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Abstract

In this paper, a fluid queue driven by truncated queue with discouraged arrivals is
considered. Using the efficient matrix technique, the expressions of the steady-state
distribution of both the buffer content and stationary state probabilities of
background birth-death process are acquired. Then, performance measures and
analysis of server utilization and mean buffer content are carried out.
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Introduction
The study of fluid queueing system with finite space is very useful and important in a

plethora of modern applications. In fact, there are numerous situations in which such

phenomena occur and need to be investigated, for example, traffic shaping and model-

ing of transport control protocol, computer networks, and inventory and production

systems, see also Adan [1], Anick et al. [2], Barbot [3], Kulkarni [4], and Mitra [5] for

more details.

Many authors have studied fluid queues driven by a finite queueing system. Closed

form expressions of eigenvalues and eigenvectors are obtained by Lenin and Parthasar-

athy [6] for the tridiagonal matrix in fluid queues driven by an M/M/1/N queue. Fur-

ther, the distribution of the exact buffer occupancy is obtained based on a spectral

expansion. Lenin and Parthasarathy [7] considered an infinite capacity fluid buffer in

which fluid at variable rates is received and released in a similar way to a state of trun-

cated birth-death process. Mao et al. [8, 9] discussed a fluid model driven by a simple

queue having single and multiple exponential vacations. Therefore, a system of first

order homogeneous linear differential equations is derived for the distribution of the

trivariate process of external environment and buffer content and is solved employing

the standard spectral method. Viswanathan et al. [10] used two independent finite state

birth-death processes to drive a fluid queue model in order to study the buffer occu-

pancy distribution in high-speed networks. Furthermore, several studies have discussed

the fluid queues driven by birth-death process such as [11–14].
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In this paper, the authors analyze a fluid model driven by a simple queue with

discouraged arrivals. In particular, a system matrix for Laplace transform is

derived for the steady-state distribution of the occupancy of buffer, in the “Model

description” section, and solve it using the matrix approach method in the

“Stationary solution of fluid queue driven by M/M/1/N queue with discouraged

arrivals” section. Some performance measures, such as mean buffer content and

server utilization, are obtained in the “Some performance measures in fluid

model” section. Finally, the numerical illustrations and conclusions are presented

in the “Numerical illustrations” and “Conclusions” sections.

Model description
Assume that there is a fluid model driven by a single-server queueing process having

state-dependent arrival and service rates. The model is structured from an infinitely

large buffer where the fluid flow is regulated via the state of the background queueing

process. Denote the background queuing process by {X(t), t ≥ 0} which has values in

Ω = {0, 1, 2, ...,N}, and let pj ¼ lim
t→∞

PfXðtÞ ¼ jg; j∈Ω . Here, X(t) refers to the number

of customers in the system at time t. Let λj and μj denote the mean arrival and service

rates, respectively, when there are j customers in the queue. Both the interarrival times

and the service times are exponentially distributed. In addition, the service discipline is

first in first out (FIFO). We denote by Z(t), the content of the buffer, i.e., the amount of

fluid in the buffer, at time t. We will assume that the buffer content changes do not de-

pend on X, i.e., the input rate minus the output rate, such that it can take both positive

or negative values. For the case where the buffer is empty and the Markov Process is in

a state 0 with rate r0 < 0, therefore the buffer will be still empty. Assume μ0 = λN = 0

and μj = λj = 0, if j ∉Ω. It is obvious that, the 2-dimensional process {X(t), Z(t), t ≥ 0}

creates a Markov process with unique stationary distribution under a suitable stability

condition [15].

Therefore, the following differential equation describes time change in Z(t),

dZ tð Þ
dt

¼
( 0; if Z tð Þ ¼ 0; andX tð Þ ¼ 0

r0; if Z tð Þ ¼ 0; andX tð Þ > 0;
r; if Z tð Þ > 0:

ð1Þ

The limit distribution for Z(t) exists as t→ ∞ , and the stationary net input rate must
be negative [7], i.e.,

d ¼ r0 p0 þ r
XN
j¼1

pj < 0; ð2Þ

where pj, j ∈Ω are the stationary state probabilities corresponding to the background

birth-death process. Further, assume that the above stability conditions are satisfied.

