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Introduction

It is well known that the integral equations govern many mathematical models of vari-
ous phenomena in physics, economy, biology, engineering, and even in mathematics and
other fields of science. The illustrative examples of such models can be found in the lit-
erature (see, e.g., [1-8]). Many problems of mathematical physics, applied mathematics,
and engineering are reduced to Volterra—Fredholm integral equations, see [9-12].

Analytical solutions of integral equations either do not exist or are hard to compute
[13, 14]. Eventually, an exact solution is computable, the required calculations may be
tedious, or the resulting solution may be difficult to interpret. Due to this, it is required
to obtain an efficient numerical solution [15]. There are numerous studies in literature
concerning the numerical solution of integral equations such as [16-22].

The basic motivation of this paper is to present a new class of integral equations arising
from mathematical physics; the existence and uniqueness solution of Eq. (1) are discussed
and proved in the space Ly(2) x C[0,7],0 < T < 1. Moreover, the normality and
continuity of the integral operator are obtained. A numerical method is used to translate
the Volterra—Fredholm integral Eq. (1) to Volterra integral equations of the second kind
with the continuous kernel, the ideas are interesting, and this area caught the attention of
many researchers, having so many applications.

The outline of the paper is as follows: The “Introduction” section is the introduc-
tion. In “The existence of a unique solution of the Volterra—Fredholm integral equation”
section, the existence of a unique solution of the Volterra—Fredholm integral equation
is discussed and proved using Picard’s method and Banach’s fixed point method. The
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“Separation of variables method” section includes the general solution of the Volterra—
Fredholm integral equation by applying the method of separation of variables. A brief
conclusion is presented in the “Conclusion and remarks” section.

Consider the following linear Volterra—Fredholm integral equation:

t
wr (x, £) —k/ / O, )k(x — yDy¥ (v, T)dydr = g(x, 1),
0 Ja (1)

(xza_c(xl,xl,...,x,,), yZJ_/()/l,yly---,yn))»

where o is a constant which defined the kind of integral equation, and X is the con-
stant which may be complex and has many physical meanings. The function ¥ (x, £) is
unknown in the Banach space Ly(2) x C[0,T],0 < T < 1 [23-25], where Q is the
domain of integration with respect to position and the time ¢ €[0, 7] and is called
the potential function of the Volterra—Fredholm integral equation. The kernel of time
® (¢, 7) is continuous in C[ 0, T, and the known function g(x, £) is continuous in the space
Ly(2)xC[0,T], 0 <t < T.Inaddition, the kernel of position k(|x—y|) is a discontinuous

function.

The existence of a unique solution of the Volterra-Fredholm integral equation
In this paper, for discussing the existence and uniqueness of the solution of Eq. (1), we
assume the following conditions:

(i) The kernel of position k(lx — y|) € La(2), %,y €[] satisfies the discontinuity

condition:

{/ / k2(|x —y|)dxdy} = k*, k¥ is a constant.
QJa

(ii) The kernel of time ®(t,7) € C[O0,T] satisfies |®(¢t,7)] < M,such thatM is a
constant, V¢, t €[0, T].
(iii) The given function g(x, t) with its partial derivatives with respect to the position and

time is continuous in the space Ly(2) x C[0,7], 0 < t < T < 1, and its norm is
defined by:

t
llg(x, £)|| = max / </ gz(x,r)dx> dt = N, N isa constant.
0=<t=<T Jo Q

Theorem 1 If the conditions (i)-(iii) are satisfied, then Eq. (1) has a unique solution
¥ (x,t) in the Banach space Ly(2) x C[0,T], 0 < T < 1, under the condition:

[l
< .
Mk*

|A]

Proof To prove the existence of a unique solution of Eq. (1), we use the successive
approximations method (Picard’s method), or we can used Banach’s fixed point
theorem. O

Picard’s method

We assume the solution of Eq. (1) takes the form:

W(x, t) = nll>nc}o Wn (x! t):
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where
n
Yn(t) =Y Hi(ot); te[0,T];  n=12,...
i=0
where the functions H;(x,t), i = 0,1, ..., n are continuous functions of the form:
Hy(x,t) = Yux,t) — Yu—1(x,0),
Ho(x,£) = g(x, 1)

Now, we should prove the following lemmas:

()

Lemma 1 Under the conditions (i)—(iii), the series Y, Hi(, t) is uniformly convergent
to a continuous solution function \ (x, t).

