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Abstract
In this article, a novel stochastic multi-strain tuberculosis model is presented. Numerical
simulations for this model are the main aim of this work. A non-standard theta Milstein
method is constructed to study the proposed model, where the proposed method is
based on choosing the weight factor theta. The main advantage of this method is it
can be explicit or implicit with large stability regions using the idea of the weighed step
introduced by R.E. Mickens. Mean-square stability of nonstandard theta Milstein
method is studied. The new scheme shows a greater behavior compared to the theta
Milstein method. It is concluded that the proposed scheme preserves the positivity of
the solution and numerical stability in larger region than the standard method.

Keywords: A non-standard theta Milstein method, Multi-strain Tuberculosis, Mean
square stability analysis

Introduction
It is well known that the solution of stochastic differential equations is either difficult in
general or we do not have explicit solutions. Numerical schemes provide an easy way to
integrate these equations, see [1–8]. Moreover, numerical simulations are considered the
only way to solve these mathematical models in general or to derive the desired infor-
mation. Therefore, the accuracy of these numerical solutions could be a major factor
in choosing the appropriate numerical method and solving mathematical models. The
usual numerical schemes even in the deterministic case such as Euler, Runge-Kutta, and
Euler-Maruyama in the stochastic case do not preserve dynamical properties without
conditions on the time step of the numerical integration; see [9] and references therein.
The non-standard finite difference (NSFD) schemes were firstly proposed by Mickens
[10], both for ordinary differential equations (ODEs) and partial differential equations
(PDEs) with more accuracy than standard finite difference method (SFDM).
Recently, many interesting studies were presented to the stochastic tuberculosis (TB)

model such as [11–14]. Also, several papers considered modeling tuberculosis (TB)
[15–20]; however, the proposed model introduces several factors in spreading TB, for
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instance, the fast infection, the exogenous reinfection, and secondary infection along with
the resistance factor [21].
The aim of this paper is to develop an accurate numerical algorithm for approximating

the numerical solutions of the stochastic multi-strain TB model. This scheme is based on
the rules introduced in the deterministic case by R.E. Mickens (see [10, 22–24, 28, 32]). A
new technique is called a nonstandard theta Milstein method (NTMM). It is constructed
to illustrate the behavior of the solutions of SDE with various value of θ . Mean-square
(MS) stability of nonstandard theta Milstein method is studied.
On the other hand, mathematical models are considered as important tools to

describe several problems in natural sciences such as biology, physics, and meteorology
([15, 25–32]).
To the best of our knowledge, the NTMM for solving the stochastic multi-strain TB

model has never been explored.
This paper is organized as follows. In the “A stochastic multi-strain TB model” section,

a stochastic multi-strain TB model is constructed. In the “Stability of the SDE model
for multi-strain tuberculosis model” section, the stability of the SDE model for multi-
strain TB model is proved. In the “Basic properties of the solution” section, NTMM is
constructed to solve a stochastic multi-strain TB model, and the mean-square stability
of NTMM is proved in the “Mean-square stability of NSTMM” section. The numerical
implementation of the proposed technique is given in the “Simulations” section. In the
“Conclusions” section, the conclusions are given.

A stochastic multi-strain TBmodel
In this section, we introduce the multi-strain TB model which is given in [33]; this
model incorporates three strains: drug-sensitive, emerging multi-drug-resistant (MDR),
and extensively drug-resistant (XDR). The population of interest is divided into eight
compartments, see Table 1. Let us assume that (�,�, {�t}t≥t0 ,P) is a complete probability
space with a filtration {�t}t≥t0 . LetW (t) be an eight-dimensional Wiener process defined
on this probability space.We assume that the eight coordinatesW1(t),W2(t), ...,W8(t) are
mutually independent and ξ1, ξ2, , ..., ξ8 represent the intensities of the white noises. The
stochastic perturbation in our model is a white noise type that is directly proportional to
the all variables of the model. Therefore, the stochastic system can be described by the Itô
system as follows:

Table 1 All variables in system (1)–(8) and their definitions

Variable Definition

S(t) The susceptible population (individuals who have never encountered TB)

