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Abstract
This paper aims to determine the exact solutions of non-Newtonian fluid namely
micropolar fluid with MHD in a porous medium by traveling wave method. The
governing equations of incompressible micropolar fluid with MHD in a porous medium
are non-linear PDEs reduced to ODEs through wave parameter ξ = mx + ny + Ut. The
set of new exact solutions are determined for five different cases. In special cases, the
solution for micropolar fluid with and without MHD and porous effects can also be
obtained from general solutions. Furthermore, these solution reduces to a Newtonian
solution if we put vortex viscosity κ → 0. Finally, the influence of the material and
other parameters of interest on the fluid motion, as well as a comparison among
micropolar and Newtonian fluids is also analyzed by 2D and 3D graphical illustrations.
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Introduction
In the present, many researchers are working on the non-Newtonian fluid from both
essential and sensible point of view [1]. These fluids have immediate effects on the pro-
cessing of polymer, animal blood, liquid crystal, and geological flows in the earth mantle.
The general conditions of non-Newtonian fluid are exceptionally non-linear and higher-
arrangement than Navier-Stokes equations. Therefore, many analytical and numerical
solutions are accessible to non-Newtonian fluid on the topic.
The electrically conducting fluid and magnetic properties are sufficiently studied in

magnetohydrodynamics (MHD). MHD has specific applications like engineering sci-
ence, metallurgical industry, electromagnetic pump, power generation, and flow meter.
Hydromagneticmovements have amajor part of study in the fields of the aerospace, astro-
nomical, and planetary magnetosphere. The cleansing of liquid metals from non-metallic
presence through the use of the attractive field is another basic component of MHD [2, 3].
Khalid et al. [4] have evaluated the exact solution of wall couple stress in MHD by Laplace
transform and convolution. Fatunmbi et al. [5] have numerically studied theMHD stagna-
tion point flow of a micropolar fluid by applying RK (Runge-Kutta) method. Hammouch
[6] investigated the numerous solution of steady magnetohydrodynamics flow of dilatant
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fluids by various method techniques. Interesting recent studies on non-newtonian fluids
with magnetohydrodynamics have been given by different researchers [7–11].
Micropolar fluid theory was proposed by Eriggen [12]. Mekheimer et al. [13] showed

that the micropolar fluid model is a kind of non-Newtonian fluid which depends upon a
microstructure and belongs to non-symmetrical stress tensor. Physically, micropolar fluid
may be rigid particles, at random oriented (spherical) elements suspended in a viscous
medium where the change of fluid elements is disregarded. Micropolar fluid can per-
form a better model for animal blood. Raza et al. [14] studied the different branches of
the solution of micropolar fluid in a channel with permeable walls. Hussanan et al. [15]
examined the heat and mass transfer in a micropolar fluid. Sheikholeslami et al. [16] eval-
uated the micropolar fluid flow in a channel by homotopy perturbation method (HPM).
Lukaszewicz [17] explored the nature of the micropolar fluid. Ravi and Prasad [18] stud-
ied the relations of pulsatile and peristaltic stream of couple stress fluid through a porous
medium in an elastic route.
There are many methods for solving non-linear partial differential equations such as

bilinear transformation [19, 20], homotopy perturbation method [21, 22], (G′ \G) expan-
sion method [23], Exp-function [24, 25], modified simple equation (MSE) method [26],
and fingero-imbibition method [27]. The traveling wave method is useable for solving
non-linear partial differential equations because it provides a simple exact solution of
non-linear partial differential equations. Due to the many importance of this method
in theory of non-linear partial differential equations, this method is applicable in the
field of fluid mechanics, chemical kinematics, electromagnetic, and nonlinear mechanics.
Some important work-related traveling wave solutions recently appeared in [28–34] and
references presented there.
In the present communication, the traveling wave solution, and transformation method

are used to find the exact solutions of unsteady incompressible two-dimensional laminar
flow of MHD micropolar fluid in a porous medium. The mathematical model that con-
sidered here are carefully entrenched and judge with many general cases. It is noticed that
the presentmodel is capable of covering such benchmark cases and can give new informa-
tion on the parameter determination of the dynamical systemwhich governedmicropolar
fluid equations. To the best of our knowledge, only one study, which deals with the flows
of unsteady incompressible two-dimensional laminar flow of micropolar fluid via travel-
ing wave transformation appeared in [28]. Therefore, this communication aims to extend
the results of [28] for unsteady two-dimensional incompressible laminar flow of MHD
micropolar fluid in a porous medium. The family of new exact solutions is found for five
distinct cases. Particularly, the solutions for micropolar fluid with and without MHD and
porous effects can also be established from present general solutions. The solutions for
MHDNewtonian fluid in the porous mediummay for all cases easily be determined if we
substitute vortex viscosity κ → 0 in respective equations. Finally, the impact of param-
eters defines micropolar fluid and other parameters are analyzed through 2D and 3D
graphical illustrations and differences among micropolar and Newtonian fluids are also
discussed. For the present paper, we adopted the method [28–33] in the following pattern.
In the “Basic governing equations” section, we provide the basic governing equations and
the theoretical development of the traveling wave method. In the “Traveling wave solu-
tions” section, we present the solution of our governing equations by the traveling wave
methods along with five different cases for MHD micropolar fluid in a porous medium.
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Some initial and boundary conditions are discussed in the “Making initial and boundary
conditions” section. In the “Numerical results and discussions” section, we discuss the
numerical results with the help of graphical illustrations.

