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Abstract
The main purpose of this paper is to introduce a new general-type proximal point
algorithm for finding a common element of the set of solutions of monotone inclusion
problem, the set of minimizers of a convex function, and the set of solutions of fixed
point problem with composite operators: the composition of quasi-nonexpansive and
firmly nonexpansive mappings in real Hilbert spaces. We prove that the sequence xn
which is generated by the proposed iterative algorithm converges strongly to a
common element of the three sets above without commuting assumption on the
mappings. Finally, applications of our theorems to find a common solution of some
nonlinear problems, namely, composite minimization problems, convex optimization
problems, and fixed point problems, are given to validate our new findings.

Keywords: General-type proximal algorithm, Convex minimization problem,
Monotone inclusion problem, Composite operators

Introduction
Throughout this paper, we assume that H be a real Hilbert space with the inner product
〈·, ·〉 and norm ‖.‖ and K be a nonempty closed convex subset of H . Let A : H → 2H , the
domain of A, D(A), the image of a subset S of H , A(S) the range of A, R(A) and the graph
of A, G(A) are defined as follows:

D(A) := {x ∈ H : Ax �= ∅}, A(S) := ∪{Ax : x ∈ S},
R(A) := A(H), G(A) := {(x,u) : x ∈ D(A), u ∈ Ax}.

An operator A : K → H is calledmonotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀ x, y ∈ K .

An operator A : K → H is said to be strongly monotone if there exists a positive constant
k ∈ (0, 1) such that

〈Ax − Ay, x − y〉 ≥ k‖x − y‖2, ∀x, y ∈ K .

It is said to be α-inverse strongly monotone if there exists a constant α > 0 such that

〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀ x, y ∈ K .
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It is immediate that ifA is α-inverse stronglymonotone, thenA is monotone and Lipschitz
continuous.
Let A : H → H be a single-valued nonlinear mapping and B : H → 2H be a set-valued

mapping. The variational inclusion problem is as follows: find x ∈ H such that

0 ∈ B(x) + A(x). (1)

We denote the set of solutions of this problem by (A + B)−1(0). If A = 0, then problem
(1) becomes the inclusion problem introduced by Rockafellar [1]. Inclusions of the form
specified by (1) arise in numerous problems of fundamental importance in mathematical
optimization, either directly or through an appropriate reformulation. In what follows, we
provide some motivating examples.

General monotone inclusions

Consider the inclusion problem

find x ∈ H1, such that 0 ∈ (A + K∗BK)(x), (2)

whereA : H1 → 2H1 and B : H2 → 2H2 are maximally monotone operators andK : H1 →
H2 is a linear, bounded operator with adjoint K∗. As was observed in [2], solving (2) can
be equivalently cast as the following monotone inclusion posed in the product space:

find

⎛
⎝ x

y

⎞
⎠ ∈ H1×H2 suchthat

⎛
⎝ 0

0

⎞
⎠ ∈

⎛
⎝ 0 A

0 B−1

⎞
⎠

⎛
⎝ x

y

⎞
⎠+

⎛
⎝ 0 K∗

−K 0

⎞
⎠

⎛
⎝ x

y

⎞
⎠ (3)

Notice that the first operator in (3) is maximally monotone whereas the second is
bounded and linear (in particular, it is Lipschitz continuous with full domain). Conse-
quently, (3) is also of the form specified by (1).

Saddle point problems

Many convex optimization problems can be formulated as the saddle point problem:

min
x∈H max

x∈H
(
g(x) + �(x, y) − f (y)

)
, (4)

where f , g : H → (−∞, +∞] are proper, lsc, convex functions and � : H × H → R is a
smooth convex-concave function. Problems of this form naturally arise in machine learn-
ing, statistics, etc., where the dual (maximization) problem comes either from dualizing
the constraints in the primal problem or from using the Fenchel-Legendre transform to
leverage a nonsmooth composite part. Through its first-order optimality condition, the
saddle point problem (22) can be expressed as the monotone inclusion

find

⎛
⎝ x

y

⎞
⎠ ∈ H × H suchthat

⎛
⎝ 0

0

⎞
⎠ ∈

⎛
⎝ ∂g(x)

∂f (y)

⎞
⎠ +

⎛
⎝ ∇x�(x, y)

∇y�(x, y)

⎞
⎠ , (5)

which is of the form specified by (1). In general, equations of inclusion monotone type
(1) are nonlinear and there is no known method to find closed form solutions for them.
Consequently, methods of approximating solutions of such equations are of interest.
The best-known splitting method for solving the inclusion (1) when B is single-valued

is the forward-backward method, called so because each iteration combines one forward
evaluation of B with one backward evaluation of A, introduced by Passty [3] and Lions
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and Mercier [4]. More precisely, the method generates a sequence according to

xn+1 = (I − λnB)−1(I − λnA)xn, λn > 0, (6)

under the condition that D(B) ⊂ D(A). It was shown, see for example [5], that weak con-
vergence of (6) requires quite restrictive assumptions on A and B, such that the inverse of
A is strongly monotone or B is Lipschitz continuous andmonotone and the operatorA+B
is strongly monotone onD(B). Hence, the modification is necessary in order to guarantee
the strong convergence of forward-backward splitting method (see, for example, [5–12]
and the references contained in them).
A map T : K → K is said to be Lipschitz if there exists an L ≥ 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ K , (7)

if L < 1, T is called contraction and if L = 1, T is called nonexpansive. We denote by
Fix(T) the set of fixed points of the mapping T , that is Fix(T) := {x ∈ D(T) : x = Tx}.
We assume that Fix(T) is nonempty. A map T is called quasi-nonexpansive if ‖Tx− p‖ ≤
‖x − p‖ holds for all x in K and p ∈ Fix(T). The mapping T : K → K is said to be firmly
nonexpansive, if

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(x − y) − (Tx − Ty)‖2, ∀x, y ∈ K .