Ls(t) The individuals infected with the drug-sensitive TB strain but who are

in a latent stage, i.e., who are neither showing symptoms nor infecting others

Lm(t) Individuals latently infected with MDR-TB

Lx(t) Individuals latently infected with XDR-TB

Is(t) Individuals infected with the drug-sensitive TB strain who are infectious

to others (and most likely showing symptoms as well)

Im(t) Individuals who are infectious with the MDR-TB strain

Ix(t) Individuals who are infectious with the XDR-TB strain

R(t) Individuals for whom treatment was successful

N(t) The total population,

N = S + Ls + Lm + Lx + Is + Im + Ix + R.
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dS(t) =
(
b − dS − βs

SIs
N

− βm
SIm
N

− βx
SIx
N

)
dt + ξ1SdW1(t), (1)

dLs(t) =
(

λsβs
SIs
N

+ σsλsβs
RIs
N

− αssβs
LsIs
N

− αsmβm
LsIm
N

−αsxβx
LsIx
N

+ γsIs − (d + εs + t1s)Ls
)
dt + ξ2LsdW2(t), (2)

dLm(t) =
(

λmβm
SIm
N

+ σmλmβm
RIm
N

+ αsmβmλm
LsIm
N

− αmmβm
LmIm
N

− αmxβx
LmIx
N

+ γmIm − (d + εm)Lm + t1sLs − P1t1sLs + t2sIs

− P2t2sIs
)
dt + ξ3LmdW3(t), (3)

dLx(t) =
(

λxβx
SIx
N

+ σxλxβx
RIx
N

+ αsxβxλx
LsIx
N

+ αmxβxλx
LmIx
N

− αxxβx
LxIx
N

− (d + εx)Lx + γxIx + t2mIm − P3t2mIm
)
dt

+ ξ4LxdW4(t), (4)

dIs =αssβs
LsIs
N

+ (1 − λs)βs

(
SIs
N

+ σs
RIs
N

)
+ εsLs

− (d + δs + t2s + γs)Is)dt + ξ5IsdW5(t), (5)

dIm =αmmβm
LmIm
N

+ (1 − λm)βm

(
SIm
N

+ σm
RIm
N

+ αsm
LsIm
N

)

+ εmLm − (d + δm + t2m + γm)Im)dt + ξ6ImdW6(t), (6)

dIx(t) =
(

αxxβx
LxIx
N

+ (1 − λx)βx

(
SIx
N

+ σx
RIx
N

+ αsx
LsIx
N

+ αmx
LmIx
N

)

+ εxLx − (d + δx + t2x + γx)Ix
)
dt + ξ7IxdW7(t), (7)

dR =P1t1sLs + P2t2sIs + P3t2mIm + t2xIx − σsβs
RIs
N

− σmβm
RIm
N

− σxβx
RIx
N

− dR)dt + ξ8RdW8(t). (8)

To investigate the dynamical behavior of the proposed model, the first thing is whether
we have a unique global solution (i.e., no explosion in a finite time) for any given initial
value. Consider the following d-dimensional stochastic system:

dX(t) = F(t,X(t))dt + G(t,X(t))dW (t), (9)

where F(t,X(t)) is a function in Rd defined in [ t0,∞[×R andG(t,X(t)) is a d×mmatrix,
F andG are locally Lipschitz functions in X, andW = W (t)t≥0 is a d-dimensionalWiener
process. We assume that X = 0 is a solution of system (1)–(8). The coefficients of Eq. (9)
are generally required to satisfy linear growth conditions and local Lipschitz conditions
[34–36]. If the coefficients F and G of (9) do not satisfy linear growth conditions, the
solution of system (9) may explode at a finite time. From [36], the coefficients are locally
Lipschitz. Consequently, the system has a unique local solution for any feasible initial
state.
In order to study stability of disease-free equilibrium point E∗, we assume that there are

global solutions which are almost surely non-negative.