Basic governing equations
The equation of continuity and the conservation equations of linear momentum and
angular momentum for an incompressible unsteady micropolar fluid, in the presence of
magnetohydrodynamic through a porous medium, by neglecting the body force and body
couple are as follows:

∇ · −→V = 0, (1)

ρ
D−→V
Dt

= −∇p + (μ + κ)∇2−→V + κ∇ × −→
� + −→J × −→B −

( ν

k∗
) −→V , (2)

ρj
D−→

�

Dt
= (

α + β + γ
)∇(∇ · −→

�
) − γ∇ ×

(
∇ × −→

�
)

+ κ∇ × −→V − 2κ−→
� . (3)

In the above equations, −→V is a velocity; −→� is a microrotation; p be the pressure; ρ is the
fluid density; j be the gyration parameters of the fluid;μ and κ are the dynamic and vortex
viscosities; α,β , and γ are the respective coefficients of coupled viscosities [29]; −→B is the
total magnetic force vector; −→J is the current density; and κ∗ is the porosity parameter.
The velocity, microrotation, and magnetic component porous plate are

(u, v, 0), (0, 0,N), and (0, 0,Bo), respectively, where u and v are the second and third
components of velocity, respectively, and N is the second component of microrotation
while −→B is total magnetic filed, so that −→B = −→Bo + −→

b ,
−→
b is the induced magnetic filed

and using −→J × −→B = −σBo
−→V , where σ is the electrically conductively of fluid and then

Eqs. (1–3) provide the following governing equations (see Fig. 1):
∂u
∂x

+ ∂v
∂y

= 0, (4)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+
(

ν + κ

ρ

) (
∂2u
∂x2

+ ∂2u
∂y2

)
+ κ

ρ

∂N
∂y

−
(

σB2
o

ρ
+ ν

k∗

)
u, (5)

Fig. 1 Two dimensional flow of micropolar fluid in the presence of normal magnetic field on porous plane
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∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −∂p
∂y

+
(

ν + κ

ρ

) (
∂2v
∂x2

+ ∂2v
∂y2

)
− κ

ρ

∂N
∂x

−
(

σB2
o

ρ
+ ν

k∗

)
v, (6)

∂N
∂t

+ u
∂N
∂x

+ v
∂N
∂y

= γ

ρj

(
∂2N
∂x2

+ ∂2N
∂y2

)
− κ

ρj

(
2N − ∂v

∂x
+ ∂u

∂y

)
. (7)

Procedure of traveling wave method

Suppose the non-linear partial differential equations include four dependent variables
u , v, N , and p three variables t, x, and y.

M1
(
ux, vy

) = 0, (8)

M2
(
u, v,ut ,ux,uy,uxx,uyy,Ny, px

) = 0, (9)

M3
(
u, v, vt , vx, vy, vxx, vyy,Nx, py

) = 0, (10)

M4
(
Nt ,Nx,Ny,Nxx,Nyy,N ,uy,ux

) = 0. (11)

Here, Mi is a polynomial function of u, v,N , and p which contain the non-linear terms
and higher order of derivative; where i = 1, 2, 3, 4., we display traveling wave solution as
follows:

u(x, y, t) = u(ξ), v(x, y, t) = v(ξ),N(x, y, t) = N(ξ), p(x, y, t) = p(ξ), (12)

where ξ = mx + ny + Ut. The system Eqs. (8–11) can be converted into the system of
ordinary differential equations.

M1
(
u

′
, v

′) = 0, (13)

M2
(
u, v,u

′
,u

′′
,N

′
, p

′) = 0, (14)

M3
(
u, v, v

′
, v

′′
,N

′
, p

′) = 0, (15)

M4
(
N ,N

′
,N

′′
,u

′
, v

′) = 0. (16)

This system of ordinary differential equations are may or may not be solvable. In our case,
these system are solvable.

Traveling wave solutions
In this section, we will determine the traveling wave solutions of governing Eqs. (4–7).
The traveling wave parameter type can be taken, and then, the solution has the following
representation.

u = u(ξ), v = v(ξ), N = N(ξ), p = p(ξ) and ξ = mx + ny + Ut.

Here, U is the constant phase velocity and m and n are constants. On using the traveling
wave parameter ξ into Eqs. (4–7), we get representation of the form

mu
′ + nv

′ = 0, (17)

(U + mu + nv)u
′ = −mp

′ +
(

ν + κ

ρ

) (
m2 + n2

)
u

′′ + nκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
u, (18)
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(U + mu + nv) v
′ = −np

′ +
(

ν + κ

ρ

) (
m2 + n2

)
v

′′ − mκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
v, (19)

(U + mu + nv)N
′ = γ

ρj
(
m2 + n2

)
N

′′ − κ

ρj

(
2N − mv

′ + nu
′)
, (20)

where the prime denotes the differentiation with respect to ξ . Integration to Eq. (17),
w.r.t ξ on both side yields

mu + nv = c0, (21)

where c0 is an arbitrary constant. Using Eq. (21) in Eqs. (18)–(20) reduced to

(U + c0)u
′ = −mp

′ +
(

ν + κ

ρ

) (
m2 + n2

)
u

′′ + nκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
u, (22)

(U + c0) v
′ = −np

′ +
(

ν + κ

ρ

) (
m2 + n2

)
v

′′ − mκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
v, (23)

(U + c0)N
′ = γ

ρj
(
m2 + n2

)
N

′′ − κ

ρj

(
2N − mv

′ + nu
′)
. (24)

To find u, v,N , and p from the above three equations, the following five cases will be
discussed.

