) fA over U is a function defined by:

fA : E → P(U) such that fA(x) = ∅, if x /∈ A.

Here, fA is called an approximate function. A soft set over U can be represented by the
set of ordered pairs as follows:
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fA = {
(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)

}
.

It is clear that a soft set is a parameterized family of subsets of U. The set of all soft sets
is denoted by S(U).
Let fA, fB ∈ S(U). Then, fA is a soft subset of fB, denoted by fA

∼⊆ fB if fA(x) ⊆ fB(x) for

all x ∈ S. Two soft sets fA, fB are said to be equal soft sets if fA
∼⊆ fB and

∼
fB ⊆ fA and is

denoted by fA
∼= fB. The union of fA and fB, denoted by fA

∼∪ fB, is defined by fA
∼∪ fB = fA∪B,

where fA∪B(x) = fA(x) ∪ fB(x), ∀ x ∈ E. In a similar way, we can define the intersection of
fA and fB.
Let fA, fB ∈ S(U). Then, the soft product [23] of fA and fB, denoted by fA ◦ fB, is defined

as follows:

(fA ◦ fB)(x) =
⎧
⎨

⎩

⋃

x=yz
{fA(y) ∩ gB(z)} if ∃ y, z ∈ S � x = yz

∅ otherwise
.

Let fA be a soft set of an AG-groupoid S over a universe U . Then, fA is called a soft
intersection left ideal, right ideal, interior ideal (briefly, SI -left-ideal, SI-right-ideal, SI-
interior-ideal) of S over U if it satisfies fA(xy) ⊇ fA(y) (fA(xy) ⊇ fA(x), fA(xy · z) ⊇ fA(y)),
∀ x, y ∈ S. A soft set fA is called a soft intersection two-sided ideal (briefly, SI -two-sided-
ideal) of S over U if fA is an SI -left-ideal and an SI-right-ideal of S over U.
Let A be a nonempty subset of S. We denote by XA the soft characteristic function of A

and define it as follows:

XA =
{

U if x ∈ A
∅ if x /∈ A

.

Note that the soft characteristic mapping of the whole set S, denoted by XS, is called an
identity soft mapping.

Basic results
Lemma 1 [29] For a nonempty subset A of an AG-groupoid S, the following conditions

are equivalent:

(i) A is a left ideal (right ideal, interior ideal) of S;
(ii) A soft set XA of S over U is an SI-left-ideal (SI -right-ideal, SI-interior-ideal) of S

over U .

Lemma 2 [29] Let S be an AG-groupoid. For ∅ �= A,B ⊆ S, the following assertions hold:

(i) XA
∼∩ XB = XA∩B;

(ii) XA ◦ XB = XAB.

Remark 1 [29]The set (S(U), ◦) forms an AG-groupoid and satisfies all the basic laws.

Remark 2 [29] If S is an AG-groupoid, then XS ◦ XS = XS.

Lemma 3 Let fA be any soft set of a right regular AG-groupoid S with left identity over
U. Then, fA is an SI-right-ideal (SI-left-ideal, SI-interior-ideal) of S over U if and only if
fA = fA ◦ XS (fA = XS ◦ fA, fA = (XS ◦ fA) ◦ XS) and fA is soft semiprime .
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Proof It is simple.

Lemma 4 For every SI-interior-ideal fA of a right regular AG-groupoid S with left identity
over U , fA = XS ◦ fA = f ◦ XS.

Proof Assume that fA is any SI-interior-ideal of S with left identity over U . Then, by
using Remark 2 and Lemma 3, we have XS ◦ fA = (XS ◦ XS) ◦ fA = (fA ◦ XS) ◦ XS =
(fA ◦ XS) ◦ (XS ◦ XS) = (XS ◦ XS) ◦ (XS ◦ fA) = ((XS ◦ fA) ◦ XS) ◦ XS = fA ◦ XS and
XS ◦ fA = (XS ◦ XS) ◦ fA = (fA ◦ XS) ◦ XS = (XS ◦ fA) ◦ XS = fA.

Lemma 5 [29] Let fA be any soft set of an AG-groupoid S over U. Then, fA is an SI-right-
ideal ( SI-left-ideal) of S over U if and only if fA ◦ XS

∼⊆ fA (XS ◦ fA
∼⊆ fA).

Lemma 6 A right (left, two-sided) ideal R of an AG-groupoid S is semiprime if and only
if XR is soft semiprime over U.

Proof Let R be a right ideal of S. By Lemma 1, XR is an SI-right-ideal of S over U . If
a ∈ S, then by given assumption (XR)(a) ⊇ (XR)(a2). Now a2 ∈ R, implies that a ∈ R.
Thus every right ideal of S is semiprime. The converse is simple. Similarly every left or
two-sided ideal of S is semiprime if and only if its identity soft mapping is soft semiprime
over U.

Corollary 1 If any SI-right-ideal (SI -left-ideal, SI-two-sided-ideal) of an AG-groupoid S
is S-semiprime, then any right (left, two-sided) ideal of S is semiprime.

The converse of Lemma 6 is not true in general which can be followed from the
following example.

Example 1 Let us consider an initial universe set U given byU = Z, and S = {1, 2, 3, 4, 5}
be a set of parameters with the following binary operation.