Sweilam and AL-Mekhlafi Journal of the EgyptianMathematical Society           (2020) 28:12 Page 4 of 16

Stability of the SDEmodel for multi-strain tuberculosis model
In this section, the theorem below can be interpreted as follows; at least, the stochastic
perturbations do not destabilize the system. Let (R0s,R0m,R0x) the basic reproduction
number of drug-sensitive strain, MDR strain, and XDR strain. Let us define R∗ as follows:

R∗ = max(R0s,R0m,R0x), where (10)

R0s = βs(εs + (1 − λs)(d + t1s))
(εs + d + t1s)(t2s + δs + d) + γs(t1s + d)

,

R0m = βm(εm + (1 − λm)d)

(εm + d)(t2m + δm + d) + dγm
,

R0x = βx(εx + (1 − λx)d)

(εx + d)(t2x + δx + d) + dγx
.

Theorem 1 If R∗ < 1, then disease-free equilibrium is a.s exponentially stable.

Proof Assume that [33]:

0 ≤ αss ≤ (1 − λs), (11)

0 ≤ αmm ≤ (1 − λm), (12)

0 ≤ αxx ≤ (1 − λx). (13)

Using the fact that S(t)+σsR(t)
N < 1 and that Is(t) ≤ I∞s at any t, it follows

L∞
s ≤ λsβs + γs

d + t1s + εs
I∞s . (14)

Using assumption (11), and for simplicity, let us define a1 := (d + δs + t2s + γs), a2 :=
(d + εs + t1s)). The fact that S(t)+σsR(t)+Ls(t)

N < 1 and that Ls(t) ≤ L∞
s , together with

Eq. (14), implies that

0 ≤[R0s − 1]
1

a2(a2a1 − εsγs)
I∞s , (15)

since R∗ = max(R0s,R0m,R0x), R∗ < 1 implies that R0s < 1. Similarly, using assumptions
(12) and (13), we can prove the following inequalities involving Im and Ix. Define a C

8-
function V : R8+ → R+ by V (S(t), Ls(t), Lm(t), Lx(t), Is(t), Im(t), Ix(t), R(t)) which is a
non-negativity function. V (t) = (S(t)+Ls(t)+Lm(t)+Lx(t)+ Is(t)+ Im(t)+ Ix(t)+R(t)).
Thus, we can define Z = lnV by the Itô formula; we compute,

LV = 1
V
dS + 1

V
dLs + 1

V
dLm + 1

V
dLx + 1

V
dIs + 1

V
dIm + 1

V
dIx + 1

V
dR

− 1
2

[
1
V 2 dS

2+ 1
V 2 dL

2
s +

1
V 2 dL

2
m+ 1

V 2 dL
2
x+

1
V 2 dI

2
s + 1

V 2 dI
2
m+ 1

V 2 dI
2
x + 1

V 2 dR
2
]

=
(
b − dS − βs

SIs
N

− βm
SIm
N

− βx
SIx
N

)
V−1dt
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+
(

λsβs
SIs
N

+ σsλsβs
RIs
N

− αssβs
LsIs
N

− αsmβm
LsIm
N

− αsxβx
LsIx
N

+ γsIs
)

− (d + εs + t1s)Ls)V−1dt

+
(

λmβm
SIm
N

+ σmλmβm
RIm
N

+ αsmβmλm
LsIm
N

− αmmβm
LmIm
N

− αmxβx
LmIx
N

)

+ γmIm − (d + εm)Lm + (1 − P1)t1sLs + (1 − P2)t2sIs)V−1dt

+
(

λxβx
SIx
N

+ σxλxβx
RIx
N

+ αsxβxλx
LsIx
N

+ αmxβxλx
LmIx
N

− αxxβx
LxIx
N

− (d + εx)Lx + γxIx + (1 − P3)t2mIm
)
V−1dt

+
(

αssβs
LsIs
N

+ (1 − λs)βs

(
SIs
N

+ σs
RIs
N

)
+ εsLs

− (d + δs + t2s + γs)Is
)
V−1dt

+ (1 − λm)βm

(
SIm
N

+ σm
RIm
N

+ αsm
LsIm
N

)
+ αmmβm

LmIm
N

+ εmLm

− (d + δm + t2m + γm)Im)V−1dt

+
(

αxxβx
LxIx
N

+ (1 − λx)βx

(
SIx
N

+ σx
RIx
N

+ αsx
LsIx
N

+ αmx
LmIx
N

)
+ εxLx

− (d + δx + t2x + γx + ε4u4(t))Ix
)
V−1dt

+
(
P1t1sLs + P2t2sIs + P3t2mIm + t2xIx + ε4u4(t)Ix − σsβs

RIs
N

−σmβm
RIm
N

− σxβx
RIx
N

− dR
)
V−1dt − 1

2

[
ξ21 S
V 2 + ξ22Ls

V 2 + ξ23Lm
V 2 + ξ24Lx

V 2

+ξ25 Is
V 2 + ξ26 Im

V 2 + ξ27 Ix
V 2 + ξ28R

V 2

]
.