Case-I: U + c0 �= 0

Eliminating p from Eqs. (22) and (23), we get

(U + c0)
(
nu

′ − mv
′) = (

m2 + n2
) (

ν + κ

ρ

) (
nu

′′ − mv
′′) + κ

ρ

(
m2 + n2

)
N

′
(25)

−
(

σB2
o

ρ
+ ν

k∗

)
(nu − mv) .

Again, using Eq. (21) and converting v into u in Eq. (25), we arrive

N
′ = ρ

κ

[
1
n

(U + co)u
′ − 1

n
(
m2 + n2

) (
ν + κ

ρ

)
u

′′ + 1
n

(
σB2

o
ρ

+ ν

k∗

)
u (26)

− mco
n

(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

)]
.

Eliminating N from Eqs. (24) and (26), we get

a1uiv − a2u
′′′ + a3u

′′ + a4u
′ + a5u = a6, (27)

where

a1 = γ

njκ
(
m2 + n2

)2 (
ν + κ

ρ

)
,

a2 =
[

ρ

nκ
(U + c0)

(
m2 + n2

) (
ν + κ

ρ

)
+ γ

njκ
(
m2 + n2

)
(U + co)

]
,

a3 =
[

ρ

nκ
(U + c0)2 + κ

njρ
(
m2 + n2

) − γ

njκ
(
m2 + n2

) (
σB2

o
ρ

+ ν

k∗

)
− 2

nj
(
m2 + n2

) (
ν + κ

ρ

)]
,

a4 =
[

ρ

nκ
(U + c0)

(
σB2

o
ρ

+ ν

k∗

)
+ 2

nj
(U + c0)

]
,
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a5 = 2
nj

(
σB2

o
ρ

+ ν

k∗

)
and a6 = 2mc0

nj
(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

)
.

The solution of Eq. (27) is

u(ξ) = a7er11ξ + a8er12ξ + a9er13ξ + a10er14ξ + a11, (28)

where r11, r12, r13, and r14 are the roots of the auxiliary equation

a1m4 − a2m3 + a3m2 + a4m + a5 = 0.

Putting the Eq. (28) into Eq. (21), we get

v(ξ) = a12er11ξ + a13er12ξ + a14er13ξ + a15er14ξ + a16, (29)

where ai+5 = − ai m
n ; i = 7, 8, 9, 10, and

a16 = 1
n

(c0 − a11 m) .

Substituting Eq. (28) into Eq. (26), we get

N(ξ) = a17er11ξ + a18er12ξ + a19er13ξ + a20er14ξ + a21ξ + a22, (30)

where

ai = 1
ri−6

[
ai−10 ri−6 ρ

nκ
(U + c0) − ai−10 r2i−6 ρ

nκ

(
m2 + n2

) (
ν + κ

ρ

)

+ ai−10 ρ

nκ

(
σB2

o
ρ

+ ν

k∗

)]
, i = 17, 18, 19, 20,

and

a21 =
[ (

σB2
o

ρ
+ ν

k∗

) (
a11 ρ

nκ
− m ρ c0

nκ
(
m2 + n2

)
) ]

.

Putting the Eqs. (28) and (30) into Eq. (22), we get

p(ξ) = a23er11ξ + a24er12ξ + a25er13ξ + a26er14ξ + a27ξ2 + a28ξ + a29, (31)

where

ai = 1
ri−12

[
ai−16 r2i−12

m
(
m2 + n2

) (
ν + κ

ρ

)
− ai−16 ri−12

m
(U + c0) + ai−6 n κ

ri−12 ρ

− ai−16

(
σB2

o
ρ

+ ν

k∗

)]
, i = 23, 24, 25, 26,

and

a27 = a21 n κ

2ρ
, a28 = a22 n κ

ρ
.

Hence, the velocity components, microrotation, and pressure in the original variables
form are
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u(x, y, t) = a7er11(mx+ny+Ut) + a8er12(mx+ny+Ut) + a9er13(mx+ny+Ut)

+ a10er14(mx+ny+Ut) + a11, (32)

v(x, y, t) = a12er11(mx+ny+Ut) + a13er12(mx+ny+Ut) + a14er13(mx+ny+Ut)

+ a15er14(mx+ny+Ut) + a16, (33)

N(x, y, t) = a17er11(mx+ny+Ut) + a18er12(mx+ny+Ut) + a19er13(mx+ny+Ut)

+ a20er14(mx+ny+Ut) + a21(mx + ny + Ut) + a22, (34)

p(x, y, t) = a23er11(mx+ny+Ut) + a24er12(mx+ny+Ut) + a25er13(mx+ny+Ut)

+ a26er14(mx+ny+Ut) + a27(mx + ny + Ut)2 + a28(mx + ny + Ut) + a29.
(35)

Case-II: U + co = 0

For this case, Eqs. (22–24) reduce to

− mp
′ +

(
ν + κ

ρ

) (
m2 + n2

)
u

′′ + n κ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
u = 0, (36)

− np
′ +

(
ν + κ

ρ

) (
m2 + n2

)
v

′′ − m κ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
v = 0, (37)

γ

ρj
(
m2 + n2

)
N

′′ − 2κ
ρj

N − κ

ρj

(
nu

′ − mv
′) = 0. (38)

Eliminating p from Eqs. (36) and (37)
(

ν + κ

ρ

) (
m2 + n2

) (
nu

′′ − mv
′′) + κ

ρ

(
m2 + n2

)
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
(nu − mv) = 0. (39)

Converting v into u in Eq. (39), then

N
′ = ρ

κ

[
1
n

(
σB2

o
ρ

+ ν

k∗

)
u − 1

n
(
m2 + n2

) (
ν + κ

ρ

)
u

′′ − m co
n

(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

) ]
. (40)

Eliminating N from Eqs. (38) and (40), we get

b1uiv + b2u
′′ + b3u = b4. (41)

where

b1 = γ

n j κ
(
m2 + n2

)2 (
ν + κ

ρ

)
,

b2 =
[

κ

n ρ j
(
m2 + n2

) − γ

n j κ
(
m2 + n2

) (
σB2

o
ρ

+ ν

k∗

)
− 2

(
m2 + n2

)

n j

(
ν + κ

ρ

) ]
,

b3 = 2
n j

(
σB2

o
ρ

+ ν

k∗

)
and b4 = 2m co

n j
(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

)
.