We remark here that a nonexpansive mapping with a nonempty fixed point set is quasi-
nonexpansive; however, the inverse may be not true. See the following example [13].

Example 1 [13] Let H = R and define a mapping by T : H → H by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

x
2
sin

( 1
x
)
, x �= 0

0, x = 0.
(8)

Then, T is quasi-nonexpansive but not nonexpansive.

Fixed point theory has been revealed as a very powerful and effective method for solv-
ing a large number of problems which emerge from real-world applications and can be
translated into equivalent fixed point problems. In order to obtain approximate solution
of the fixed point problems, various iterative methods have been proposed (see, e.g., [14–
19] and the reference therein).
In 2013, Yuan [20], motivated by the fact that forward-backward method is remarkably

useful for finding fixed points of nonlinear mapping, proved the following theorem.

Theorem 1 Let H be a real Hilbert space and C be a nonempty closed convex subset of
H . Let A : C → H be a α-inverse strongly monotone operator and S : C → C be a quasi-
nonexpansive mapping. Let B be a maximal monotone operator on H into 2H such that
the domain of B is included in C such that F := Fix(S) ∩ (A + B)−1(0) is nonempty and
I − S is demiclosed. Let {αn} be a real number sequence in [ 0, 1] and {λn} be a positive real
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number sequence. Let {xn} be a sequence in C generated in the following iterative process:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,
C1 = C
yn = αnxn + (1 − αn)SJλn(xn − λnAxn),
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x1, n ≥ 1,

(9)

where Jλn = (I + λnB). Suppose that the sequences {αn} and {λn} satisfy the following
restrictions:

(i) 0 ≤ αn ≤ a < 1;
(ii) 0 < b ≤ λn ≤ c < 2α.

Then, the sequence {xn} converges strongly to PFx1.

However, we observe that in Theorem 1 recursion formula studied is not simpler.
Recently, iterative methods for nonexpansive mappings have been applied to solve

convex minimization problems; see, e.g., [14, 16] and the references therein. A typi-
cal problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H :

min
x∈Fix(T)

(1
2
〈Ax, x〉 − 〈b, x〉

)
. (10)

In [14], Xu proved that the sequence {xn} defined by iterative method below with initial
guess x0 ∈ H chosen arbitrary:

xn+1 = αnb + (I − αnA)Txn, n ≥ 0, (11)

converges strongly to the unique solution of the minimization problem (10), where T is a
nonexpansive mappings in H and A a strongly positive bounded linear operator. In 2006,
Marino and Xu [16] extendedMoudafi’s results [15] and Xu’s results [14] via the following
general iteration x0 ∈ H and

xn+1 = αnγ f (xn) + (I − αnA)Txn, n ≥ 0, (12)

where {αn}n∈N ⊂ (0, 1), A is a bounded linear operator on H, and T is a nonexpan-
sive. Under suitable conditions, they proved the sequence {xn} defined by (12) converges
strongly to the fixed point of T , which is a unique solution of the following variational
inequality

〈Ax∗ − γ f (x∗), x∗ − p〉 ≤ 0, ∀p ∈ Fix(T).

If T1 and T2 are self-mappings on K , a point x ∈ K is called a common fixed point
of Ti(i = 1, 2) if x ∈ Fix(T1) ∩ Fix(T2). To find a solution of the common fixed point
problems, several iterative approximation methods were introduced and studied. This
problem can be applied in solving solutions of various problems in science and applied
science, see [21, 22] for instance. We note that Fix(T1) ∩ Fix(T2) ⊂ Fix(T1 ◦ T2) and
almost all the results on common fixed point of nonlinear mappings in Hilbert spaces,
commuting assumptions are needed on Ti(i = 1, 2).
One of the major problems in optimization is to find:

x∗ ∈ H such that g(x∗) = min
y∈H g(y). (13)



Sow Journal of the EgyptianMathematical Society           (2020) 28:20 Page 5 of 17

The set of all minimizers of g on H is denoted by argminy∈H g(y). A successful and pow-
erful tool for solving this problem is the well-known proximal point algorithm (shortly,
the PPA) which was initiated by Martinet [23] in 1970 and later studied by Rockafellar
[1] in 1976. Let H be a real Hilbert space and g : H → (−∞, +∞] be a proper lower
semi-continuous and convex function. The PPA is defined as follows:

⎧⎨
⎩
x1 ∈ H ,

xn+1 = argminy∈H
[
g(y) + 1

2λn
‖xn − y‖2

]
,

(14)

where λn > 0 for all n ≥ 1. In [1], Rockafellar proved that the sequence {xn} given by (14)
converges weakly to a minimizer of g. He then posed the following question:
Q1 Does the sequence {xn} converges strongly? This question was resolved in the neg-

ative by Güler [24]. He produced a proper lower semi-continuous and convex function
g in l2 for which the PPA converges weakly but not strongly. This leads naturally to the
following question:
Q2 Can the PPA be modified to guarantee strong convergence? In response to Q2, sev-

eral works have been done (see, e.g., Güler [24], Solodov and Svaiter [25], Kamimura and
Takahashi [26], Lehdili and Moudafi [27], Reich [28] and the references therein).
Motivated by fixed point techniques of Yuan [20], the fact class of quasi-nonexpansive

mappings properly includes that of nonexpansive map and an improvement of proximal
point algorithm, we propose a new iterative scheme for finding a common element of the
set of solutions of inclusion problem with set-valued maximal monotone mapping and
inverse strongly monotone mapping, the set of minimizers of a convex function and the
set of solutions of fixed point problem with composite operators in a real Hilbert space.
We show that the iterative scheme proposed converges strongly to a common element
of the three sets. Then, new strong convergence theorems are deduced. Our proposed
algorithm does not involve commuting assumptions on Ti(i = 1, 2). Our technique of
proof is of independent interest.

Preliminairies
The demiclosedness of a nonlinear operator T usually plays an important role in dealing
with the convergence of fixed point iterative algorithms.

Definition 1 Let H be a real Hilbert space and T : D(T) ⊂ H → H be a mapping.
I−T is said to be demiclosed at 0 if for any sequence {xn} ⊂ D(T) such that {xn} converges
weakly to p and ‖xn − Txn‖ converges to zero, then p ∈ Fix(T).

Lemma 1 (Demiclosedness Principle, [29]) Let H be a real Hilbert space and K be a
nonempty closed and convex subset of H. Let T : K → K be a nonexpansive mapping.
Then, I − T is demiclosed at zero.

Lemma 2 ([30]) Let H be a real Hilbert space. Then, for any x, y ∈ H , the following
inequalities hold:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − (1 − λ)λ‖x − y‖2, λ ∈ (0, 1).
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Let a set-valued mapping B : H → 2H be a maximal monotone. We define a resolvent
operator JBλ generated by B and λ as follows:

JBλ = (I + λB)−1(x) ∀x ∈ H ,

where λ is a positive number. It is easy to see that the resolvent operator JBλ is single-
valued, nonexpansive, and 1-inverse strongly monotone and moreover, a solution of the
problem 1 is a fixed point of the operator JBλ (I − λA) for all λ > 0.

Lemma 3 [4] Let B : H → 2H be a maximal monotone mapping and A : H → H be
a Lipschitz and continuous monotone mapping. Then, the mapping B + A : H → 2H is
maximal monotone.

Lemma 4 ( [31]) Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a
sequence in R such that

(a)
∑∞

n=0 αn = ∞, (b) lim supn→∞ σn ≤ 0 or
∑∞

n=0 |σnαn| < ∞. Then,
limn→∞ an = 0.

Lemma 5 [32] Let K be a nonempty closed convex subset of a real Hilbert space H and
A : K → H be a k-strongly monotone and L-Lipschitzian operator with k > 0, L > 0.
Assume that 0 < η < 2k

L2 and τ = η
(
k − L2η

2

)
. Then, for each t ∈

(
0,min{1, 1

τ
}
)
, we have

‖(I − tηA)x − (I − tηA)y‖ ≤ (1 − tτ)‖x − y‖, ∀ x, y ∈ K .

Lemma 6 [33] Let {tn} be a sequence of real numbers that does not decrease at infinity
in a sense that there exists a subsequence {tni} of {tn} such that tni ≤ tni+1 for all i ≥ 0. For
sufficiently large numbers n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n) → ∞ as n → ∞ and

max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 7 Let H be a real Hilbert space and A : H → H be an α-inverse strongly
monotone mapping. Then, I − θA is a nonexpansive mapping for all x, y ∈ H and
θ ∈[ 0, 2α] .

Proof For all x, y ∈ H , we have

‖(I − θA)x − (I − θA)y‖2 = ‖(x − y) − θ(Ax − Ay)‖2
= ‖x − y‖2 − 2θ〈Ax − Ay, x − y〉 + θ2‖Ax − Ay‖2
≤ ‖x − y‖2 + θ(θ − 2α)‖Ax − Ay‖2.

We obtain the desired result.

Let H be a real Hilbert space and F : H → (−∞, +∞] be a proper, lower semi-
continuous, and convex function. For every λ > 0, the Moreau-Yosida resolvent of F , JFλ
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is defined by:

JFλ x = argminu∈H
[
F(u) + 1

2λ
‖x − u‖2

]
,

for all x ∈ H . It was shown in [24] that the set of fixed points of the resolvent associated
to F coincides with the set of minimizers of F . Also, the resolvent JFλ of F is nonexpansive
for all λ > 0.

Lemma 8 (Miyadera [34]) Let H be a real Hilbert space and F : K → (−∞, +∞) be
a proper, lower semi-continuous, and convex function. For every r > 0 and μ > 0, the
following holds:

JFr x = JFμ
(μ

r
x +

(
1 − μ

r

)
JFr x

)
.

Lemma 9 (Sub-differential inequality, Ambrosio, [35]) Let H be a real Hilbert space and
F : H → (−∞, +∞] be a proper, lower semi-continuous, and convex function. Then, for
every x, y ∈ H and λ > 0, the following sub-differential inequality holds:

1
λ

‖JFλ x − y‖2 − 1
λ

‖x − y‖2 + 1
λ

‖x − JFλ x‖2 + F
(
JFλ x

)
≤ F(y). (15)

Main results
We start by the following result.