Then,

dZ = LVdt+[ ξ1SdW1 + ξ2LsdW2 + ξ3LmdW3 + ξ4LxdW4 + ξ5IsdW5

+ ξ6ImdW6 + ξ7IxdW7 + ξ8RdW8]V−1.

Therefore,

Z = Z0 +
∫ t

0
LVdt +

8∑
i=1

Gi(t), (16)

where each Gi(t) is a martingale defined as: G1(t) = ∫ t
0

ξ1SdW1
V , G2(t) = ∫ t

0
ξ2LsdW2

V ,
G3(t) = ∫ t

0
ξ3LmdW2

V , G4(t) = ∫ t
0

ξ4LxdW4
V , G5(t) = ∫ t

0
ξ5IsdW5

V , G6(t) = ∫ t
0

ξ6ImdW6
V ,

G7(t) = ∫ t
0

ξ7IxdW7
V , G8(t) = ∫ t

0
ξ8RdW8

V . Then,

lim
t→∞

Z
t

= lim
t→∞

Z0
t

+ lim
t→∞

1
t

∫ t

0
LVdt

+ lim
t→∞

1
t

8∑
i=1

Gi(t).
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Regarding the quadratic variations of the stochastic integralGi(t), we have
∫ t
0

(ξ1S)2
V 2 ds ≤

ξ21 t,
∫ t
0

(ξ2Ls)2
V 2 ds ≤ ξ22 t,

∫ t
0

(ξ3Lm)2

V 2 ds ≤ ξ23 t,
∫ t
0

(ξ4Lx)2
V 2 ds ≤ ξ24 t,

∫ t
0

(ξ5Is)2
V 2 ds ≤ ξ25 t,∫ t

0
(ξ6Im)2

V 2 ds ≤ ξ26 t,
∫ t
0

(ξ7Ix)2
V 2 ds ≤ ξ27 t,

∫ t
0

(ξ8R)2

V 2 ds ≤ ξ28 t. By the strong law of large
numbers for martingales [36], we therefore have

lim
t→∞ sup

1
t

8∑
i=1

Gi(t) = 0 (a.s).

It finally follows from (16) by dividing t on both sides and then letting t → ∞ that

lim
t→∞ sup

lnZ(t)
t

≤ lim
t→∞ sup

1
t

∫ t

0
LVdt (a.s).

We note that

LV ≤ 1
V
dS + 1

V
dLs + 1

V
dLm + 1

V
dLx + 1

V
dIs + 1

V
dIm + 1

V
dIx + 1

V
dR

− 1
2

[
1
V 2 dS

2+ 1
V 2 dL

2
s +

1
V 2 dL

2
m+ 1

V 2 dL
2
x+

1
V 2 dI

2
s + 1

V 2 dI
2
m+ 1

V 2 dI
2
x + 1

V 2 dR
2
]

=
(
b − dS − βs

SIs
N

− βm
SIm
N

− βx
SIx
N

)
V−1dt

+
(

λsβs
SIs
N

+ σsλsβs
RIs
N

− αssβs
LsIs
N

− αsmβm
LsIm
N

− αsxβx
LsIx
N

+ γsIs
)

− (d + εs + t1s)Ls)V−1dt

+
(

λmβm
SIm
N

+ σmλmβm
RIm
N

+ αsmβmλm
LsIm
N

− αmmβm
LmIm
N

− αmxβx
LmIx
N

)