The solution of Eq.(41) is

u(ξ) = b5er21ξ + b6er22ξ + b7er23ξ + b8er24ξ + b9, (42)

where r21, r22, r23, and r24 are the roots of the auxiliary equation.

b1m4 + b2m2 + b3 = 0.
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Putting Eq. (42) into Eq.(21) provides

v(ξ) = b10er21ξ + b11er22ξ + b12er23ξ + b13er24ξ + b14, (43)

where

bi = −m bi−5
n

, for i = 10, 11, 12, 13,

b14 = 1
n

(c0 − m b9) .

Putting the Eq. (42) in Eq. (40)

N(ξ) = b15er21ξ + b16er22ξ + b17er23ξ + b18er24ξ + b19ξ + b20, (44)

where

bi = 1
ri+6

[
bi−10 ρ

nκ

(
σB2

o
ρ

+ ν

k∗

)
− bi−10 r2i+6 ρ

nκ

(
m2 + n2

) (
ν + κ

ρ

)]
, for i = 15, 16, 17, 18,

and

b19 =
(

σB2
o

ρ
+ ν

k∗

) [
b9 ρ

nκ
− m c0 ρ

nκ
(
m2 + n2

)
]
.

Substituting the Eqs. (42) and (44) in Eq. (36), we get

p(ξ) = b21er21ξ + b22er22ξ + b23er23ξ + b24er24ξ + b25ξ + b26, (45)

where

bi = 1
ri

[
bi−16 r2i

m
(
m2 + n2

) (
ν + κ

ρ

)
+ bi−6 n κ

mρ
− bi−16

m

(
σB2

o
ρ

+ ν

k∗

)]
, for i = 21, 22, 23, 24,

and

b25 = b19 n κ

m ρ
− b9

m

(
σB2

o
ρ

+ ν

k∗

)
.

Returning the original variable in Eqs. (42–45), we have

u(x, y, t) = b5er21(mx+ny+Ut) + b6er22(mx+ny+Ut) + b7er23(mx+ny+Ut)

+ b8er24(mx+ny+Ut) + b9, (46)

v(x, y, t) = b10er21(mx+ny+Ut) + b11er22(mx+ny+Ut) + b12er23(mx+ny+Ut)

+ b13er24(mx+ny+Ut) + b14, (47)

N(x, y, t) = b15er21(mx+ny+Ut) + b16er22(mx+ny+Ut) + b17er23(mx+ny+Ut)

+ b18er24(mx+ny+Ut) + b19(mx + ny + Ut) + b20, (48)

p(x, y, t) = b21er21(mx+ny+Ut) + b22er22(mx+ny+Ut) + b23er23(mx+ny+Ut)

+ b24er24(mx+ny+Ut) + b25(mx + ny + Ut) + b26. (49)
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Case - III :m = 0

In this case, Eqs. (4–7) will be

v′ = 0, (50)

(U + nv)u
′ = n2

(
ν + κ

ρ

)
u

′′ + n κ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
u, (51)

(U + nv) v
′ = n2

(
ν + κ

ρ

)
v

′′ − np
′ −

(
σB2

o
ρ

+ ν

k∗

)
v, (52)

(U + nv)N
′ = n2 γ

ρj
N

′′ − 2κ
ρj

N − n κ

ρj
u

′
. (53)

From Eq. (51)

N
′ = ρ

nκ

[
(U + nv)u

′ − n2
(

ν + κ

ρ

)
u

′′ +
(

σB2
o

ρ
+ ν

k∗

)
u
]
. (54)

Putting the Eq. (54) in Eq. (53), we find

c1uiv − c2u
′′′ + c3u

′′ + c4u
′ + c5u = 0, (55)

where

c1 = n4 γ

n κ j

(
ν + κ

ρ

)
,

c2 =
[
n ρ

κ
(U + nv)

(
ν + κ

ρ

)
+ nγ

κ j
(U + nv)

]
,

c3 =
[

ρ

nκ
(U + nv)2 + n κ

ρj
− n γ

jκ

(
σB2

o
ρ

+ ν

k∗

)
− 2n

j

(
ν + κ

ρ

)]
,

c4 =
[

ρ

nκ
(U + nv)

(
σB2

o
ρ

+ ν

k∗

)
+ 2n

j
(U + nv)

]
,

c5 = 2
nj

(
σB2

o
ρ

+ ν

k∗

)
.

The solution of Eq.(55) is

u(ξ) = c6er31ξ + c7er32ξ + c8er33ξ + c9er34ξ , (56)

where r31, r32, r33, and r34 are the roots of the auxiliary equation.

c1m4 − c2m3 + c3m2 + c4m + c5 = 0.