Letting

F j t; zð Þ ≡ Pr X tð Þ ¼ j;Z tð Þ≤zf g; j∈Ω; t; z≥0; ð3Þ

The steady state of Fj(t, z) can be obtained as t→∞ by the following formula:
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F j zð Þ ≡ lim
t→∞

Pr X tð Þ ¼ j;Z tð Þ≤zf g; j∈Ω; z≥0 ð4Þ

It can be shown that the Kolmogorov forward equations for the Markov process
{X(t), Z(t), t ≥ 0} are represented as

∂F0 t; zð Þ
∂t

¼ −r0
∂F0 t; zð Þ

∂z
−λ0F0 t; zð Þ þ μ1F1 t; zð Þ; ð5Þ

∂F j t; zð Þ
∂t

¼ −r
∂F j t; zð Þ

∂z
− λ j þ μ j

� �
F j t; zð Þ þ λ j−1F j−1 t; zð Þ

þ μ jþ1F jþ1 t; zð Þ; j∈Ω− 0;Nf g ð6Þ
∂FN t; zð Þ

∂t
¼ −r

∂FN t; zð Þ
∂z

þ λN−1FN−1 t; zð Þ−μN FN t; zð Þ; ð7Þ

Assume that the process is in equilibrium state ∂Fj(t, z)/∂t ≡ 0 and Fj(t, z) ≡ Fj(z).

Hence, the above system (5–7) is reduced to the next system of ODEs:

dF0 zð Þ
dz

¼ −
λ0
r0

F0 zð Þ þ μ1
r0

F1 zð Þ; ð8Þ

dF j zð Þ
dz

¼ −
λ j þ μ j

� �
r

F j zð Þ þ λ j−1

r
F j−1 zð Þ þ μ jþ1

r
F jþ1 zð Þ; z≥0; j∈Ω − 0;Nf g ð9Þ

dFN zð Þ
dz

¼ λN−1

r
FN−1 zð Þ− μN

r
FN zð Þ; ð10Þ

The buffer content increases for positive the net input rate of fluid flow into the buf-

fer such that the buffer cannot stay empty. It follows that the solution to (8–10) must

satisfy the boundary conditions.

F j 0ð Þ ¼ 0; j ∈ Ω; r > 0 ð11Þ
Pr Z ¼ 0f g ¼ F0 0ð Þ ¼ d0; for some constant d0 0 < d0 < 1ð Þ ð12Þ

The stationary probability of the empty fluid queue is expressed as:
Pr Z ¼ 0f g ¼ d
r0

¼
r0p0 þ

XN
j¼1

rp j

r0
¼ r0p0 þ r 1−p0ð Þ

r0
: ð13Þ

Moreover, the following relation should also be satisfied

F j ∞ð Þ ≡ lim
z→∞

F j zð Þ ¼ pj; j∈Ω: ð14Þ

Stationary solution of fluid queue driven byM/M/1/N queue with discouraged
arrivals
The fluid model discussed in the previous section is investigated when it has the back-

ground process as an M/M/1/N queue with mean arrival and service rates to be λ j

¼ λ
jþ1 and μj = μ, respectively.

Taking Laplace transform of Eqs. (8–10), with respect to z, we have

s F0
� sð Þ−F0 0ð Þ ¼ −

λ0
r0

F0
� sð Þ þ μ1

r0
F�

1 sð Þ; ð15Þ
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s F j
� sð Þ−F j 0ð Þ ¼ −

λ j þ μ j

� �
r j

F j
� sð Þ þ λ j−1

r j
F j−1

� sð Þ

þ μ jþ1

r j
F jþ1

� sð Þ; s≥0; j∈Ω− 0;Nf g ð16Þ

s FN
� sð Þ−FN 0ð Þ ¼ λN−1

rN
FN−1

� sð Þ− μN
rN

FN
� sð Þ; ð17Þ

where

F j
� sð Þ ¼

Z∞
0

e−sz F j zð Þdz and F0 0ð Þ ¼ d0 ð18Þ

Matrix notation (15–17) can be given as:

A sð Þ F� sð Þ ¼ F 0ð Þ ð19Þ

where F�ðsÞ ¼ ½F�
0ðsÞ; F�

1ðsÞ; :::; F�
NðsÞ�T , Fð0Þ ¼ ½F0ð0Þ; F1ð0Þ; :::; FN ð0Þ�Tand

A sð Þ ¼

sþ λ0
r0

−
μ1
r0

0::: 0 0

−
λ0
r

sþ λ1 þ μ1
r

−
μ2
r
::: 0 0

0 −
λ1
r

sþ λ2 þ μ2
r

−
μ3
r
::: 0 0

: : : : 0 0
: : : : 0 0
: : : : 0 0

0 0 0 0 ::: −
λN−1

r
sþ μN

r

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

The matrix A(s) transforms into a symmetric tridiagonal matrix by diagonal matrix

Φ ¼ diag ϕ0;ϕ1; :::;ϕN½ � ð20Þ

with

ϕ0 ¼ 1; ϕi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i! r
r0

μ
λ

� �i
s

; i ¼ 1; 2; :::;N ð21Þ

and we get

sI þ B ¼ ΦAΦ−1 ð22Þ

where the symmetric tridiagonal matrix B with elements are the same that of matrix