+ γmIm − (d + εm)Lm + (1 − P1)t1sLs + (1 − P2)t2sIs)V−1dt

+
(

λxβx
SIx
N

+ σxλxβx
RIx
N

+ αsxβxλx
LsIx
N

+ αmxβxλx
LmIx
N

− αxxβx
LxIx
N

− (d + εx)Lx + γxIx + (1 − P3)t2mIm
)
V−1dt

+
(

αssβs
LsIs
N

+ (1 − λs)βs

(
SIs
N

+ σs
RIs
N

)
+ εsLs − (d + δs + t2s + γs)Is

)
V−1dt

+
(

(1 − λm)βm

(
SIm
N

+ σm
RIm
N

+ αsm
LsIm
N

)
+ αmmβm

LmIm
N

+ εmLm

− (d + δm + t2m + γm)Im
)
V−1dt

+
(

αxxβx
LxIx
N

+ (1 − λx)βx

(
SIx
N

+ σx
RIx
N

+ αsx
LsIx
N

+ αmx
LmIx
N

)
+ εxLx

− (d + δx + t2x + γx + ε4u4(t))Ix
)
V−1dt

+
(
P1t1sLs + P2t2sIs + P3t2mIm + t2xIx + ε4u4(t)Ix − σsβs

RIs
N

− σmβm
RIm
N

− σxβx
RIx
N

− dR
)
V−1dt − 1

2

[
ξ21 S
V 2 + ξ22Ls

V 2 + ξ23Lm
V 2 + ξ24Lx

V 2

+ξ25 Is
V 2 + ξ26 Im

V 2 + ξ27 Ix
V 2 + ξ28R

V 2

]
.
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and in fact

lim
t→∞ sup

1
t

∫ t

0
LVdt < 0,

therefore,

lim
t→∞ sup

lnZ(t)
t

< 0.

This finally proves the (a.s.) exponential stability.

Basic properties of the solution
In this section, we remind classical results about continuous and discrete stochastic
differential equation systems.

Stochastic boundedness

Stochastic boundedness is one of the most important topics because boundedness of a
system guarantees its validity in a population system. We first present the definition of
stochastically ultimate boundedness.

Definition 1 (see [37]) The solution

X(t) = (S(t), Ls(t), Lm(t), Lx(t), Is(t), Im(t), Ix(t),R(t)),

of Eqs. (1)–(8) is said to be stochastically ultimately bounded if for any ε ∈ (0, 1), there is
a positive constant δ = δ(ε) such that for any initial value X0 ∈ R8+, the solution X(t) to
(1)–(8) has the property that:

lim
t→∞ supP{|X(t)| > δ} < ε.

Numerical method for solving stochastic model

A nonstandard thetaMilsteinmethod

One of the merits of NFDM which is given by Mickens in 1980 [10, 22–24, 28, 32] is
used to study numerically the behavior of the ordinary differential equations (ODE) and
PDE efficiently. The NFDM is able to maintain the properties of the exact solution of
the original ODE or PDE. The numerical scheme is called NFDM if at least one of the
following conditions are satisfied [10–15, 22–28]:

1. The nonlocal approximation is used.
2. The discretization of the derivative is not traditional and uses a nonnegative

function.

In this paper, we consider numerical methods for the strong solution of Itô SDEs:

dz(t) = f (t, z(t))dt + g(t, z(t))dW (t), z(t0) = z0, (17)

where z(t) is a random variable with value in Rm, f : Rm −→ Rm is called the drift
function, g : Rm −→ Rm is called the diffusion function, and dW (t) is a one-dimensional
Wiener process, whose increment �W (t) = W (t + �t) − W (t) is a Gaussian random
variable N(0,�t).
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Definition 2 A general one-step theta Milstein method (TMM) is given as follows:

zn+1 = zn + θhf (tn, zn) + (1 − θ)hf (tn+1, zn+1)

+ g(tn, zn)�Wn + 1
2
g(tn, zn)

∂g
∂z

(tn, zn)[ (�W )2 − h] . (18)

Definition 3 A general one-step nonstandard theta Milstein method (NTMM) is given
as follows:

zn+1 = zn + θψ(h)f (tn, zn) + (1 − θ)ψ(h)f (tn+1, zn+1)

+ g(tn, zn)�Wn + 1
2
g(tn, zn)

∂g
∂z

(tn, zn)[ (�W )2 − h] . (19)

where ϕ(h) = h + O(h2) is a non-negative function and �Wn = W (tn+1) − W (tn).