Integrating Eq. (50), we have

v(ξ) = c10. (57)

Putting the Eq. (56) in Eq. (54)

N(ξ) = c11er31ξ + c12er32ξ + c13er33ξ + c14er34ξ + c15. (58)
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where

ci = 1
ri+20

[
ci−5 ri+20 ρ

nκ
(U + nv) − ci−5 r2i+20 m2 ρ

nκ

(
ν + κ

ρ

)
+ ci−5

(
σB2

o
ρ

+ ν

k∗

)]
, for i = 11, 12, 13, 14.

Putting Eqs. (50) and (57) into Eq. (52)

p(ξ) = c16ξ + c17. (59)

where

c16 = − c10
n

(
σB2

o
ρ

+ ν

k∗

)
.

Returning the original variable, we get

u(x, y, t) = c6er31(mx+ny+Ut) + c7er32(mx+ny+Ut) + c8er33(mx+ny+Ut)

+ c9er34(mx+ny+Ut), (60)

v(x, y, t) = c10, (61)

N(x, y, t) = c11er31(mx+ny+Ut) + c12er32(mx+ny+Ut) + c13er33(mx+ny+Ut)

+ c14er34(mx+ny+Ut) + c15, (62)

p(x, y, t) = c16(mx + ny + Ut) + c17. (63)

Case- IV: n = 0

Equations (4 - 7) reduces to

u′ = 0, (64)

(U + mu)u
′ = −mp

′ + m2
(

ν + κ

ρ

)
u

′′ −
(

σB2
o

ρ
+ ν

k∗

)
u, (65)

(U + mu) v
′ = m2

(
ν + κ

ρ

)
v

′′ − mκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
v, (66)

(U + mu)N
′ = m2 γ

ρj
N

′′ − 2κ
ρj

N + mv
′
. (67)

Integrating Eq. (64), we get

u(ξ) = d1. (68)

From Eq. (66), we have

N
′ = ρ

mκ

[
m

(
ν + κ

ρ

)
v

′′ − 1
m

(U + d1m) v
′ − 1

m

(
σB2

o
ρ

+ ν

k∗

)
v
]
. (69)

Putting Eq. (69) into Eq. (67)

d2viv − d3v
′′′ − d4v

′′ + d5v
′ + d6v = 0, (70)
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where

d2 = m3 γ

κ j

(
ν + k

ρ

)
,

d3 =
[
m γ

κ j
(U + d1m) − m ρ

κ
(U + d1m)

(
ν + κ

ρ

) ]
,

d4 =
[
m γ

κ j

(
σB2

o
ρ

+ ν

k∗

)
− ρ

mκ
(U + d1m)2 + 2m

j

(
ν + κ

ρ

)
− m

]
,

d5 =
[
2
mj

(U + d1m) + ρ

mκ
(U + d1m)

(
σB2

o
ρ

+ ν

k∗

) ]
,

d6 = 2
mj

(
σB2

o
ρ

+ ν

k∗

)
.

The solution of Eq. (70) is

v(ξ) = d7er41ξ + d8er42ξ + d9er43ξ + d10er44ξ , (71)

where r41, r42, r43, and r44 are the roots of the auxiliary equation

d2m4 − d3m3 − d4m2 + d5m + d6 = 0.

Putting the Eq. (71) in Eq. (69)

N(ξ) = d11er41ξ + d12er42ξ + d13er43ξ + d14er44ξ + d15, (72)

where

di = 1
ri+30

[di−4 r2i+30 mρ

κ

(
ν + κ

ρ

)
− di−4 ri+30 ρ

mκ
(U + d1m) − di−4 ρ

mκ

(
σB2

o
ρ

+ ν

k∗

) ]
. for i = 11, 12, 13, 14,

Substituting the Eq. (68) in Eq. (65)

p(ξ) = d16ξ + d17, (73)

where

d16 = −d1
m

(
σB2

o
ρ

+ ν

k∗

)
.

The exact solutions in term of the original variables are

u(x, y, t) = d1, (74)

v(x, y, t) = d7er41(mx+ny+Ut) + d8er42(mx+ny+Ut) + d9er43(mx+ny+Ut)

+ d10er44(mx+ny+Ut), (75)

N(x, y, t) = d11er41(mx+ny+Ut) + d12er42(mx+ny+Ut) + d13er43(mx+ny+Ut)

+ d14er44(mx+ny+Ut) + d15, (76)

p(x, y, t) = d16(mx + ny + Ut) + d17. (77)
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Case-V: U = 0

For this case, Eqs. (22)–(24) become

c0u
′ = −mp

′ + (
m2 + n2

) (
ν + κ

ρ

)
u

′′ + nκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
u, (78)

c0v
′ = −np

′ + (
m2 + n2

) (
ν + κ

ρ

)
v

′′ − mκ

ρ
N

′ −
(

σB2
o

ρ
+ ν

k∗

)
v, (79)

c0N
′ = γ

ρj
(
m2 + n2

)
N

′′ − 2κ
ρj

N − κ

ρj

(
nu

′ − mv
′)
. (80)

Eliminating p from Eqs. (78) and (79), we get

c0
(
nu

′ − mv
′) = (

m2 + n2
) (

ν + κ

ρ

) (
nu

′′ − mv
′′) + κ

ρ

(
m2 + n2

)
N

′

−
(

σB2
o

ρ
+ ν

k∗

)
(nu − mv) . (81)

Convert ing v into u in Eq. (81), we arrive

c0
n

(
m2 + n2

)
u

′ = 1
n

(
m2 + n2

)2 (
ν + κ

ρ

)
u

′′ + κ

ρ

(
m2 + n2

)
N

′

−
(
m2 + n2

)

n

(
σB2

o
ρ

+ ν

k∗

)
u

+m c0
n

(
σB2

o
ρ

+ ν

k∗

)
. (82)

From Eq. (82), we have

N
′ = ρ

κ

[
c0
n
u

′ − 1
n

(
m2 + n2

) (
ν + κ

ρ

)
u

′′ + 1
n

(
σB2

o
ρ

+ ν

k∗

)
u − m c0

n
(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

) ]
.