∗ 1 2 3 4 5
1 1 1 1 1 1
2 1 5 5 3 5
3 1 5 5 2 5
4 1 2 3 4 5
5 1 5 5 5 5

It is easy to check that (S, ∗) is an AG-groupoid with left identity 4.
Notice that the only left ideals of S are {1, 2, 5}, {1, 3, 5}, {1, 2, 3, 5} and {1, 5} respectively

which are semiprime. Clearly, the right and two-sided ideals of S are {1, 2, 3, 5} and {1, 5}
which are also semiprime. On the other hand, let A = S and define a soft set fA of S over
U as follows:

fA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Z if x = 1
4Z if x = 2
4Z if x = 3
8Z if x = 4
2Z if x = 5

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.
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Then, fA is an SI-right-ideal (SI-left-ideal, SI-two-sided-ideal) of S over U but fA is not
soft semiprime. Indeed fA(2) � fA(22).

Remark 3 If any SI-interior-ideal of an AG-groupoid S with left identity over U is an S-
semiprime over U , then any interior ideal of S is semiprime. The converse inclusion is not
true in general.

The following lemma will be used frequently in upcoming section without mention in
the sequel.

Lemma 7 Let S be an AG-groupoid with left identity. Then, Sa and Sa2 are the left and
interior ideals of S respectively.

Proof It is simple.

Right regular AG-groupoids
An element a of an AG-groupoid S is called a left (right) regular element of S if there
exists some x ∈ S such that a = a2x (a = xa2) and S is called left (right) regular if every
element of S is left (right) regular.

Remark 4 Let S be an AG-groupoid with left identity. Then, the concepts of left and right
regularity coincide in S.

Indeed, for every a ∈ S there exist some x, y ∈ S such that a = xa2 = a2y. As a = xa2 =
ex · aa = aa · xe = a2y, and a = a2y = xa2 also holds in a similar way.
Let us give an example of an AG-groupoid which will be used for the converse parts of

various problems in this section.

Example 2 Let us consider an AG-groupoid S = {1, 2, 3, 4, 5} with left identity 4 defined
in the following multiplication table.

∗ 1 2 3 4 5
1 1 1 1 1 1
2 1 5 5 3 5
3 1 5 5 2 5
4 1 2 3 4 5
5 1 5 5 5 5

It is easy to check that S is non-commutative and non-associative.
An AG-groupoid S is called left (right) duo if every left (right) ideal of S is a two-sided

ideal of S and is called duo if it is both left and right duo. Similarly an AG-groupoid S is
called an SI-left (SI-right) duo if every SI-left-ideal ( SI-right-ideal) of S overU is an SI-two-
sided-ideal of S over U , and S is called an SI-duo if it is both an SI-left and an SI-right duo.

Lemma 8 If every SI-left-ideal of an AG-groupoid S with left identity over U is an SI-
interior-ideal of S over U , then S is left duo.

Proof Let I be any left ideal of S with left identity. Now by Lemma 1, the identity soft
mapping XI is an SI-left-ideal of S over U. Thus, by hypothesis, XI is an SI-interior-ideal
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of S over U , and by using Lemma 1 again, I is an interior ideal of S. Thus IS = I · SS =
S · IS = SS · IS = SI · SS = SI · S ⊆ I. This shows that S is left duo.

The converse part of Lemma 8 is not true in general. Let us consider an AG-groupoid
S (from Example 2). It is easy to see that S is left duo because the only left ideal of S
is {1, 5} which is also a right ideal of S. Let A = S and define a soft set fA of S over
U = {p1, p2, p3, p4,p5, p6} as follows:

fA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U if x = 1
{p1, p2, p3, p4} ifx = 2
{p2, p3, p4,, p5} if x = 3

{p3, p4,, p5} if x = 4
{p1, p2, p3, p4,p5} if x = 5

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Then, it is easy to see that fA is an SI -left-ideal of S overU but it is not an SI -interior-ideal
of S over U because fA(42 ∗ 4) � fA(2).

Corollary 2 Every interior ideal of an AG-groupoid S with left identity is a right ideal
of S.

Theorem 1 Every SI-right-ideal of an AG-groupoid S with left identity is an SI-interior-
ideal of S over U if and only if S is right duo.

Proof It is simple.

Theorem 2 Let S be a right regular AG-groupoid with left identity. Then, S is left duo if
and only if every SI-left-ideal of S over U is an SI-interior-ideal of S over U.

Proof Necessity. Let a right regular S with left identity be a left duo, and assume that fA
is any SI-left-ideal of S overU. Let a, b, c ∈ S, then b ≤ xb2 for some x ∈ S. Since Sa is a left
ideal of S, therefore by hypothesis, Sa is a two-sided ideal of S. Thus, ab · c = a(x ·bb) · c =
a(b · xb) · c = b(a · xb) · c = c(a · xb) · b. It follows that ab · c ∈ S(a · SS) · b ⊆ (S · aS)b =
(SS · aS)b = (Sa · SS)b ⊆ (Sa · S)b ⊆ Sa · b. Thus, ab · c = ta · b for some t ∈ S, and
therefore fA(ab · c) = fA(ta · b) ⊇ fA(b), implies that fA is an SI-interior-ideal of S over U.
Sufficiency. It can be followed from Lemma 8.

By left-right dual of above Theorem, we have the following Theorem:

Theorem 3 Let S be a right regular AG-groupoid with left identity. Then ,S is right duo
if and only if every SI-right-ideal of S over U is an SI-interior-ideal of S over U.