Lemma 10 Let H be a real Hilbert space and let K be a nonempty closed convex subset
of H . Let T1 : K → K be a quasi-nonexpansive mapping and T2 : K → K be a firmly
nonexpansive mapping. Then, Fix(T1) ∩ Fix(T2) = Fix(T1 ◦ T2) and T1 ◦ T2 is a quasi-
nonexpansive mapping on K .

Proof We split the proof into two steps.
Step 1: First, we show that Fix(T1) ∩ Fix(T2) = Fix(T1 ◦ T2). We note that Fix(T1) ∩

Fix(T2) ⊂ Fix(T1 ◦T2). Thus, we only need to show that Fix(T1 ◦T2) ⊆ Fix(T1)∩Fix(T2).
Let p ∈ Fix(T1)∩ Fix(T2) and q ∈ Fix(T1 ◦T2). By using properties of T1 and T2, we have

‖q − p‖2 = ‖T1 ◦ T2q − T1p‖2
≤ ‖T2q − p‖2. (16)

Using the fact that T2 is firmly nonexpansive, we have

‖T2q − p‖2 ≤ 〈T2q − p, q − p〉
= 1

2
(‖T2q − p‖2 + ‖q − p‖2 − ‖T2q − q‖2),

which yields

‖T2q − p‖2 ≤ ‖q − p‖2 − ‖T2q − q‖2. (17)

Using (16) implies that (28) becomes

‖T2q − p‖2 ≤ ‖q − p‖2 − ‖T2q − q‖2
≤ ‖T2q − p‖2 − ‖T2q − q‖2.

Clearly, ‖T2q − q‖ = 0 which implies that

q = T2q.
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Keeping in mind that T1 ◦ T2q = q, we have

q = T1 ◦ T2q = T1q.

Thus, q ∈ Fix(T1) ∩ Fix(T2). Hence, Fix(T1) ∩ Fix(T2) = Fix(T1 ◦ T2).
Step 2: We show T1 ◦ T2 is a quasi-nonexpansive mapping on K . Let x ∈ K and p ∈

Fix(T1 ◦ T2). Then, p ∈ Fix(T1) ∩ Fix(T2) by step 1. We observe that,

‖T1 ◦ T2x − p‖ = ‖T1 ◦ T2x − T1p‖
≤ ‖T2x − p‖
≤ ‖x − p‖.

This completes the proof.

We now prove the following theorem.

Theorem 2 Let H be a real Hilbert space and K be a nonempty closed convex subset of
H . Let A : K → H be a α-inverse strongly monotone operator and g : K → (−∞, +∞]
be a proper, lower semi-continuous, and convex function. Let T1 : K → K be a quasi-
nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping. Let B be a
maximal monotone operator on H into 2H such that the domain of B is included in K , let
f : K → K be an b-Lipschitzian mapping andM : K → H be an μ-strongly monotone and
L-Lipschitzian operator such that � := Fix(T1)∩Fix(T2)∩ (A+B)−1(0)∩argminu∈K g(u)

is nonempty. Let {xn} be a sequence defined as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ K ,

un = argminu∈K
[
g(u) + 1

2λn
‖u − xn‖2

]
,

vn = θnun + (1 − θn)T1 ◦ T2un,

xn+1 = PK
(
αnγ f (xn) + (I − αnηM)JBλn(vn − λnAvn)

)
,

(18)

where {λn}, {θn}, and {αn} are sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞, and λn ∈ (λ, d) ⊂ (

0, min{1, 2α}),
(ii) limn→∞ inf(1 − θn)θn > 0, I − T1 ◦ T2 is demiclosed at the origin and 0 < η <

2μ
L2

, 0 < γ b < τ , where τ = η
(
μ − L2η

2

)
.Then, the sequence {xn} generated by (18)

converges strongly to x∗ ∈ �, which solves the following variational inequality:

〈ηMx∗ − γ f (x∗), x∗ − p〉 ≤ 0, ∀p ∈ �. (19)

Proof From the choice of η and γ , (ηM−γ f ) is strongly monotone, then the variational
inequality (19) has a unique solution in �. In what follows, we denote x∗ to be the unique
solution of (19).Without loss of generality, we can assume αn ∈

(
0,min{1 ,

1
τ

}
)
. Now,

we prove that the sequence {xn} is bounded. Let p ∈ �. Then, g(p) ≤ g(u) for all u ∈ K .
This implies that

g(p) + 1
2λn

‖p − p‖2 ≤ g(u) + 1
2λn

‖u − p‖2
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and hence Jgλnp = p for all n ≥ 1, where Jgλn is the Moreau-Yosida resolvent of g in K .
Hence,

‖un − p‖ ≤ ‖xn − p‖, ∀n ≥ 0.

By using (18) and Lemma 10, we have

‖vn − p‖2 =
∥∥∥θn(un − p) + (1 − θn)(T1 ◦ T2un − p)

∥∥∥2

= θn‖un − p‖2 + (1 − θn)‖T1 ◦ T2un − p‖2 − (1 − θn)θn‖T1 ◦ T2un − un‖2
≤ θn‖un − p‖2 + (1 − θn)‖un − p‖2 − (1 − θn)θn‖T1 ◦ T2un − un‖2.