(83)

Putting Eq. (83) in Eq. (78)

e1uiv − e2u
′′′ + e3u

′′ + e4u
′ + e5u = e6, (84)

where

e1 = γ
(
m2 + n2

)2
nκ j

(
ν + κ

ρ

)
,

e2 =
[
c0 ρ

nκ

(
m2 + n2

) (
ν + κ

ρ

)
+ c0 γ

njκ
(
m2 + n2

) ]
,

e3 =
[

ρ c20
nκ

− γ
(
m2 + n2

)

njκ

(
σB2

o
ρ

+ ν

k∗

)
− 2

(
m2 + n2

)

nj

(
ν + κ

ρ

)
+ κ

ρj
(
m2 + n2

) ]
,

e4 =
[

ρ co
nκ

(
σB2

o
ρ

+ ν

k∗

)
+ 2 co

nj

]
,

e5 = 2
nj

(
σB2

o
ρ

+ ν

k∗

)
and e6 = 2m co

n
(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

)
.
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The solution of Eq. (84) is

u(ξ) = e7er51ξ + e8er52ξ + e9er53ξ + e10er54ξ + e11, (85)

where r51, r52, r53, and r54 are the roots of the auxiliary equation

e1m4 − e2m3 + e3m2 + e4m + e5 = 0.

Substituting Eq. (85) into Eq. (21)

v(ξ) = e12er51ξ + e13er52ξ + e14er53ξ + e15er54ξ + e16, (86)

where

ei = −m ei−5
n

, for i = 12, 13, 14, 15, and

e16 = 1
n

(c0 − m e11) .

Putting the Eq. (85) in Eq. (83)

N(ξ) = e17er51ξ + e18er52ξ + e19er53ξ + e20er54ξ + e21ξ + e22. (87)

where

Fig. 2 Profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, κ = 0.2, B0 = 2, k∗ = 0.2, σ = 0.2, j =
0.03, m = n = 1, y = 1, c0 = 0.01, and different values of x
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ei = 1
ri+34

[
ei−10 ri+34 ρc0

nκ
− ei−10 r2i+34 ρ

nκ

(
m2 + n2

)

×
(

ν + κ

ρ

)
+ ei−10 ρ

nκ

(
σB2

o
ρ

+ ν

k∗

)]
, for i = 17, 18, 19, 20 and

e21 = − ρ m co
nκ

(
m2 + n2

)
(

σB2
o

ρ
+ ν

k∗

)
.

Substituting Eqs. (85) and (87) in Eq. (78), we get

p(ξ) = e23er51ξ + e24er52ξ + e25er53ξ + e26er54ξ + e27ξ2 + e28ξ + e29, (88)

where

ei = 1
ri+28

[ei−16 r2i+28
m

(
m2 + n2

) (
ν + κ

ρ

)
− ei−16 ri+28c0

m
+ ei−6 n κ

ρ

−ei−16

(
σB2

o
ρ

+ ν

k∗

) ]
, for i = 23, 24, 25, 26, and

e27 = e21 n κ

2ρ
and e28 = −e11

(
σB2

o
ρ

+ ν

k∗

)
.

Fig. 3 Profiles of the velocity field u(x, t), v(x, t) and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, κ = 0.2, B0 = 2, k∗ = 0.2, σ = 0.2, j =
0.03, m = n = 1, y = 1, c0 = 0.01, and different values of t
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Returning to the original variables, the exact solutions are

u(x, y, t) = e7er51(mx+ny+Ut) + e8er52(mx+ny+Ut) + e9er53(mx+ny+Ut)

+ e10er54(mx+ny+Ut) + e11, (89)

v(x, y, t) = e12er51(mx+ny+Ut) + e13er52(mx+ny+Ut) + e14er53(mx+ny+Ut)

+ e15er54(mx+ny+Ut) + e16, (90)

N(x, y, t) = e17er51(mx+ny+Ut) + e18er52(mx+ny+Ut) + e19er53(mx+ny+Ut)

+ e20er54(mx+ny+Ut) + e21(mx + ny + Ut) + e22, (91)

p(x, y, t) = e23er51(mx+ny+Ut) + e24er52(mx+ny+Ut) + e25er53(mx+ny+Ut)

+ e26er54(mx+ny+Ut)e27(mx + ny + Ut)2 + e28(mx + ny + Ut) + e29. (92)

Making initial and boundary conditions
Some exact traveling solutions are determined for Eqs. (4)–(7) in the “Traveling wave
solutions” section, without initial and boundary conditions. Definitely, the initial and
boundary conditions can be made from these solutions. For instance, if governing Eqs.
(4)–(7) is assumed that they are satisfied Rayleigh-Stokes problem for an edge, then for
two perpendicular plates (yz and xz−planes), we have x, y ∈[ 0,∞]. Utilizing t = 0, x = 0
and y = 0 into Eqs. (32)–(35), then some initial and boundary conditions are achieved.