Lemma 9 A non-empty subset A of a right regular AG-groupoid S with left identity is a
two-sided ideal of S if and only if it is an interior ideal of S.

Proof It is simple.

Lemma 10 Every left ideal of an AG-groupoid S with left identity is an interior ideal of
S if S is an SI-left duo.

Proof It can be followed from Lemmas 1 and 9.
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The converse of Lemma 10 is not true in general. The only left ideal of S (from
Example 2) is {1, 2} which is also an interior ideal of S. Let A = {2, 3, 4, 5} and define a soft
set fA of S over U = Z as follows:

fA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4Z if x = 2
8Z if x = 3
16Z if x = 4
2Z if x = 5

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Then, it is easy to see that fA is an SI -left-ideal of S over U but it is not an SI -right-ideal
of S over U because fA(2 ∗ 4) � fA(2).
It is easy to see that every SI-right-ideal of S with left identity overU is an SI-left-ideal of

S over U .

Remark 5 Every SI-right-ideal of an AG-groupoid S with left identity is an SI-left-ideal of
S over U, but the converse is not true in general.

Theorem 4 Every right ideal of an AG-groupoid S with left identity is an interior ideal
of S if and only if S is an SI-right duo.

Proof It is straightforward.

Theorem 5 Let S be a right regular AG-groupoid with left identity. Then ,S is an SI-left
duo if and only if every left ideal of S is an interior ideal of S.

Proof The direct part can be followed from Lemma 10. The converse is simple.

By left-right dual of above Theorem, we have the following Theorem.

Theorem 6 Let S be a right regular AG-groupoid with left identity. Then ,S is an SI-right
duo if and only if every right ideal of S is an interior ideal of S.

Theorem 7 Let S be an AG-groupoid with left identity and E = {x ∈ S : x = x2} ⊆ S.
Then the following assertions hold:

(i) E forms a semilattice;
(ii) E is a singleton set, if a = ax · a, ∀ a, x ∈ S.

Proof It is simple.

Theorem 8 For an AG-groupoid S with left identity, the following conditions are
equivalent:

(i) S is right regular;
(ii) For any interior ideal I of S;
(a) I ⊆ I2,
(b) I is semiprime.
(iii) For any SI-interior-ideal fA of S over U ;
(a) fA

∼⊆ fA ◦ fA,
(b) fA is soft semiprime over U .
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(iv) S is right regular and |E| = 1, (a = ax · a, ∀ a, x ∈ E);
(v) S is right regular and ∅ �= E ⊆ S is semilattice.

Proof (i) =⇒ (v) =⇒ (iv) can be followed from Theorem 7.
(iv) =⇒ (iii) : (a). Let fA be any SI -interior-ideal of a right regular S with left identity.

Thus, for each a ∈ S, there exists some x ∈ S such that a = x ·aa = a ·xa = a ·x(x ·aa) =
a · (ex)(a · xa) = a · (xa · a)(xe). Therefore,

(fA ◦ fA)(a) =
⋃

a=a·(xa·a)(xe)

{
fA(a) ∩ fA((xa · a)(xe))}

⊇ fA(a) ∩ fA((xa · a)(xe)) ⊇ fA(a) ∩ fA(a) = fA(a).

This shows that fA
∼⊆ fA ◦ fA.

(b). Also,

a = x · aa ≤ ex · aa = aa · xe = (a · xa2)(xe) = (x · aa2)(xe) = x(ea · aa) · (xe)

= x(aa · ae) · (xe) = (aa)(x · ae) · (xe) = (ae · x)(aa) · (xe) = (ae · x)a2 · (xe).

This implies that fA(a) = fA((ae · x)a2 · (xe)) ⊇ fA(a2). Hence, fA is soft semiprime.
(iii) =⇒ (ii) : (a). Assume that I is any interior ideal of S, then by using Lemma 1, XI

is an SI-interior-ideal of S over U. Let i ∈ I, then by using Lemma 2, we have XI(i) ⊆
(XI ◦ XI)(i) = (XI)(i) = U . Hence, I ⊆ I2.

(b). Let i2 ∈ I. Then, by given assumption, we have XI(i) ⊇ XI(i2) = U . This implies
that i ∈ I, and therefore I is semiprime.

(ii) =⇒ (i) : Let a ∈ S with left identity. Since Sa2 is an interior ideals of S, and clearly
a2 ∈ Sa2. Thus, by using given assumption, a ∈ Sa2. Hence, S is right regular.

Corollary 3 Every SI-interior-ideal of a right regular AG-groupoid S with left identity is
soft semiprime over U.

Proof Let fI be any SI-interior-ideal of a right regular S with left identity. Then, for each
a ∈ S, there exists some x ∈ S such that fI(a) = fI(x · aa) = fI(a · xa) = fI(xa2 · xa) ⊇
fI(a2).

Corollary 4 Let I be an interior ideal of an AG-groupoid S. Then, I is semiprime if and
only if XI is soft semiprime over U.

Theorem 9 Let S be an AG-groupoid with left identity. Then, S is right regular if and
only if every SI-interior-ideal fA of S over U is soft idempotent and soft semiprime.