Special cases from NTMM:

• If θ = 1, we obtain nonstandard explicit Milstein method (NEMM).
• If θ = 0, we obtain nonstandard drift implicit balanced Milstein method (NDIMM).

Remark 1 In (19) if ϕ(h) = h, then the scheme will be called theta Milstein method and
its two special cases for θ are as follows:

• If θ = 1, we obtain explicit Milstein method (EMM).
• If θ = 0, we obtain the drift implicit balanced Milstein method (DIMM).

Mean-square stability of NSTMM
The mean-square stability is a stochastic version of absolute stability, and it is a very
important concept in the numerical simulation of SDEs. A suitable way to find numerical
schemes for SDEs is analysis of MS stability.

Definition 4 [38] The equilibrium position, z(t) ≡ 0, is said to be mean-square stable if
for every ε > 0 there exists δ1 > 0 such that

‖ z(t) ‖ < ε, ∀ t ≥ 0, | z0 |< δ1, (20)

where ‖ z(t) ‖= (E | z(t) |2) 1
2 .

If, in addition to (20), there exists a δ2 > 0 such that

lim
t−→∞ ‖ z(t) ‖= 0, ∀ | z0 |< δ2,

then the equilibrium position is said to be asymptotically mean-square stable.

Definition 5 [38] Suppose that the equilibrium position of Itô’s SDE as (17). The Gaus-
sian random variable N(0,�t) is asymptotically mean-square stable. Then, a numerical
scheme that produces the iterations zn to approximate the solution z(t) of (21) is said to be
asymptotically mean-square stable if

lim
n−→∞ ‖ zn ‖= 0.

We apply one-step scheme to the scalar linear test equation

dz(t) = az(t)dt + bz(t)dW (t), z(t0) = z0, (21)
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Table 2 All parameters and the references of system (1)–(8)

Parameter Value Reference

N 20,000, 30,000 Assumed

b dN [21]

d 1/73.45 (http://www.indexmundi.com/EGYPT/life_expectancy_at_birth.html)

βs = βm = βx 14 [40]

λs = λm = λx 0.5 [21]

εs = εm = εx 0.0002 [21]

αr1,r2 0.05 [21]

γs = γm = γx 0.00002 [21]

t1s 2 [21]

t2r : r ∈ (s,m, x) t2s = 2;t2m = t2x = 1 [21]

σr 0.25 [21]

Pr 0.88 [21]

δr 0 [21]

T 4 years Assumed

with known solution z(t) = z0e(
a−b2
2 ), which is represented by

zn+1 = R(a, b, h, J)zn,

where J is the standard Gaussian random variable J = �Wn√
h

∼ N(0, 1). Saito and Mitsui

[39] introduced the following definition of mean-square (MS) stability.

Definition 6 [39] The numerical method is said to be MS stable for a, b, h if

R̄(a, b, h) = E(R2(a, b, h, J)) < 1.

where R̄(a, b, h) is called MS stability function of the numerical method.

Fig. 1 Simulations of multi-strain TB model showing the various classes with θ = 0, ξ = 1

http://www.indexmundi.com/EGYPT/life_expectancy_at_birth.html
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Fig. 2 Simulations of multi-strain TB model showing the various classes with θ = 0, ξ = 0.5

For θ = 1 of (18), EMM is given as follows,

zn+1 =zn + f (tn, zn)h + g(tn, zn)�Wn + 0.5g(tn, zn)
∂g
∂z

(tn, zn)[ (�Wn)
2 − h] . (22)

for θ = 0 of (18) by introducing implicitness in f (tn, zn)h, we arrive at IDMM.

zn+1 =zn + f (tn+1, zn+1)h + g(tn, zn)�Wn

+ 0.5g(tn, zn)
∂g
∂z

(tn, zn)[ (�Wn)
2 − h] . (23)

Fig. 3 Simulations of multi-strain TB model showing the various classes with θ = 0, ξ = 0.08



Sweilam and AL-Mekhlafi Journal of the EgyptianMathematical Society           (2020) 28:12 Page 11 of 16

Fig. 4 Simulations of multi-strain TB model showing the various classes with θ = 0, ξ = 0

If in (23) we replace h by ψ(h), we have a new method called NSIDMM; this special
case from (19) when theta = 0 and the function ψ(h) satisfies the following conditions:

ϕ(h) = h + O(h2), 0 < ϕ(h) ≤ 1, h −→ 0.