Fig. 4 3D profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given
by Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, κ = 0.2, B0 = 2, k∗ = 0.2, σ = 0.2, j =
0.03, m = n = 1, y = 1, c0 = 0.01
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• Equations (32)–(35) satisfy the following initial conditions:

u(x, y, 0) = a7er11(mx+ny) + a8er12(mx+ny) + a9er13(mx+ny) + a10er14(mx+ny)

+ a11, x, y > 0, (93)

v(x, y, 0) = a12er11(mx+ny) + a13er12(mx+ny) + a14er13(mx+ny) + a15er14(mx+ny)

+ a16, x, y > 0, (94)

N(x, y, 0) = a17er11(mx+ny) + a18er12(mx+ny) + a19er13(mx+ny) + a20er14(mx+ny) (95)

+ a21(mx + ny) + a22, x, y > 0,

p(x, y, 0) = a23er11(mx+ny) + a24er12(mx+ny) + a25er13(mx+ny) + a26er14(mx+ny) (96)

+ a27(mx + ny)2 + a28(mx + ny) + a29, x, y > 0.

• Equations (32)–(35) satisfy the following boundary conditions on the upper plate
(yz-plane):

u(0, y, t) = a7er11(ny+Ut) + a8er12(ny+Ut) + a9er13(ny+Ut) + a10er14(ny+Ut)

+ a11, t > 0, (97)

Fig. 5 Profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, B0 = 2, k∗ = 0.2, σ = 0.2, j = 0.03, m = n =
1, y = 1, c0 = 0.01, t = 2s, and different values of κ
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v(0, y, t) = a12er11(ny+Ut) + a13er12(ny+Ut) + a14er13(ny+Ut) + a15er14(ny+Ut)

+ a16, t > 0, (98)

N(0, y, t) = a17er11(ny+Ut) + a18er12(ny+Ut) + a19er13(ny+Ut) + a20er14(ny+Ut) (99)

+ a21(ny + Ut) + a22, t > 0,

p(0, y, t) = a23er11(ny+Ut) + a24er12(ny+Ut) + a25er13(ny+Ut) + a26er14(ny+Ut) (100)

+a27(ny + Ut)2 + a28(ny + Ut) + a29, t > 0.

• Equations (32)–(35) satisfy the following boundary conditions on the lower plate
(xz-plane):

u(x, 0, t) = a7er11(mx+Ut) + a8er12(mx+Ut) + a9er13(mx+Ut) + a10er14(mx+Ut)

+ a11, t > 0, (101)

v(x, 0, t) = a12er11(mx+Ut) + a13er12(mx+Ut) + a14er13(mx+Ut) + a15er14(mx+Ut)

+ a16, t > 0, (102)

Fig. 6 Profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ρ = 12, κ = 0.2, B0 = 2, k∗ = 0.2, σ = 0.2, j = 0.03, m = n = 1,
y = 1, c0 = 0.01, t = 2s, and different values of ν



Jamil et al. Journal of the EgyptianMathematical Society           (2020) 28:23 Page 18 of 22

N(x, 0, t) = a17er11(mx+Ut) + a18er12(mx+Ut) + a19er13(mx+Ut) + a20er14(mx+Ut) (103)

+ a21(mx + Ut) + a22, t > 0,

p(x, 0, t) = a23er11(mx+Ut) + a24er12(mx+Ut) + a25er13(mx+Ut) + a26er14(mx+Ut) (104)

+ a27(mx + Ut)2 + a28(mx + Ut) + a29, t > 0.

Similarly, we can made the initial and boundary conditions to the other many cases.

Numerical results and discussions
In this paper, we obtain exact traveling wave solutions of MHD flow of micropolar fluid in
a porous medium. Themethodology in the recent work is easily reduced to the non-linear
partial differential equations of MHD micropolar fluid to linearized ordinary differential
equations. The method has been used directly without any restrictive assumption and
laborious calculation. These exact traveling solutions are obtained for five different cases.
From these solutions, we can find special solutions for with and withoutMHD and porous
effects. It is also noted that when κ ,N −→ 0, we obtain the solutions for viscous fluid flow.
Furthermore, in all cases, we write general solutions in the exponential form; however,
we can also write general solutions in the oscillatory form by assuming some suitable
restriction on the roots of the equations, but we avoid it due to the length of the paper.

Fig. 7 Profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, κ = 0.2, k∗ = 0.2, σ = 0.2, j = 0.03, m = n =
1, y = 1, c0 = 0.01, t = 2s, and different values of B0
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Now, in order to reveal some relevant physical aspect of the determine results the dia-
gram of the velocity fluid components u(x, t), v(x, t), and the microrotation N(x, t) are
present against x for different values of t and of the important parameters of the micropo-
lar fluid. For the sake of convenience, we present a graph only for case I,U+ c0 �= 0, and a
similar prediction can be done by other cases. Figures 2, 3, and 4 showed the influence of
time, space variable x, and three-dimensional representation of u, v, and N . From Figs. 2
and 3, it is clear that u is increasing function of time t and space variable x; however, v
and N are also increasing functions (in absolute value) of these variables. The combined
effects of these variables are shown in 3D graphs of Fig. 4. It is more clear from 3D pictures
of u, v, and N that they are becoming strengthen with the strengthening values of t and x.
The influence of the vortex viscosity κ is shown in Fig. 5; from these figures, we can see
that velocity components u, v, and microrotation N (in absolute sense) increase with the
increasing values of κ . The influence of kinematic viscosity ν is shown in Fig. 6. The effect
of kinematic viscosity ν on a fluid motion is quite opposite to that of vortex viscosity κ .
The effect of magnetic parameter B0 is shown in Fig. 7. It is clear that the effect of the
magnetic parameter B0 is similar to u and v. For instance, the velocity component u is
increasing while v is also increasing function (in absolute value) of B0 because the parti-
cle of micropolar fluid always travel rotationally, which may cause increment in velocity.