Proof Necessity: Let fA be any SI-interior-ideal of a right regular S with left identity over
U. Then, clearly fA ◦ fA

∼⊆ fA. Now for each a ∈ S, there exists some x ∈ S such that
a = x · aa = a · xa = ea · xa = ax · ae = (ae · x)a. Thus,

(fA ◦ fA)(a) =
⋃

a=(ae·x)a

{
fA(ae · x) ∩ fA(a)

} ⊇ fA(ae · x) ∩ fA(a)

⊇ fA(a) ∩ fA(a) = (fA ∩ fA)(a) = fA(a).

This shows that fA is soft idempotent over U. Again a = ex · aa = aa · xe = a2 · xe.
Therefore, fA(a) = fA(a2 · xe) ⊇ fA(a2). Hence, fA is soft semiprime over U .
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Sufficiency: Since Sa2 is an interior ideal of S, therefore by Lemma 1, its soft char-
acteristic function XSa2 is an SI-interior-ideal of S over U such that XSa2 is soft
idempotent over U . Since by given assumption, XSa2 is soft semiprime over U so
by Corollary 4, Sa2 is semiprime. Since a2 ∈ Sa2, therefore, a ∈ a2S. Thus, by
using Lemma 2, we have XSa2 ◦ XSa2 = XSa2 , and XSa2 ◦ XSa2 = X(Sa2·Sa2). Thus,
we get X(Sa2·Sa2) = XSa2 . This implies that X(Sa2·Sa2)(a) = XSa2(a) = U . There-
fore, a ∈ Sa2 · Sa2 = a2S · Sa2 = (Sa2 · S)a2 ⊆ Sa2. Hence ,S is right
regular.

Lemma 11 Every SI-interior-ideal of a right regular AG-groupoid S with left identity over
U is soft idempotent.

Proof Let fA be any SI-interior-ideal of a right regular S with left identity over U. Then,
by using Lemma 4, fA ◦ fA

∼⊆ fA. Since S right regular, therefore for every a ∈ S there exists
some x ∈ S such that a = x · aa = a · xa = xa2 · xa = ax · a2x = (a2x · x)a = (xx · aa)a =
(aa · x2)a. Therefore,

(fA ◦ fA)(a) =
⋃

a=(aa·x2)a

{
fA(aa · x2) ∩ fA(a)

} ⊇ fA(aa · x2) ∩ fA(a)

⊇ fA(a) ∩ fA(a) = (fA ∩ fA)(a).

Thus, fA ◦ fA = fA.

Theorem 10 Let S be an AG-groupoid with left identity and fA be any SI-interior-ideal
of S over U. Then ,S is right regular if and only if fA = (XS ◦ fA)2 and fA is soft semiprime.

Proof Necessity: Let fA be any SI-interior-ideal of a right regular S with left identity over
U . Then, by using Lemmas 4 and 2, we have

(XS ◦ (XS ◦ fA)) ◦ XS = (XS ◦ fA) ◦ XS = (fA ◦ XS) ◦ XS = (XS ◦ XS) ◦ fA = XS ◦ fA.

This shows that XS ◦ fA is an SI -interior-ideal of S over U . Now by using Lemmas 11
and 4, we have (XS ◦ fA)2 = XS ◦ fA = fA. It is easy to see that fA is soft
semiprime.
Sufficiency: Let fA = (XS ◦ fA)2 holds for any SI-interior-ideal fA of S over U . Then, by

given assumption and Lemma 14, we get, fA = (XS ◦ fA)2 = f 2A . Thus, by using Theorem 9,
S is right regular.

Corollary 5 Let S be an AG-groupoid with left identity and fA be any SI-interior-
ideal of S over U. Then, S is right regular if and only if fA = XS ◦ f 2A and fA is soft
semiprime.

Proof From above theorem, fA = (XS ◦ fA)2 = (XS ◦ fA)(XS ◦ fA) = (XS ◦ fA) ◦ fA =
(fA ◦ fA) ◦ XS = (fA ◦ fA) ◦ (XS ◦ XS) = (XS ◦ XS) ◦ (fA ◦ fA) = XS ◦ f 2A .

Lemma 12 Let S be an AG-groupoid with left identity and fA be any SI-left-ideal (SI -
right-ideal, SI-two-sided-ideal) of S over U. Then, S is right regular if and only if fA is soft
idempotent.
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Proof Necessity: Let fA be an SI-left-ideal of a right regular S with left identity over U .
Then, it is easy to see that fA ◦ fA

∼⊆ fA. Let a ∈ S, then there exists x ∈ S such that
a = aa · x = xa · a. Thus

(fA ◦ fA)(a) =
⋃

a=xa·a
{fA(xa) ∩ fA(a)} ⊇ fA(a) ∩ fA(a) = fA(a),

which implies that fA is soft idempotent.
Sufficiency: Assume that fA ◦ fA = fA holds for all SI-left-ideal of S with a left identity

over U. Since Sa is a left ideal of S, therefore by Lemma 1, it follows that XSa is an SI-left-
ideal of S over U . Since a ∈ Sa, it follows that (XSa)(a) = U . By hypothesis and Lemma 2,
we obtain (XSa) ◦ (XSa) = XSa and (XSa) ◦ (XSa) = XSa·Sa. Thus, we have (XSa·Sa) (a) =
XSa(a) = U , which implies that a ∈ Sa · Sa. Therefore, a ∈ Sa · Sa = S2a2 = Sa2. This
shows that S is right regular.