A(s).
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B ¼

λ0
r0

ffiffiffiffiffiffi
λμ
r0r

s
0 0::: 0 0ffiffiffiffiffiffi

λμ
r0r

s
λ
2r

þ μ
r

ffiffiffiffiffiffiffi
λμ
2r2

r
0 ::: 0 0

0

ffiffiffiffiffiffiffi
λμ
2r2

r
λ
3r

þ μ
r

ffiffiffiffiffiffiffi
λμ
3r2

r
::: 0 0

: : : : 0 0
: : : : 0 0
: : : : 0 0

0 0 0 0::::
λ

N−1ð Þr þ
μ
r

ffiffiffiffiffiffiffiffi
λμ
Nr2

r

0 0 0 0 :::

ffiffiffiffiffiffiffiffi
λμ
Nr2

r
μ
r

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

If we take the determinant θn(s)of the bottom right square submatrices of the matrix

A(s) and βn(s) is the determinant of the top left submatrices of the matrix A(s), then

θn(s) and βn(s) satisfy the following difference equations.

θn sð Þ− sþ λ
N−nþ 2Þ þ μ

� �
1
r

� �
θn−1 sð Þ þ λμ

r2 N−nþ 2ð Þ θn−2 sð Þ ¼ 0 ð23Þ

βn sð Þ− sþ λ
n
þ μ

� �
1
r

� �
βn−1 sð Þ þ λμ

n−1ð Þr2 βn−2 sð Þ ¼ 0; n ¼ 2; 3; :::;N : ð24Þ

with initial conditions

θ0 sð Þ ¼ 1 ¼ β0 sð Þ and θ1 sð Þ ¼ sþ μ
r
; β1 sð Þ ¼ sþ λ

r0
ð25Þ

Can be represent the elements of the inverse of the matrix sI + Bas following
cij sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i! λμð Þ j−i
j!r2 j−ið Þ

s
θN− j sð Þβi sð Þ
j sI þ B j ; i < j

θN−i sð Þβi sð Þ
j sI þ B j ; i ¼ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j! λμð Þi− j
i!r2 i− jð Þ

s
θN−i sð Þβ j sð Þ
j sI þ B j ; i > j

8>>>>>>>><
>>>>>>>>:

ð26Þ

From Eq. (19), we see that:

F sð Þ ¼ A sð Þ−1F 0ð Þ
¼ Φ−1 sI þ Bð Þ−1Φ F 0ð Þ ð27Þ

Fn
� sð Þ ¼

XN
k¼0

ϕn
−1ϕk cnk Fk 0ð Þ

¼ ϕn
−1ϕ0 cn0 F0 0ð Þ

ð28Þ

where

ϕn
−1ϕ0 ¼

1 ; n ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
n!r

λ
μ

� �n
s

; n ¼ 1; 2; :::;N

8><
>: ð29Þ
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cn0 ¼

θN sð Þβ0 sð Þ
j sI þ B j ; n ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λμð Þn
n!r0 r2n−1

s
θN sð Þβ0 sð Þ
j sI þ B j ; n ¼ 1; 2; :::;N

8>>><
>>>:

ð30Þ

Let ξm (m = 0, 1, ...,N)are the roots of polynomial of ∣A(s)∣. These roots are the nega-
tive eigenvalues of the matrix M(0). Since the matrix Mis positive definite, real and

symmetric, the eigenvalues of Mare real, distinct, and positive. Hence the roots of

∣A(s)∣ are real, distinct, and negative. The determinant ∣sI + B ∣ = s ∣M(s)∣is equal to

s
QN
m¼1

ðs−ξmÞ, where M(s) is given by:

M sð Þ ¼

sþ λ0
r0

þ μ
r

−

ffiffiffiffiffiffiffi
λμ
2r2

r
0 0::: 0 0

−

ffiffiffiffiffiffiffi
λμ
2r2

r
sþ λ

2r
þ μ

r
−

ffiffiffiffiffiffiffi
λμ
3r2

r
0::: 0 0

0 −

ffiffiffiffiffiffiffi
λμ
3r2

r
sþ λ

3r
þ μ

r

ffiffiffiffiffiffiffi
λμ
4r2

r
::: 0 0

: : : : 0 0
: : : : 0 0
: : : : 0 0

0 0 0 0:::: sþ λ
N−2ð Þr þ

μ
r

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λμ

N−1ð Þr2

s

0 0 0 0 ::: −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λμ

N−1ð Þr2

s
sþ λ

N−1ð Þr þ
μ
r

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

Fn
� sð Þ ¼

θN sð Þβ0 sð Þdo

j sI þ B j ; n ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
n!r

λ
μ

� �n
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λμð Þn
r0 r2n−1 n!

s
θN−n sð Þβ0 sð Þd0

j sI þ B j ; n ¼ 1; 2; :::;N

8>>><
>>>:

ð31Þ

or
Fn
� sð Þ ¼

θN sð Þdo

s
YN
i¼1

s−ξ ið Þ
; n ¼ 0

1
n!