Fig. 8 Profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, κ = 0.2, B0 = 2, σ = 0.2, j = 0.03, m = n =
1, y = 1, c0 = 0.01, t = 2s, and different values of k∗
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However, the influence of magnetic parameter B0 on the microrotation profile N is
decreasing in the two-third domain and increasing in the remaining domain. In Fig. 8, the
effect of porosity parameter k∗ is depicted on the velocity components and microrotation
profiles. It is noted that the porosity parameter k has opposite effects on the profiles of u
and v in comparison to themagnetic parameter B0. ThemicrorotationN is decreasing the
function of the porosity parameter. The influence of the parameterm appears in the trav-
eling wave parameter ξ is shown in Fig. 9. It comes to the notice that increasing values of
the parameterm reduce the values of u andN ; however, the values of v are increased very
shortly.
Finally for comparison, the profile of the velocity components u(x, t) and v(x, t) cor-

responding to the motion of the three types of fluids (MHD micropolar fluid in porous
medium, micropolar, and MHD Newtonian in porous medium fluids) are together pre-
sented in Fig. 10 for similar values of material constants. It is clear from these figures that
MHDNewtonian in a porous medium fluid is the fastest, and the simple micropolar fluid
is slowest. It is also brought to the knowledge that magnetic and porosity parameters fas-
ten the fluid motion in this case that we have considered here. SI units are used in making
all these graphs and Mathcad software is used for making these graphs.

Fig. 9 Profiles of the velocity field u(x, t), v(x, t), and microrotation N(x, t) for MHD micropolar fluid given by
Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ = 0.5, κ = 0.2, B0 = 2, k∗ = 0.2, σ = 0.2, j =
0.03, n = 1, y = 1, c0 = 0.01, t = 2s, and different values ofm
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Fig. 10 Profiles of the velocity field u(x, t) and v(x, t) for MHD micropolar fluid with porous effect, micropolar
fluid, and MHD Newtonian fluids with porous given by Eqs. (32), (33), and (34), for U = 0.1, ν = 0.045, μ =
0.5, κ = 0.2, B0 = 0.2, k∗ = 0.2, σ = 0.2, j = 0.03, m = n = 1, y = 1, c0 = 0.01, and t = 2s
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19. Pashaev, O., Tanoǧlu, G.: Vector shock soliton and the hirota bilinear method. Chaos, Solitons Fractals. 26, 95–105

(2005)
20. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)
21. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the

homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)
22. Zhang, B. G., Li, S. Y., Liu, Z. R.: Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi

equations. Phys. Lett. A. 372, 1867–1872 (2008)
23. Shi, Y., Li, X., Zhang, B. G.: Traveling wave solutions of two nonlinear wave equations by (G′ \ G) expansion method.

Adv. Math. Phys. (2018). ID 8583418 8. https://doi.org/10.1155/2018/8583418
24. He, J., Abdou, M. A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos,

Solitons Fractals. 34, 1421–1429 (2007)
25. He, J. H., Wu, X. H.: Exp-function method and its application to nonlinear equations. Chaos, Solitons Fractals. 38,

903–910 (2008)
26. Islam, R., Khan, K.: Traveling wave solutions of some nonlinear evolution equations. Alex. Eng. J. 54, 263–269 (2015)
27. Iyiola, O. S., Folarin, S. B.: Approximate Analytical Study of Fingero-Imbibition phenomena of time-fractional type in

double phase flow through porous media. Eur. J. PURE Appl. Math. 7, 210–229 (2014)
28. Khan, N. A., Ara, A., Jamil, M.: Traveling waves solution of a micropolar fluid. Int. J. Nonlinear Sc. Num. Simul. 10,

1121–1125 (2009)
29. Khan, N. A., Mahmood, A., Jamil, M., Khan, N.-U.: Traveling wave solutions for MHD aligned flow of a second grade

fluid. Int. J. Chm. React. Engg. 8, A163 (2010)
30. Khan, N. A., Ara, A., Jamil, M., Yildirim, A.: Traveling wave solutions for MHD aligned flow of a second grade fluid. A

symmetry independent approach. J. King Saud Uni. Sc. 24, 63–67 (2011)
31. Khan, N. A., Khan, H.: Traveling wave solutions for (3+ 1) dimensional equations arising in fluid mechanics. Nonlinear

Eng. 3, 209–214 (2014)
32. Khan, N. A., Khan, H., Ali, S. A.: Exact solutions for MHD flow of couple stress fluid with heat transfer. J. Egyptain Math.

Soc. 24, 125–129 (2016)
33. Zhao, Y., Chen, L., Zhang, X. R.: Traveling wave solutions to incompressible unsteady 2-D laminar flows with heat

transfer boundary. Int. Commun. Heat Mass Transf. 75, 206–217 (2016)
34. Kucaba-Pietal, A.: Microchannels flow modelling with the micropolar fluid theory. Tech. Sci. 52, 209–2014 (2004)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00521-016-2516-0
https://doi.org/10.1155/2018/8583418

	Abstract
	Keywords
	Mathematics Subject Classification (2010)

	Introduction
	Basic governing equations
	Procedure of traveling wave method

	Traveling wave solutions
	Case-I:  U+ c0 =0
	Case-II:  U+ co=0
	Case - III :  m = 0 
	Case- IV:  n=0 
	Case-V:  U=0 

	Making initial and boundary conditions
	Numerical results and discussions
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