Hence,

‖vn − p‖2 ≤ ‖un − p‖2 − (1 − θn)θn‖T1 ◦ T2un − un‖2. (20)

Since θn ∈] 0, 1[ , we obtain,
‖vn − p‖ ≤ ‖un − p‖. (21)

For each n ≥ 0, we put zn := JBλn(I − λnA)vn. Then, from Lemma 7, we have

‖zn − p‖ = ‖JBλn(I − λnA)vn − p‖ ≤ ‖vn − p‖, ∀n ≥ 0.

Therefore,

‖zn − p‖ ≤ ‖vn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (22)

Hence, by using Lemma 5 and inequalities (22) and (18), we have

‖xn+1 − p‖ = ‖PK
(
αnγ f (xn) + (I − αnηM)zn

)
− p‖

≤ αnγ ‖f (xn) − f (p)‖ + (1 − ταn)‖zn − p‖ + αn‖γ f (p) − ηMp‖
≤ (1 − αn(τ − bγ ))‖xn − p‖ + αn‖γ f (p) − ηMp‖
≤ max {‖xn − p‖, ‖γ f (p) − ηMp‖

τ − bγ
}.

By induction, we can conclude that

‖xn − p‖ ≤ max {‖x0 − p‖, ‖γ f (p) − ηMp‖
τ − bγ

}, n ≥ 1.

Hence, {xn} is bounded. By using Lemma 5 and inequality (20), we obtain

‖xn+1 − p‖2 ≤ ‖αn(γ f (xn) − ηMp) + (I − ηαnM)(zn − p)‖2

≤ α2
n‖γ f (xn) − ηMp‖2 + (1 − ταn)

2‖zn − p‖2

+2αn(1 − ταn)‖γ f (xn) − ηMp‖‖zn − p‖
≤ α2

n‖γ f (xn) − ηMp‖2 + (1 − ταn)
2‖vn − p‖2 + 2αn(1 − ταn)‖γ f (xn) − ηMp‖‖zn − p‖

≤ α2
n‖γ f (xn) − ηMp‖2 + (1 − ταn)

2‖xn − p‖2 − (1 − ταn)
2(1 − θn)θn‖T1 ◦ T2un − un‖2

+2αn(1 − ταn)‖γ f (xn) − ηMp‖‖xn − p‖.

Hence,

(1 − ταn)
2(1 − θn)θn‖T1 ◦ T2un − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α2

n‖γ f (xn) − ηMp‖2
+2αn(1 − ταn)‖γ f (xn) − ηMp‖‖xn − p‖.

Since {xn} is bounded, then there exists a constant C > 0, such that

(1 − ταn)
2(1 − θn)θn‖T1 ◦ T2un − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnC. (23)
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Next, we prove that xn → x∗. To see this, let us consider two possible cases.
Case 1. Assume that the sequence {‖xn−x∗‖} is monotonically decreasing. Then, {‖xn−

x∗‖} must be convergent. Clearly, we have

lim
n→∞

[
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

]
= 0. (24)

It then implies from (23) that

lim
n→∞(1 − θn)θn‖T1 ◦ T2un − un‖2 = 0. (25)

Since limn→∞ inf(1 − θn)θn > 0, we have

lim
n→∞ ‖T1 ◦ T2un − un‖ = 0. (26)

Observing that,

‖vn − un‖ = ‖θnun + (1 − θn)T1 ◦ T2un − un‖
= ‖θnun + (1 − θn)T1 ◦ T2un − θnun − (1 − θn)un‖
= (1 − θn)‖T1 ◦ T2un − un‖
≤ ‖T1 ◦ T2un − un‖.

Therefore, from (26), we get that

lim
n→∞ ‖vn − un‖ = 0. (27)

By using Lemma 9 and since g(x∗) ≤ g(un), we get

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖un − x∗‖2. (28)

From (18) and Lemma 5, we obtain

‖xn+1 − x∗‖2 = ‖PK
(
αnγ f (xn) + (I − αnηM)zn

)
− x∗‖2

≤ ‖αn(γ f (xn) − ηMx∗) + (I − ηαnM)(zn − x∗)‖2

≤ α2
n‖γ f (xn) − ηMp‖2 + (1 − ταn)

2‖zn − x∗‖2 + 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖
≤ α2

n‖γ f (xn) − ηMx∗‖2 + (1 − ταn)
2
[
‖xn − x∗‖2 − ‖xn − un‖2

]

+ 2αn(1 − ταn)‖γ f (xn) − ηMp‖‖zn − x∗‖
≤ α2

n‖γ f (xn) − ηMx∗‖2 + (1 − ταn)
2‖xn − x∗‖2 + (1 − ταn)

2‖xn − un‖2

+ 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖.

Since {xn} is bounded, then there exists a constant C1 > 0, such that

(1 − ταn)
2‖xn − un‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αnC1. (29)

It then implies from (24) and αn → 0 that

lim
n→∞ ‖xn − un‖ = 0. (30)

On the other hand, using Lemma 7, we have

‖xn+1 − x∗‖2 = ‖PK
(
αnγ f (xn) + (I − αnηM)zn

)
− x∗‖2

≤ ‖αn(γ f (xn) − ηMp) + (I − ηαnM)(zn − x∗)‖2

≤ α2
n‖γ f (xn) − ηMx∗‖2 + (1 − ταn)

2‖zn − x∗‖2 + 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖
≤ α2

n‖γ f (xn) − ηMx∗‖2 + (1 − ταn)
2
[
‖vn − x∗‖2 + λ(d − 2α)‖Avn − Ax∗‖2

]

+ 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖.
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Therefore, we have