Theorem 11 Let S be an AG-groupoid with left identity and fA be any SI-left-ideal (SI

-right-ideal, SI-two-sided-ideal) of S over U. Then, S is right regular if and only if fA =
(XS ◦ fA) ◦ (XS ◦ fA).

Proof Necessity: Let S be a right regular S with left identity and let fA be any SI-left-ideal
of S over U . It is easy to see that XS ◦ fA is also an SI -left-ideal of S over U . By Lemma 12,
we obtain (XS ◦ fA) ◦ (XS ◦ fA) = (XS ◦ fA)

∼⊆ fA. Let a ∈ S, then there exists x ∈ S such
that a = aa · x = xa · a = (xa)(aa · x) = (xa)(xa · a). Therefore,

(
(XS ◦ fA) ◦ (XS ◦ fA)

)
(a) ⊇ (XS ◦ fA)(xa) ∩ (XS ◦ fA)(xa · a)

⊇ XS(x) ∩ fA(a) ∩ XS(xa) ∩ fA(a) = fA(a),

which is what we set out to prove.
Sufficiency: Suppose that fA = (XS ◦ fA) ◦ (XS ◦ fA) holds for all SI-left-ideal fA of S over

U . Then fA = (XS ◦ fA) ◦ (XS ◦ fA)
∼⊆ fA ◦ fA

∼⊆ XS ◦ fA
∼⊆ fA. Thus, by Lemma 12, it follows

that S is right regular.

Lemma 13 Let fA be any SI-interior-ideal of a right regular AG-groupoid S with left
identity over U. Then, fA(a) = fA(a2), for all a ∈ S.

Proof Let fA be any SI-interior-ideal of a right regular S with left identity over U. For
a ∈ S, there exists some x in S such that a = ex·aa = aa·xe = (xe·a)a = (xe·a)(ex·aa) =
(xe·a)(aa·xe) = aa·(xe·a)(xe) = ea2 ·(xe·a)(xe). Therefore fA(a) = fA(ea2 ·(xe·a)(xe)) ⊇
fA(a2) = fA(aa) = fA(a(ex · aa)) = fA(a(aa · xe)) = fA((aa)(a · xe)) = fA((xe · a)(aa)) ⊇
fA(a). That is, fA(a) = fA(a2), ∀ a ∈ S

The converse of Lemma 13 is not true in general. Let us consider an AG-groupoid
S (from Example 2). Let A = {1, 2, 4, 5} and define a soft set fA of S over U ={[

0 0
x x

]

/x ∈ Z3

}

(the set of all 2 × 2 matrices with entries from Z3) as follows:
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fA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[
0 0
0 0

]

,
[
0 0
1 1

]

,
[
0 0
2 2

]}

if x = 1
{[

0 0
1 1

]

,
[
0 0
2 2

]}

if x = 2
{[

0 0
2 2

]}

if x = 4
{[

0 0
1 1

]

,
[
0 0
2 2

]}

if x = 5

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

It is easy to see that fA is an SI -interior-ideal of S such that fA(x) ⊇ fA(x2), ∀ x ∈ S but S
is not right regular.
On the other hand, it is easy to see that every SI -two-sided-ideal of S over U is an SI

-interior-ideal of S over U .

Remark 6 Every SI-two-sided-ideal of a right regular AG-groupoid S with left
identity over U is an SI-interior-ideal of S over U but the converse is not true in general.

Theorem 12 For an AG-groupoid S with left identity, the following conditions are
equivalent:

(i) S is right regular;
(ii) Every interior ideal of S is semiprime;
(iii) Every SI-interior-ideal of S over U is soft semiprime;
(iv) For every SI-interior-ideal fA of S over U , fA(a) = fA(a2), ∀ a ∈ S.

Proof (i) ⇒ (iv) can be followed from Lemma 13.
(iv) ⇒ (iii) and (iii) ⇒ (ii) are obvious.
(ii) ⇒ (i) : Since Sa2 is an interior ideal of S with left identity such that a2 ∈ Sa2,

therefore by given assumption, we have a ∈ Sa2. Thus, S is right regular.

Weakly regular AG***-groupoids
An AG-groupoid S is called an AG***-groupoid [29] if the following conditions are
satisfied:

(i) For all a, b, c ∈ S, a · bc = b · ac;
(ii) For all a ∈ S, there exist some b, c ∈ S such that a = bc.
An AG-groupoid satisfying (i) is called an AG**-groupoid. The condition (ii) for an

AG**-groupoid to become an AG***-groupoid is equivalent to S = S2.
Let S = {1, 2, 3, 4} be an AG-groupoid define in the following multiplication table.
· 1 2 3 4
1 1 1 1 1
2 1 4 3 4
3 1 2 4 4
4 1 4 4 4
It is easy to verify that (S, ·) is an AG*** -groupoid.
Note that every AG-groupoid with left identity is an AG*** -groupoid but

the converse is not true in general. An AG-groupoid in the above example
is an AG***-groupoid, but it does not contains a left identity. Hence, we can
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say that an AG***-groupoid is the generalization of an AG-groupoid with left
identity.
An element a of an AG-groupoid S is called a weakly regular element of S if there exist

some x, y ∈ S such that a = ax · ay and S is called weakly regular if every element of S is
weakly regular.

Remark 7 Let S be an AG***-groupoid. Then, the concepts of weak and right regularity
coincide in S.