For more details about nonstandard method, see [10, 22–24, 28, 32] and the references
cited therein. Applying the NSIDMM which given as:

zn+1 = zn + f (tn+1, zn+1)ψ(h) + g(tn, zn)�Wn

+ 0.5g(tn, zn)
∂g
∂z

(tn, zn)[ (�Wn)
2 − ψ(h)] . (24)

Fig. 5 The approximate solutions with ξ = 0.5, θ = 1, h = 0.0067
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Fig. 6 Trajectories of the mean solutions of stochastic and deterministic systems with when θ = 1, ξ = 0.09 ,
h = 0.0133 by using NTMM

to the linear test Eq. (21), we obtain

zn+1 = R1(p, q, J)zn,

where p = aψ(h), q = b
√

ψ(h), and

R1(p, q, J) = 1 + qJ + 0.5q2J2 − 0.5q2

1 − p
.

The MS stability function of the NSDIM method is given by

R1(p, q) = 1 + q2 + 0.5q4

1 − p
.

The NSIDM will be MS stable if R1(p, q) < 1. The MS stability property of the
NSIDMM is better than that of IDMM.

Simulations
In this section, we simulate the SDE model in (1)–(8) numerically for the same parame-
ters in Table (2) and different values of ξ and θ . In all simulations, we use a single value
for all the ξi, i.e., ξ1 = ξ2 = ... = ξ8 = ξ with initial conditions (S(0), Ls(0), Lm(0),
Lx(0), Is(0), Im(0), Ix(0), R(0)) = ( 76

120N , 20
120N , 5

120N , 2
120N , 8

120N , 4
120N , 2

120N , 3
120N

)
and

ϕ(h) = Q(1 − e−h) where Q is less than 0.001. As we know, the population dynamics

Fig. 7 The approximate solutions with θ = 0.9, ξ = 1, h = 0.1, by using NTMM
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Fig. 8 The approximate solutions with θ = 0.35, ξ = 0.5, h = 4
30

is inevitably subjected to environmental noise. So, it is important to examine the inclu-
sion of stochastic effects into deterministic models. The simulations were run for 100,000
iterations. We use NTMM to approximate Eqs. (1)–(8); then, we have (8m + 8) of nonlin-
ear algebraic equations which can be solved using Newton’s iteration method. Figures 1,
2, 3, and 4 show the variation of (S(t), Ls(t), Lm(t), Lx(t), Is(t), Im(t), Ix(t), R(t)) with
time at different value of ξ and θ = 0; by using the suggested technique, we note that
the noise level increased when the value of ξ is big. Also, in the absence of noise, we
simulate the global stability of the endemic equilibrium of deterministic system (1)–(8)

Fig. 9 The approximate solutions with θ = 0.5, ξ = 0.5, h = 1, by using NTMM
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Fig. 10 The approximate solutions with θ = 0.5, ξ = 0.5, h = 1 by using TMM

in Fig. 4. Figure 5, shows the behavior of the approximate solutions for SDE model by
using the proposed method and TMM in comparison with the result with deterministic
model when ξ = 0. We observe that there is excellent agreement with the solutions to the
corresponding deterministic case and the solution of suggested technique in Fig. 6. Our
method converges for large h and preserves the positivity of the model state variables,
as we can see in Figs. 7, 8, and 9. Figure 10 shows TMM is unstable for larger h and the
NTMM better than TMM where NTMM has large stability regions.

Conclusions
In this paper, we constructed NTMM to introduce numerically the approximate solu-
tion of a stochastic multi-strain TB model. The proposed method is based on choosing
the weight factor θ . The main advantage of this method is that it can be explicit or
implicit with large stability regions as we see in our results. Special attention is given to
study mean-square stability. Some numerical results are used to show the accuracy of
the NTMM, and some figures are used to demonstrate how the solutions change when
θ take different values. All computations in this paper are performed using MATLAB
programming.
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