(1 − αn)λ(2α − d)‖Avn − Ax∗‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αnC2,

where C2 is a positive constant. Since αn → 0 as n → ∞, inequality (24) and {xn} is
bounded, we obtain

lim
n→∞ ‖Avn − Ax∗‖ = 0. (31)

Since JBλn is 1-inverse strongly monotone and (18), we have

‖zn − x∗‖2 = ‖JBλn (I − λnA)vn − JBλn (I − λnA)x∗‖2

≤ 〈zn − x∗, (I − λnA)vn − (I − λnA)x∗〉
= 1

2

[
‖(I − λnA)vn − (I − λnA)x∗‖2 + ‖zn − x∗‖2

−‖(I − λnA)vn − (I − λnA)x∗ − (zn − x∗)‖2
]

≤ 1
2

[
‖vn − x∗‖2 + ‖zn − x∗‖2 − ‖vn − zn‖2 + 2λn〈zn − x∗,Avn − Ax∗〉 − λn

2‖Avn − Ax∗‖2
]
.

So, we obtain

‖zn − x∗‖2 ≤ ‖vn − x∗‖2 −‖vn − zn‖2 + 2λn〈zn − x∗,Avn −Ax∗〉−λn
2‖Avn −Ax∗‖2,

and thus

‖xn+1 − x∗‖2 ≤ ‖αn(γ f (xn) − ηMx∗) + (I − ηαnMx∗)(zn − x∗)‖2

≤ α2
n‖γ f (xn) − ηMx∗‖2 + (1 − ταn)

2‖zn − x∗‖2 + 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖
≤ α2

n‖γ f (xn) − ηMx∗‖2 + ‖vn − x∗‖2 − (1 − ταn)
2‖vn − zn‖2 − (1 − ταn)

2λn
2‖Avn − Ax∗‖2

+ 2λn(1 − ταn)
2〈zn − x∗,Avn − Ax∗〉 + 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖

≤ α2
n‖γ f (xn) − ηMx∗‖2 + ‖xn − x∗‖2

−(1 − ταn)
2‖vn − zn‖2 − (1 − ταn)

2λn
2‖Avn − Ax∗‖2

+ 2λn(1 − ταn)
2〈zn − x∗,Avn − Ax∗〉 + 2αn(1 − ταn)‖γ f (xn) − ηMx∗‖‖zn − x∗‖.

Since αn → 0 as n → ∞, inequalities (24) and (31), we obtain

lim
n→∞ ‖vn − zn‖2 = 0. (32)

Next, we prove that lim supn→+∞〈ηMx∗ − γ f (x∗), x∗ − xn〉 ≤ 0. Since H is reflexive and
{xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk converges weakly
to x∗∗ in K and

lim sup
n→+∞

〈ηMx∗ − γ f (x∗), x∗ − xn〉 = lim
k→+∞

〈ηMx∗ − γ f (x∗), x∗ − xnk 〉.
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From (26) and I − T1 ◦ T2 is demiclosed, we obtain x∗∗ ∈ Fix(T1 ◦ T2). Using Lemma 10,
we have x∗∗ ∈ Fix(T2) ∩ Fix(T1). Using (18) and Lemma 8, we arrive at

‖xn − Jgλxn‖ ≤ ‖un − Jgλxn‖ + ‖un − xn‖
≤ ‖Jgλnxn − Jgλxn‖ + ‖un − xn‖
≤ ‖un − xn‖ + ‖Jgλ

(λn − λ

λn
Jgλnxn + λ

λn
xn

)
− Jgλxn‖

≤ ‖un − xn‖ + ‖λn − λ

λn
Jgλnxn + λ

λn
xn − xn‖

≤ ‖un − xn‖ +
(
1 − λ

λn

)
‖un − xn‖

≤
(
2 − λ

λn

)
‖un − xn‖.

Hence,

lim
n→∞‖xn − Jgλxn‖ = 0. (33)

Since Jgλ is single-valued and nonexpansive, using (33) and Lemma 1, then x∗∗ ∈ Fix(Jgλ) =
argminu∈K g(u). Let us show x∗∗ ∈ (A+B)−1(0). Since A be an α2-inverse strongly mono-
tone, A is Lipschitz continuous monotone mapping. It follows from Lemma 3 that B + A
is maximal monotone. Let (v,u) ∈ G(B + A), i.e., u − Av ∈ B(v). Since znk = JBλnk (vnk −
λnkAvnk ), we have vnk − λnkAvnk ∈ (I + λnkB)znk , i.e.,

1
λnk

(vnk − znk − λnkAvnk ) ∈ B(znk ).

By maximal monotonicity of B + A, we have

〈v − znk ,u − Av − 1
λnk

(vnk − znk − λnkAvnk )〉 ≥ 0

and so

〈v − znk ,u〉 ≥ 〈v − znk ,Av − 1
λnk

(vnk − znk − λnkAvnk )〉

= 〈v − znk ,Av − Aznk + Aznk + 1
λnk

(vnk − znk − λnkAvnk )〉

≥ 〈v − vnk ,Aznk − Avnk 〉 + 〈v − znk ,
1

λnk
(vnk − znk )〉.