Let S be an AG***-groupoid. From now onward, R (resp. L) will denote any right (resp.
left) ideal of S; 〈R〉a2 will denote a right ideal Sa2 ∪ a2 of S containing a2 and 〈L〉a will
denote a left ideal Sa ∪ a of S containing a; fA (resp. gB) will denote any SI-right-ideal of S
(resp. SI-left-ideal of S) over U unless otherwise specified.

Theorem 13 Let S be an AG***-groupoid . Then, S is weakly regular if and only if 〈R〉a2 ∩
〈L〉a = 〈R〉2a2 〈L〉2a and 〈R〉a2 is semiprime.

Proof Necessity: Let S be weakly regular. It is easy to see that 〈R〉2a2 〈L〉2a ⊆ 〈R〉a2 ∩ 〈L〉a .
Let a ∈ 〈R〉a2 ∩ 〈L〉a . Then, there exist some x, y ∈ S such that

a = ax · ay = (ax · ay)x · (ax · ay)y = (x · ay)(ax) · (y · ay)(ax)
= (a · xy)(ax) · (ay2)(ax) = (a · xy)(ax) · (xa)(y2a)

∈ (〈R〉a2 S · 〈R〉a2 S)(S 〈L〉a · S 〈L〉a) ⊆ 〈R〉2a2 〈L〉2a ,
which shows that 〈R〉a2 ∩ 〈L〉a = 〈R〉2a2 〈L〉2a . It is easy to see that 〈R〉a2 is semiprime.
Sufficiency: Since Sa2 ∪a2 and Sa∪a are the right and left ideals of S containing a2 and

a respectively. Thus, by using given assumption, we get

a ∈ (
Sa2 ∪ a2

) ∩ (Sa ∪ a) = (
Sa2 ∪ a2

)2
(Sa ∪ a)2

= (
Sa2 ∪ a2

) (
Sa2 ∪ a

) · (Sa ∪ a)(Sa ∪ a)

⊆ S
(
Sa2 ∪ a

) · S(Sa ∪ a) = (
S · Sa2 ∪ Sa

)
(S · Sa ∪ Sa)

= (
a2S · S ∪ Sa

)
(aS · S ∪ Sa) = (

Sa2 ∪ Sa
)
(Sa ∪ Sa)

= (
a2S ∪ Sa

)
(Sa ∪ Sa) = (Sa · a ∪ Sa)(Sa ∪ Sa)

⊆ (Sa ∪ Sa)(Sa ∪ Sa) = Sa · Sa = aS · aS.
This implies that S is weakly regular.

Corollary 6 Let S be an AG***-groupoid . Then ,S is weakly regular if and only if 〈R〉a2 ∩
〈L〉a = 〈L〉2a 〈R〉2a2 and 〈R〉a2 is semiprime.

Theorem 14 Let S be an AG***-groupoid. Then, the following conditions are equivalent:

(i) S is weakly regular;
(ii) 〈R〉a2 ∩ 〈L〉a = 〈L〉2a 〈R〉2a2 and 〈R〉a2 is semiprime;
(iii) R ∩ L = L2R2 and R semiprime ;
(iv) fA

∼∩ gB = (fA ◦ gB) ◦ (fA ◦ gB) and fA is soft semiprime;
(v) S is weakly regular and |E| = 1, (a = ax · a, ∀ a, x ∈ E);
(vi) S is weakly regular and ∅ �= E ⊆ S is semilattice.
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Proof (i) =⇒ (vi) =⇒ (v) : It can be followed from Theorem 7.
(v) =⇒ (iv) : Let fA and gB be any SI -right-ideal and SI-left-ideal of a weakly regular S

over U respectively. From Lemma 5, it is easy to show that (fA ◦ gB) ◦ (fA ◦ gB)
∼⊆ fA

∼∩ gB.
Now for a ∈ S, there exist some x, y ∈ S such that

a = ax · ay = (ax · ay)x · (ax · ay)y = (ax · ay) · ((ax · ay)x)y
= (ax · ay) · (yx)(ax · ay) = (ax · ay) · (ax)(yx · ay)
= (ax · ay) · (ay · yx)(xa) = (ax · ay) · ((yx · y)a)(xa)
= (ax)((yx · y)a) · (ay)(xa) = (ax)(ba) · (ay)(xa), where yx · y = b.

Therefore,

((fA ◦ gB) ◦ (fA ◦ gB))(a) =
⋃

a=(ax)(ba)·(ay)(xa)
{(fA ◦ gB)(ax · ba)

∩(fA ◦ gB)(ay · xa)}
⊇

⋃

ax·ba=ax·ba
{fA(ax) ∩ gB(ba)}

∩
⋃

ay·xa=ay·xa
{fA(ay) ∩ gB(xa)}

⊇ fA(ax) ∩ gB(ba) ∩ fA(ay) ∩ gB(xa)

⊇ fA(a) ∩ gB(a),

which shows that (fA ◦ gB) ◦ (fA ◦ gB)
∼⊇ fA

∼∩ gB. Hence, fA
∼∩ gB = (fA ◦ gB) ◦ (fA ◦ gB).

Also by using Lemma 3, fA is soft semiprime.
(iv) =⇒ (iii) : Let R and L be any left and right ideals of S. Then, by using Lemma 1,

XR and XL are the SI-right-ideal and SI-left-ideal of S over U respectively. Now by using
Lemma 2, we get XR∩L = XR

∼∩ XL = (XR ◦ XL) ◦ (XR ◦ XL) = (XR ◦ XR) ◦ (XL ◦ XL) =
XR2 ◦ XL2 = XR2L2 = XL2R2 , which implies that R ∩ L = L2R2.