λ
r

� �n θN−n sð Þd0

s
YN
i¼1

s−ξ ið Þ
; n ¼ 1; 2; :::;N

8>>>>>>>><
>>>>>>>>:

ð32Þ

Fn
� sð Þ ¼ pn

s
þ
XN
k¼1

dn;k

s−ξk
ð33Þ

where
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dn;k ¼

θN ξkð Þdo

ξk
YN

i¼1;i≠k

ξk−ξ ið Þ
; n ¼ 0

1
n!

λ
r

� �n θN−n ξkð Þd0

ξk
YN

i¼1;i≠k

ξk−ξ ið Þ
; n ¼ 1; 2; :::;N

8>>>>>>>>><
>>>>>>>>>:

ð34Þ

Applying Laplace inverse transform on Eq. (33), we get
Fn zð Þ ¼ pn þ
XN
k¼1

dn;k e
−ξkz; n ¼ 0; 1; :::;N ; z≥0 ð35Þ

Similarly, the closed form expressions for Fn(z) of both models as given by (34) and

(35) are obtained analytically. Therefore, the stationary distribution of the buffer con-

tent is given as follows:

F zð Þ ¼ lim
t→∞

Pr Z tð Þ≤zð Þ ¼
XN
j¼o

F j zð Þ ð36Þ

Or
F zð Þ ¼ 1þ
XN
j¼0

XN
k¼1

d j;ke
−ξk z ð37Þ

Finally, the constants pnmust satisfy the conditions (14). Also,

pn ¼ lim
s→0

s Fn
� sð Þ; and θn 0ð Þ ¼ μ

r

� �n
ð38Þ

Then,
pn ¼
ρn

n!
p0; n ¼ 0; 1; :::;N ð39Þ

p0 ¼ 1þ
XN
n¼1

ρn

n!

" #−1

ð40Þ

Where ρ ¼ λ :
μ

Some performance measures in fluid model
In this section, some crucial performance measures are considered. The formulation

for these measures is given as follows:

Server utilization

The probability that buffer is non-empty is found by.

Utilization ¼ 1−
XN
j¼0

F j 0ð Þ ¼ 1−F0 0ð Þ: ð41Þ

or
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Utilization ¼ 1−d0; 0 < d0 < 1 ð42Þ

where

d0 ¼ d
r0

¼ r0−rð Þp0 þ r
r0

ð43Þ

Expected buffer content

The expected buffer content E(Z) can be written as:

E Zð Þ ¼
Z∞
0

1−
XN
j¼0

F j zð Þ
" #

dz: ð44Þ

or
E Zð Þ ¼
XN
j¼0

XN
k¼1

d j;k

ξk
ð45Þ

Numerical illustrations
This part illustrates the variations of the stationary distribution of the buffer content

and the expected buffer content for varying values of parameters. Figure 1 depicts the

behavior of the buffer content distribution, F(z) against the buffer size z for λ = 1, μ = 2,

r0 = − 1, and r = 1, for different value of N. Figure 2 presents the corresponding behav-

ior of the expected buffer content against λ for the same set of parameter values and

N = 10.

Conclusions
In this paper, a fluid queue model driven by an M/M/1/N queue with discouraged ar-

rivals is investigated. The steady-state distribution of the buffer occupancy is derived in

terms of determinants of the top left and bottom right matrices using a computable

matrix technique. As illustrated in Fig. 1, F(z) is an increasing function, when the limit
Fig. 1 The buffer content distribution, F(z) vs. the buffer size z for different values of N



Fig. 2 The expected buffer content E(z) against λ

EL-paoumy and Radwan Journal of the Egyptian Mathematical Society           (2020) 28:14 Page 9 of 10
waiting space is increased the distribution of the buffer content decrease with Nand the

cumulative distribution function of buffer occupancy it is observed that there is a posi-

tive mass at z→ 0 and F(z)→ 1 as z→∞. Hence, this means that the buffer occupancy

has mixed distribution. Also, Fig. 2 shows the mean of the stationary buffer content

with arrival rate λ. Finally, some performance measures such as server utilization and

mean buffer content are acquired.
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