It follows from ‖vn − zn‖ → 0, ‖Avn − Azn‖ → 0 and znk ⇀ x∗∗, we get

lim
k→+∞

〈v − znk ,u〉 = 〈v − x∗∗,u〉 ≥ 0

and hence x∗∗ ∈ (A + B)−1(0). Therefore, x∗∗ ∈ Fix(T1) ∩ Fix(T2) ∩ (A + B)−1(0) ∩
argminy∈K g(y). On the other hand, the fact that x∗ solves (19), we then have

lim sup
n→+∞

〈ηMx∗ − γ f (x∗), x∗ − xn〉 = lim
k→+∞

〈ηMx∗ − γ f (x∗), x∗ − xnk 〉
= 〈ηMx∗ − γ f (x∗), x∗ − x∗∗〉 ≤ 0.
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Finally, we show that xn → x∗. From (18) and properties of metric projection, we get

‖xn+1 − x∗‖2 = ‖PK (αnγ f (xn) + (I − ηαnM)zn) − x∗‖2
≤ 〈αnγ f (xn) + (I − ηαnM)zn − x∗, xn+1 − x∗〉
= 〈αnγ f (xn) + (I − ηαnM)zn − x∗ − αnγ f (x∗) + αnγ f (x∗)

−αnηMx∗ + αnηMx∗, xn+1 − x∗〉
≤

(
αnγ ‖f (xn) − f (x∗)‖ + ‖(I − αnηM)(zn − x∗)‖

)
‖xn+1 − x∗‖

+αn〈ηMx∗ − γ f (x∗), x∗ − xn+1〉
≤ (1 − αn(τ − bγ ))‖xn − x∗‖‖xn+1 − x∗‖ + αn〈ηMx∗− γ f (x∗), x∗ − xn+1〉
≤ (1 − αn(τ − bγ ))‖xn − x∗‖2 + 2αn〈ηMx∗ − γ f (x∗), x∗ − xn+1〉.

Hence, by Lemma 4, we conclude that the sequence {xn} converges strongly to x∗ ∈
Fix(T1) ∩ Fix(T2) ∩ (A + B)−1(0) ∩ argminy∈K g(y).
Case 2. Assume that the sequence {‖xn − x∗‖} is not monotonically decreasing. Set
Bn = ‖xn − x∗‖ and π : N → N be a mapping for all n ≥ n0 (for some n0 large enough)
by π(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}. Obviously, {
pi(n)} is a non-decreasing sequence such that π(n) → ∞ as n → ∞ and Bπ(n) ≤
Bπ(n)+1 for n ≥ n0. From (23), we have

(1 − ταπ(n))
2(1 − θπ(n))θπ(n)‖upi(n) − T1 ◦ T2uπ(n)‖2 ≤ απ(n)C.

Hence,

lim
n→∞‖uπ(n) − T1 ◦ T2uπ(n)‖ = 0.

By a similar argument as in case 1, we can show that xπ(n) is bounded in H ,
limn→∞ ‖uπ(n) − xπ(n)‖ = 0, limn→∞ ‖uπ(n) − vπ(n)‖ = 0, limn→∞ ‖vπ(n) − zπ(n)‖ = 0,
and lim supπ(n)→+∞〈ηMx∗ − γ f (x∗), x∗ − xπ(n))〉 ≤ 0. We have for all n ≥ n0,

0 ≤ ‖xπ(n)+1 − x∗‖2 −‖xπ(n) − x∗‖2 ≤ απ(n)[−(τ − bγ )‖xπ(n) − x∗‖2 + 2〈ηMx∗ − γ f (x∗), x∗ − xπ(n)+1〉] ,

which implies that

‖xπ(n) − x∗‖2 ≤ 2
τ − bγ

〈ηMx∗ − γ f (x∗), x∗ − xπ(n)+1〉.

Then, we have

lim
n→∞‖xπ(n) − x∗‖2 = 0.

Therefore,

lim
n→∞Bπ(n) = lim

n→∞Bπ(n)+1 = 0.

Thus, by Lemma 6, we conclude that

0 ≤ Bn ≤ max{Bπ(n), Bπ(n)+1} = Bπ(n)+1.

Hence, limn→∞ Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

We now apply Theorem 2 when T1 is nonexpansive mapping. In this case, demiclosed-
ness assumption (I − T1 ◦ T2 is demiclosed at origin) is not necessary.
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Theorem 3 Let A : K → H be a α-inverse strongly monotone operator and g : K →
(−∞, +∞] be a proper, lower semi-continuous, and convex function. Let T1 : K → K be
a nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping. Let B be a
maximal monotone operator on H into 2H such that the domain of B is included in K , let
f : K → K be an b-Lipschitzian mapping andM : K → H be an μ-strongly monotone and
L-Lipschitzian operator such that � := Fix(T1)∩Fix(T2)∩ (A+B)−1(0)∩argminu∈K g(u)

is nonempty. Let {xn} be a sequence defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ K ,

un = argminu∈K
[
g(u) + 1

2λn
‖u − xn‖2

]
,

vn = θnun + (1 − θn)T1 ◦ T2un,

xn+1 = PK
(
αnγ f (xn) + (I − αnηM)JBλn(vn − λnAvn)

)
,

(34)

where {λn}, {θn}, and {αn} are sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞, and λn ∈ (λ, d) ⊂ (

0, min{1, 2α}),
(ii) limn→∞ inf(1 − θn)θn > 0 and 0 < η <

2μ
L2

, 0 < γ b < τ , where τ = η
(
μ −

L2η
2

)
.Then, the sequence {xn} generated by (34) converges strongly to x∗ ∈ �, which solves

the variational inequality:

〈ηMx∗ − γ f (x∗), x∗ − p〉 ≤ 0, ∀p ∈ �. (35)

Proof We have T1 ◦ T2 is nonexpansive mapping; then, the proof follows Lemma 1 and
Theorem 2.