Proof We construct the sequences: O

(3, 8) = g5, 0) 2 fo t /Q (b, k(5 — YU 10 DT ol ) = g3, ).
Then, we get:

Y6 8) — Y1 (5,) = % /0 t /Q Bt k(% — YD) Wn 10 D) — 23 7))y,
From Eq. (2), we have:

Haw) = - [0 t [ @0k =010, ),

Using the properties of the norm, we obtain:

t
lH,(x 0 < |yl H/O /Qd>(t,r)/<(|x—yI)Hn_1(y,r)dydf ; y = (3)

A
"
For n = 1, the formula (3) yields:

t
H1(x Ol < 1yl H/o /Qd>(tyf)k(|x—y|)H0(%T)dydT

By applying the Cauchy—Schwarz inequality and using the condition (ii), we get:

b %
( [ |k<|x—y|)|2dy) . max f ( f |Ho(y,r)|2dy) dr
Q 0=<¢<T |Jo Q

Using the conditions (i) and (iii), we have:

Hi(x, Dl < [yIM

|H1(x, D)l < |y |MK*N.
By induction, we get:
”Hn(x:t)llfﬂnN; ﬁ=|)/|Mk*<1, n=12....

Since
- il
Mk*’
this leads us to say that the sequence v, (x, £) has a convergent solution. So that, for n —

2]

00, we have:

Y@x 1) =Y Hix1). (4)

i=0
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The above formula represents an infinite convergence series.

Lemma 2 If the conditions (i)-(iii) are satisfied, the function v (x,t) of the series (4)

represents a unique solution of Eq. (1).

Proof To show that v (x,t) is the only solution of Eq. (1), we assume the existence of

another solution ¢(x, t) of Eq. (1), and then, we obtain: O

¢
nly (1) — o, )] = A/O /Q O, Dk(x = yD[Y 0, ) — 9y, )] dydr,
which leads us to the following:

t
¥ (1) — o D = |y “/(; /QqD(t;T)k(lx =D (1) — @, 1)dydr

By applying the Cauchy—Schwarz inequality and using the conditions (i) and (ii), we get:

t
196 0) — g 0] < |y|Mk*/0 /Q||w<y,r>—<p(y,r>||dydr,

< Bl et — o Dl; B =|y|Mk* < 1.

The formula (5) can be adapted as:

(5)

A =Bt — ekl <0.

Since B8 < 1, so that ¥ (x, ) = ¢(«x, t), that is the solution is unique.

Banach’s fixed point theorem

When Picard’s method fails to prove the existence of a unique solution for the homo-
geneous integral equations or for the integral equations of the first kind, we must use
Banach’s fixed point theorem. For this, we write the formula (1) in the integral operator

form:

— 1 At
Uy, 1) = ;g(x, H+UY)(x 1); (UY)(x,t) = ;/0 /Q¢(t,f)/<(|x—y|)1ﬁ(%f)dydf~
(6)

To prove the existence of a unique solution of Eq. (1), using Banach’s fixed point
theorem, we must prove the normality and continuity of the integral operator (6).

(a) For the normality, we use Eq. (6) to get:

R

by t
I(UY)x )Il = ‘ H/ / (t, Dk (lx — yD ¥ (y, T)dyd
w 0 JQ

Using the condition (ii), then applying the Cauchy—Schwarz inequality, we get:

A % t %
||<uw><x,t>||sHM (/ |k<|x—y|>|2dy) . max f (f |Ho(y,r)|2dy> dr
2 Q 0=t<T |Jo Q

Using the condition (i), we obtain:

A
Uy D < ‘M‘Mk*llwx, Dl

Page 4 of 10



Abdou et al. Journal of the Egyptian Mathematical Society (2020) 28:11

since
A
IUY) x, ON < Bl (x, O)I; B = ’M’Mk* <1,

where
]
Mk
Therefore, the integral operator U has a normality, which leads immediately after using

Al <

the condition (iii) to the normality of the operator U.
(b) For the continuity, we suppose the two potential functions v (x, £) and ¥ (x,¢) in
the space Ly (2) x C[0, T] are satisfied in Eq. (6), then:

_ 1 A [t

) t) = —gnt) + = / f (1, k(% — ¥ T)dydr,

_ 1 A

@) 0) = g ) + = f f (2, k(% — ¥)a(, D)dydr.
2 nJo JQ

Using Eq. (7), we get:

Ul (x,t) — Yo lx, )] = //¢(t Dk(x —yD[Y1(0:T) — Y2y, )] dyde.