(iii) =⇒ (ii) : It is simple.
(ii) =⇒ (i) : It can be followed from Corollary 6.

Lemma 14 Let R be a right ideal and L be a left ideal of a unitary AG-groupoid S with
left identity respectively. Then ,RL is a left ideal of S.

Proof It is simple.

Theorem 15 Let S be an AG***-groupoid. Then, the following conditions are equivalent:

(i) S is weakly regular;
(ii) 〈R〉a2 ∩ 〈L〉a = 〈R〉a2 〈L〉a · 〈R〉a2 and 〈R〉a2 is semiprime;
(iii) R ∩ L = RL · R and R is semiprime;
(iv) fA

∼∩ gB = (fA ◦ gB) ◦ fA and fA is soft semiprime;
(v) S is weakly regular and |E| = 1, (a = ax · a, ∀ a, x ∈ E);
(vi) S is weakly regular and ∅ �= E ⊆ S is semilattice.

Proof (i) =⇒ (vi) =⇒ (v) : It can be followed from Theorem 7.
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(v) =⇒ (iv) : Let fA and gB be any SI -left-ideals of a weakly regular S over U. Now, for
a ∈ S, there exist some x, y ∈ S such that a = ax · ay = ax · (ax · ay)y = ((ax · ay)y · x)a =
(xy · (ax · ay))a = (ax · (xy · ay))a = (ax · (a · (xy)y))a.
Therefore,

((fA ◦ gB) ◦ fA)(a) =
⋃

a=(ax·(a·(xy)y))a
{(fA ◦ gB)(ax · (a · (xy)y)) ∩ gB(a)}

⊇
⋃

ax·(a·(xy)y=ax·(a·(xy)y
{fA(ax) ∩ gB(a · (xy)y)} ∩ gB(a)

⊇ fA(ax) ∩ gB(a · (xy)y) ∩ gB(a) ⊇ fA(a) ∩ gB(a),

which shows that (fA ◦ gB) ◦ fA
∼⊇ fA

∼∩ gB. By using Lemmas 5 and 3, it is easy to show

that (fA ◦ gB) ◦ fA
∼⊆ fA

∼∩ gB. Thus, fA
∼∩ gB = (fA ◦ gB) ◦ fA. Also, by using Lemma 3, fA is

soft semiprime.
(iv) =⇒ (iii) : Let R and L be any left and right ideals of S respectively. Then, by

Lemma 1, XR and XL are the SI-right-ideal and SI -left-ideal of S over U respectively. Now,
by using Lemmas 2, 14, we get XR∩L = XR

∼∩ XL = (XR ◦ XL) ◦ XL = XRL·R, which shows
that R ∩ L = RL · R. Also, by using Lemma 6, R is semiprime.

(iii) =⇒ (ii) : It is obvious.
(ii) =⇒ (i) : Since Sa2 ∪ a2 and Sa ∪ a are the right and left ideals of S containing a2

and a respectively. Thus, by using given assumption and Lemma, we get

a ∈ (Sa2 ∪ a2) ∩ (Sa ∪ a) = (Sa2 ∪ a2)(Sa ∪ a) · (Sa2 ∪ a2)

⊆ S(Sa ∪ a) · (Sa2 ∪ a2) = (S2a ∪ Sa)(Sa2 ∪ a2)

= (S2a · Sa2) ∪ (S2a · a2) ∪ (Sa · Sa2) ∪ (S2a · a2)
⊆ (Sa · a2S) ∪ (Sa · Sa) ∪ (Sa · a2S) ∪ (Sa · Sa)
⊆ (Sa · Sa) ∪ (Sa · Sa) ∪ (Sa · Sa) ∪ (Sa · Sa)
= Sa · Sa = aS · aS.

Hence, S is weakly regular.

Comparison of SI-left (right, two-sided, interior) ideals
A very major and an abstract conclusion from this section is that SI-left-ideal, SI-right-
ideal and SI-interior-ideal need not to be coincide in an AG-groupoid S even if S has a
left identity, but they will coincide in a right regular class of an AG-groupoid S with left
identity.
E-1. Take a collection of 8 chemicals as an initial universe set U given by U =

{s1, s2, s3, s4, s5, s6, s7, s8}.
Let a set of parameters S = {1, 2, 3, 4, 5} be a set of particular properties of each chemical

in U with the following type of natures:
1 stands for the parameter "density",
2 stands for the parameter "melting point",
3 stands for the parameter "combustion",
4 stands for the parameter "enthalpy",
5 stands for the parameter "toxicity".
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Let us define the following binary operation on a set of parameters S as follows.
∗ 1 2 3 4 5
1 1 1 1 1 1
2 1 2 2 2 2
3 1 2 4 5 3
4 1 2 3 4 5
5 1 2 5 3 4
It is easy to check that (S, ∗) is non-commutative and non-associative. Also, by routine

calculation, one can easily verify that (S, ∗) forms an AG-groupoid with left identity 4.
Note that S is left (right) regular. Indeed, for a ∈ S there does exists some x ∈ S such that
a = xa2 (a = a2x).
Let A = S and define a soft set fA of S over U as follows:

fA(x) =

⎧
⎪⎨

⎪⎩

{s1, s2, s3, s4,s5, s6} if x = 1
{s2, s3, s4,} if x = 2

{s2, s3 if x = 3 = 4 = 5

⎫
⎪⎬

⎪⎭
.