Now, we consider the following quadratic optimization problem:

min
x∈�

(η

2
〈Mx, x〉 − h(x)

)
, (36)

where B : K → H is a strongly positive bounded linear operator, � := Fix(T1)∩ Fix(T2)∩
(A+B)−1(0) ∩ argminu∈K g(u), and h is a potential function for γ f (i.e., h′

(x) = γ f (x) on
K ).
Hence, one has the following result.

Theorem 4 Let A : K → H be a α-inverse strongly monotone operator and g : K →
(−∞, +∞] be a proper, lower semi-continuous, and convex function. Let T1 : K → K be
a quasi-nonexpansive mapping and T2 : K → K be a firmly nonexpansive mapping. Let
B be a maximal monotone operator on H into 2H such that the domain of B is included in
K , let f : K → K be an b-Lipschitzian mapping and M : K → H be strongly bounded
linear operator with coefficient μ > 0 such that � := Fix(T1) ∩ Fix(T2) ∩ (A + B)−1(0) ∩
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argminu∈K g(u) is nonempty. Let {xn} be a sequence defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ K ,

un = argminu∈K
[
g(u) + 1

2λn
‖u − xn‖2

]
,

vn = θnun + (1 − θn)T1 ◦ T2un,

xn+1 = PK
(
αnγ f (xn) + (I − αnηM)JBλn(vn − λnAvn)

)
,

(37)

where {λn}, {θn}, and {αn} are sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞, and λn ∈ (λ, d) ⊂ (

0, min{1, 2α}),
(ii) limn→∞ inf(1 − θn)θn > 0, I − T1 ◦ T2 is demiclosed at the origin and 0 < η <

2μ
‖M‖2 , 0 < γ b < τ , where τ = η

(
μ− ‖M‖2η

2

)
. Then, the sequence {xn} generated by (37)

converges strongly to a unique solution of problem (36).

Proof We note that strongly positive bounded linear operator M is a ‖M‖-Lipschitzian
and μ-strongly monotone operator; the proof follows Theorem 2.

Application to some nonlinear problems
In this section, we apply our main results for finding a common solution of composite
convex minimization problem, convex optimization problem, and fixed point problem
involving composed operators.

Problem 1 Let H be a real Hilbert space. We consider the minimization of composite
objective function of the type

min
x∈H

(
�(x) + �(x)

)
, (38)

where � : H → R ∪ {+∞} is a proper, convex, and lower semi-continuous functional and
� : H → R is convex functional.

Many optimization problems from image processing [7], statistical regression, machine
learning (see, e.g., [36] and the references contained therein), etc. can be adapted into the
form of (38).
Observe that problem 1 is equivalent to find x∗ ∈ H such that

0 ∈ ∂�(x∗) + ∇�(x∗). (39)

It is well known ∂� is maximal monotone (see, e.g., Minty [37]).

Lemma 11 (Baillon and Haddad [38]) Let H be a real Hilbert space, � a continu-
ously Fréchet differentiable, convex functional on H and ∇� the gradient of �. If ∇� is
1
α
-Lipschitz continuous, then ∇� is α-inverse strongly monotone.

Hence, from Theorem 2, we have the following result.
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Theorem 5 Let H be a real Hilbert space and g : H → (−∞, +∞] be a proper, lower
semi-continuous, and convex function. Let � : H → R be a continuously Fréchet differen-
tiable, convex functional on H and ∇� a 1

α
-Lipschitz continuous. Let � : H → R∪ {+∞}

be a proper, convex, and lower semi-continuous functional and f : H → H be an b-
Lipschitzian mapping. Let T1 : H → H be a quasi-nonexpansive mapping and let
T2 : H → H be a firmly nonexpansive mapping and M : H → H be an μ-strongly mono-
tone and L-Lipschitzian operator such that � := Fix(T1) ∩ Fix(T2) ∩ (∂� + ∇�)−1(0) ∩
argminu∈H g(u) is nonempty. Let {xn} be a sequence defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

un = argminu∈H
[
g(u) + 1

2λn
‖u − xn‖2

]
,

vn = θnun + (1 − θn)T1 ◦ T2un,

xn+1 = αnγ f (xn) + (I − αnηM)J∂�
λn

(vn − λn∇�vn),

(40)

where {λn}, {θn}, and {αn} be sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0,

∑∞
n=0 αn = ∞, and λn ∈ (λ, d) ⊂ (

0, min{1, 2α}),
(ii) limn→∞ inf(1−θn)θn > 0, I−T1◦T2 is demiclosed at the origin and 0 < η <

2μ
L2

, 0 <

γ b < τ , where τ = η
(
μ − L2η

2

)
.Then, the sequence {xn} generated by (40) converges to a

point x∗ ∈ argminu∈H g(u) which is a minimizer of �(x) + �(x) in H as well as it is also a
common fixed point of T1 and T2 in H .

Proof We set B = ∂� and ∇� = A, K = H into Theorem 2. Then, the proof follows
Theorem 2.

Remark 1 Many already studied problems in the literature can be considered as special
cases of this paper; see, for example, [1, 3, 4, 14, 16, 17, 23, 26, 28, 39] and the references
therein.
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