Using the condition (ii) and applying the Cauchy—Schwarz inequality, we get:

1U[Y1(x,8) — Yo (x, )] |l ’MH /Ik(lx—yl)lzdy>
. max / (f |w1(y,r)—1ﬁ2(y,r)|2dy)2dr
0<t<T |Jo Q

By using the condition (i), the last inequality becomes:

IUlY1(x ) — Y O] | ‘ ‘Mk [¥1(x,8) — Yo (x, D).

Hence, we have:

— A
IU[Y1(x,8) — Yo D] | < BlY1(x, ) — Ya(x DIl; B= ‘M‘Mk* <1 (8)

with
|l
Mk*
Inequality (8) leads us to the continuity of the integral operator U. So that, U is a con-

Al <

traction operator. Therefore, by Banach’s fixed point theorem, there is an unique fixed
point ¥ (x, £), which is the solution of the linear mixed integral Eq. (1).

Separation of variables method
To obtain the general solution of Eq. (1), we do the following:
For t = 0, the formula (1) becomes:

n (x,0) = g(x,0). )

Then, seek the solution of Eq. (1) in the form:

Y@ 1) =Y cn(O)Pn(®).

n=1
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In this aim, we write:

w(x’ t) = Wo(x, t) + 1/’1 (xr t)r (10)

where ¥o(x, £), Y1 (%, t) are called, respectively, the complementary and particular solution
of (1). Using Eq. (10) in Eq. (1), we get:

t
(1) — /0 /Q (¢, Ok(x — )Yk dydr = Sigln ;. k=01 (11)

Also, for Eq. (9), we have:

ka(xr 0) = 5kg(x, O); (12)
where,
0; k=0
Sk = .
k { L k=1

From Egs. (11) and (12), we get:

t
LY ) — Y, 0)] — /O /Q O, Dk(x—y) ¥, Ddydr = 8 g, 1) —g(x, 0)].

(13)
Now, we can represent the solution of (10) in the series form:
o
Vi) = D () Ovan) + ) Ov21 ), (14)
n=1
where 2, (%), ¥2,—1(x) are the even and odd functions, respectively.
Using Eq. (14) in Eq. (13), we obtain:
[e¢] [e¢]
1Y (00 = ) 2@ + 1 Y (10 = ) Yaum1 )
n=1 n=1
(15)

t o
1 [ [ @t okt Y (00 + 102100 e
n=1
- ak[g(xr t) - g(xr 0)] .
Taking k = 0, in Eq. (13), yields:

1Y (5 ® = &)0) Yau) + 1 Y (10 = 51 (0)) Va1 )
n=1 n=1

t o0
— 2 fo /Q @(t,r)kux—ynz(cé%wz”(y)+cg‘3j_l<r>¢2n_1(y)) dydr =0,
n=1
(16)

Theorem 2 (see (26, 27]). For a symmetric and positive kernel of Fredholm integral term
of Eq. (1), the integral operator,

(Kyrn) (%) =/Q/<(Ix—y|)1ﬁnO’)dy,

through the time interval 0 < t < T < 1 is compact and self-adjoint operator. So, we may
write (Kyr,) (%) = oYy (x), where a,, and W, (x) are the eigenvalues and the eigenfunctions
of the integral operator, respectively.

Page 6 of 10
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In view of Theorem 2 and Eq. (16), we arrive to the following:

1Y ()0 =) v + 1 Y (010 = 1 0)) Yar @)
n=1 n=1

t oo
> fo (1) Y (@2aeh) (O)Yan(x) + azam1cl) (D21 () ) dr =0,
n=1

Separating the odd and even terms, we obtain:

t
A
ot — v / a2 ® (6, ) (T)dr = & (0); ¥ = P (17)
0
and
t
0 0 0
& @) —y / @21 @, 7)) ()dr = ¢ (0). (18)
0

Equations (17) and (18) give the same results for even and odd functions, so it is suffice
to study the following equation:

t
A
cho)(t) - )// o, ®(t, t)cﬁlo)(t)dr = cf{’)(O); y = ;, (19)
0

where c,(qo) (0) is the constant which will be determined.
Also, taking k = 1 in formula (15), we obtain:

1Y ()0 =5 @) Yan) + 1 Y (510 = 6,1 0)) Yaa @)
n=1 n=1

t > (20)
1 [ [ @ mke =5 3 (000 + 11 0)) dyde
n=1
=[g(x, 1) — g(x,0)].
Using Theorem 2 in Eq. (20), to have:
oo o0
1Y ()0 =5 @) van) + 1 Y (510 = 1 0)) var @)
n=1 n=1
t o0
— % f O(t) Y (canehy) (V21 @) + @216 (V21 de (21)
0 n=1
o
=Y @ (®)gx 1) — gx, 0)],
n=1
where,
o
1= ZﬂZnWZn(x),
n=1
the formula (21) can be separated to the following equations:
W ! M 1 W A
o (8) — J//O a2, ® (¢, T)cy, (T)dr = ;dzn[g(x, 1) —gx,0)] +c,, (0); ¥y = "
t
S @) —y /O a 1@ 7)Y (t)de =) (0).
(22)

Equations (19) and (22) represent the Volterra integral equations of the second kind
that have the same continuous kernel ®(¢,7) € C([0, T] x[0, T]), and each of them has a

Page 7 of 10
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unique solution in the class C[ 0, T']; the books edited by Linz [28] and Burton [29] contain
many different methods to solve the integral Egs. (19) and (22).

The values of cE,O) (0), cgln) (0), and cgln)_l (0) can be obtained, we return to Eq. (9), and we
seek the solution of this equation in the form:

Y(®0) =Y cn(0)¥n(®).

n=1

Hence, in this respect, we write:

V(xt) = Yol t) + Y1(x, 1), (23)

where Yo (x, ¢) is a complementary solution while v (x, £) is a particular solution. So, from
Eq. (9), we write:

urk(x,0) = drg(x, 0), (24)

and expand the solution of Eq. (23) in the form:

Y, 0) = Y () Oyant0) + i 021 @) (25)

n=1

Using Eq. (25) in Eq. (24), we obtain:
o
1Y () Y@ + ) 09201 = kg (3,0). (26)
n=1
If we take k = 0 in Eq. (26), we obtain:
o0
1Y () @) + ) 092019 = 0.
n=1
Equating the odd and even terms in both sides, we get:
0y =0, & (0)=0.
Then , we have:

c9(0) =o.

Taking k = 1 in Eq. (26), we have:
1Y () @) + ) O¥20-1) = g@,0).
n=1

Equating both sides of the last equation, we get:
aloy=0, & =0
so the last two formulas give us:
cP(0) =o.
In view of Egs. (19) and (22), the general solution of (1) can be adapted in the form:
N
v =Y (&0 + P ®) Y, 27)
n=1
where cﬁf’) () and cﬁ,l) (t) must satisfy the inequality:

N
> ‘Cﬁo)(t) +C,(41)(t)‘ <&, W—>00,e<1,0<t=<T<1). (28)

n=1
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Theorem 3 If, fort €[ 0, T, the inequality (28) holds, the series (27) is uniformly conver-
gent in the space £5(2) x C[0,T], N — oco. Hence, the solution of the Volterra—Fredholm
integral Eq. (1) can be obtained in a series form of (27).

Theorem 4 For the given functions g(x,t) € Ly(2) x C[0,T], (1) €
C([0,T] x[0,T]), k(x,y) € C([ 2] X[ 2]), and under the condition (28), we have:

1Y (x8) — YN D >0 as N — oo,
where (%, t) represents the unique solution of Eq. (1) and the error takes the form:

En = IV (x,8) — ynx, D,
where

Eny—>0 as N —1.

Conclusion and remarks

From the above results and discussion, the following may be concluded:

1  Equation (1) has a unique solution ¥ (x, £) in the space Ly (2) x C[0, T], under
some conditions.

2 The existence of a unique solution of the Volterra—Fredholm integral equation is
discussed and proved using Picard’s method and Banach'’s fixed point method.

3 The Volterra—Fredholm integral equation of the second kind, in time and position,
after using separation of variables method leads to the Volterra integral equations
of the second kind with a continuous kernel.

4 Solutions of the Volterra integral equations can be obtained by numerical methods.
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