Then, it is easy to verify that fA is an SI -interior-ideal of S over U .
E-2. There are seven civil engineers in an initial universe set U given by U =

{s1, s2, s3, s4, s5, s6, s7}.
Let a set of parameters S = {1, 2, 3} be a set of status of each civil engineer inU with the

following type of attributes:
1 stands for the parameter “critical thinking”,
2 stands for the parameter “decision making”,
3 stands for the parameter “project management”.
Let us define the following binary operation on a set of parameters S as follows.
∗ 1 2 3
1 1 1 1
2 3 3 3
3 1 1 1
It is easy to check that (S, ∗) is non-commutative and non-associative. One can easily

verify that (S, ∗) forms an AG-groupoid. Note that S is not left (right) regular. Indeed for
3 ∈ S there does not exists some x ∈ S such that 3 = x ∗ 32 (3 = 32 ∗ x). Let A = S and
define a soft set fA of S over U as follows:

fA(x) =

⎧
⎪⎨

⎪⎩

{s1, s2, s3, s4} if x = 1
{s1, s2, s3} if x = 2
{s2, s3} if x = 3

⎫
⎪⎬

⎪⎭
.

Then, it is easy to verify that fA is an SI -interior-ideal of S over U but it is not an SI

-left-ideal, SI-right-ideal, and SI -interior-ideal of S which can be seen from the following:

fA(2 ∗ 2) � fA(2) and fA(3 ∗ 2) � f (2).

Lemma 15 Every SI-right-ideal of an AG-groupoid S with left identity over U is an SI-
left-ideal of S over U .

Proof It is simple.

The converse of above Lemma is not true in general which can be seen from the
following example.
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E-3. Let us consider an AG-groupoid S with left identity 4 given in an Example 1 with
an initial universe set U = {s1, s2, ..., s12}. Let a set of parameters S = {1, 2, 3, 4, 5} be a set
of status of houses in which,
1 stands for the parameter “beautiful” ,
2 stands for the parameter “cheap” ,
3 stands for the parameter “in good location” ,
4 stands for the parameter “in green surroundings” ,
5 stands for the parameter “secure” .
It is important to note that S is not right regular because for 3 ∈ S there does not exists

some x ∈ S such that 3 = x ∗ 32.
Let A = S and define a soft set fA of S over U as follows:

fA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U if x = 1
{s2, s3, s4,s5,s6,s7,s8} if x = 2

{s2, s3, s4,s5,s6} if x = 3
{s2, s3, s4,s5} if x = 4

{s1, s2, s3, s4,s5,s6,s7,s8, s9, s10} if x = 5

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

It is easy to verify that fA is an SI-left-ideal of S over U , but it is not an SI-right-ideal of S
over U , because fA(2 ∗ 4) � fA(2). Also, one can easily see that fA is an SI-interior-ideal of
S over U but it is not an SI-two-sided-ideal of S over U .
Note that every SI-two-sided-ideal of an AG-groupoid S with left identity over U is an

SI-interior-ideal of S over U.

Theorem 16 Let fA be any soft set of a right regular AG-groupoid S with left identity over
U. Then, fA is an SI -left-ideal of S over U if and only if fA is an SI-right-ideal of S over U if
and only if fA is an SI-two-sided-ideal of S over U if and only if fA is an SI -interior-ideal of
S over U .

Proof Assume that fA is any SI-left-ideal of a right regular S with left identity over U.
Let a, b ∈ S. For a ∈ S, there exists some x ∈ S such that a = xa2. Thus, ab = xa2 ·
b = (a · xa)b = (b · xa)a. Therefore, fA((b · xa)a) ⊇ fA(a). Now, by using Lemma 15,
fA is an SI-left-ideal of S over U if and only if fA is an SI-right-ideal of S over U. Let
fA is any SI-right-ideal of a right regular with left identity over U. Let a, b, c ∈ S, then
fA(ab · c) = fA((xa2 · b)c) = fA(cb · xa2) = fA(a2x · bc) = fA(b(a2x · c)) ⊇ fA(b). Again
assume that fA is any SI -interior-ideal of a right regular S with left identity over U. Thus,
fA(ab) ⊇ fA(xa2 · b) ⊇ fA(a2) = fA(xa2 · xa2) = fA(a2x · a2x) = fA((aa)(a2x · x)) ⊇ fA(a),
which is what we set out to prove.

Conclusions
Every AG-groupoid with left identity can be considered as an AG***-groupoid, but
the converse is not true in general. This leads us to the fact that an AG***-groupoid
can be seen as the generalization of an AG-groupoid with left identity. Thus, the
results of “Right regular AG-groupoids” section can be trivially followed for an AG***-
groupoid.
The idea of soft sets in an AG-groupoid will help us in verifying the existing character-

izations and to achieving new and generalized results in future works. Some of them are
as under:
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1. To generalize the results of a semigroups using soft sets.
2. To characterize a newly developed substructure called an AG***-groupoid through

soft sets.
3. To study the structural properties of an AG-hypergroupoid by using soft sets.
4. To introduce and examine the concept of a �-AG-groupoid in terms of soft sets.
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