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Abstract

Topological indices are the molecular descriptors that describe the structures of
chemical compounds. They are used in isomer discrimination, structure-property
relationship, and structure-activity relations. The topological indices are used to predict
certain physico-chemical properties such as boiling point, enthalpy of vaporization,
and stability. In this paper, the inverse sum indeg index is studied. This index (ISI(G)) is
defined as

∑ dudv
du+dv

. The inverse sum indeg index of some graph operations is
computed. These operations are join, sequential join, cartesian product, lexicographic
product, and corona operation.
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Introduction
A graph G is a finite nonempty vertex set V (G) together with a edge set E. An edge of G
which is e connects the vertices u and v. It writes e = uv, says u and v are adjacent. We
often use n andm for the order and the size of a graph, respectively [1].
Chemical graph theory is concerned with finding topological indices that are well cor-

related with the properties of chemical molecules. The edges and the vertices of a graph
represent the bonds and the atoms of a molecule, respectively [2].
The topological index which is known as a graph-based molecular descriptor or graph

invariant is the real values of the topological structure of a molecule [3].
Topological indices are used for studying the properties of molecules such as structure-

property relationship (QSPR), structure-activity relationship (QSAR), and structural
design in chemistry, nanotechnology, and pharmacology. Its main role is to work as a
numerical molecular descriptor in QSAR/QSPR models [4, 5].
The first topological index is theWiener index. In 1947, HaroldWiener introduced this

index which was used to determine physical properties of paraffin [6]. It was used for
the correlation of measured properties of molecules with their structural features by H.
Wiener.
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Many topological indices were defined. The Zagreb index is the most studied index.
The first Zagreb index [7] was defined by Gutman and Trinajstić as

M1(G) =
∑

u∈V (G)

du =
∑

uv∈E(G)

du + dv. (1)

In 2010, D. Vukicevic and M. Gasperov introduced adriatic indices that are obtained by
the analyses of well-known indices such as the Randic and the Wiener index. D. Vukice-
vic and M. Gasperov performed QSAR and QSPR studies of adriatic indices [8]. Three
classes of adriatic descriptors are defined. One of these descriptors is the discrete adriatic
descriptors which consist of 148 descriptors. These descriptors have very good predictive
properties. Thus, many scientists studied these indices. The inverse sum indeg index is
one of the discrete adriatic descriptors. The inverse sum indeg index is defined as

ISI(G) =
∑

uv∈E(G)

1
1
du + 1

dv
=

∑

uv∈E(G)

dudv
du + dv

, (2)

where du is denoted as the degree of vertex u [8].
The inverse sum indeg index gives a significant predictor of total surface area of octane

isomers. Nezhad et al. studied several sharp upper and lower bounds on the inverse sum
indeg index [9]. Nezdah et al. computed the inverse sum indeg index of some nanotubes
[10]. Sedlar et al. presented extremal values of this index across several graph classes such
as trees and chemical trees [11]. Many scientists studied the topological index of graph
operations. We encourage to examine the references that are given here [12–15].

Preparation of themanuscript
Throughout this paper, we assume that Gi = (Vi,Ei) where Vi ∩ Vj = ∅ and Ei ∩ Ej =
∅, i �= j with |Vi| = ni, |Ei| = mifori = 1, 2, ..., k.

Lemma 1 [9] Let G be a graph of size m. Then,

∑

u∈V (G)

du = 2m.

Definition 1 Let x1, x2, ..., xn be positive real numbers.

i The arithmetic mean of x1, x2, ..., xn is equal to

AM(x1, x2, ..., xn) = x1 + x2 + ... + xn
n

.

ii The harmonic mean of x1, x2, ..., xn is equal to

HM(x1, x2, ..., xn) = n
1
x1 + 1

x2 + ... + 1
xn
.

Theorem 1 Let x1, x2, ..., xn be positive real numbers. Then,
HM(x1, x2, ..., xn) ≤ AM(x1, x2, ..., xn) with equality if only if x1 = x2 = ... = xn.
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Definition 2 Let x be a vertex x /∈ V (G1). Then, G1+{x} is a graph that is obtained from
G1 by including the vertex x and joining it to all other vertices of G1. That is, G1 + {x} =
(V ,E), where V = V (G1) ∪ {x} and E = E(G1) ∪ {ux : u ∈ V (G1)} [16]

Definition 3 The join G=G1 + G2 of G1 and G2 is defined as G = (V ,E) with V =
V1 ∪ V2 and where E = E1 ∪ E2 ∪ E′, where E′ is the set of all edges joining vertices of V1
with vertices of V2 [17].

Definition 4 For three or more disjoint graphs, G1,G2,G3, ...,Gk, where Gi = (Vi,Ei)
and where Vi ∩ Vj = ∅ and Ei ∩ Ej = ∅, i �= j, 1 ≤ i, j ≤ k the sequential join G =
G1 + G2 + G3 + ... + Gn = (V ,E), where V = V1 ∪ V2 ∪ V3 ∪ ... ∪ Vk and where
E = E1 ∪ E2 ∪ ... ∪ Ek ∪ E′, is (G1 + G2) ∪ (G2 + G3) ∪ ... ∪ (Gk−1 + Gk) [17].

Definition 5 The cartesian product of G1 and G2, denoted G1 ×G2 = (V ,E), is a graph
having V = V1 × V2 and two vertices (u1, v1) and (u2, v2) are adjacent if only if either
u1 = u2 and v1v2 ∈ E2 or v1 = v2 and u1u2 ∈ E1 [17].

Definition 6 The composition known as lexicographic product G = G1[G2] of graphs
G1 and G2 is the graph with vertex set V = V1 × V2 and any two vertices (u1, v1) and
(u2, v2) are adjacent if only if u1u2 ∈ E1 or u1 = u2 and v1v2 ∈ E2 [16].

Definition 7 The corona of two graphs was defined in [16], and there have been some
results on the corona of two graphs [12]. The corona product of two graphs G1 and G2,
denoted by G1◦G2, is the graph obtained by taking one copy of G1 of order n1 and n1 copies
of G2, and then joining by an edge the ith vertex of G1 to every vertex in the ith copy of G2.
The corona product is neither associative nor commutative.

Main results
In this section, it is given sharp bounds on the inverse sum indeg index of above graph
operations.

Theorem 2 Let G = G1 +{x} ,means that add a new vertex to the graph G1. For ISI(G),
the following holds

ISI(G) ≤ 1
4
M1(G) + m1

2
+ n21

2
.

Proof We obtain

ISI(G) =
∑

uv∈E(G)

dudv
du + dv

=
∑

uv∈E(G1)

(du + 1)(dv + 1)
du + 1 + dv + 1

+
∑

uv∈E′

(du + 1)n1
du + 1 + n1

, (3)

where E′ is the set of all edges joining vertices of V1 with x vertex. By using Theorem 1,
we have

(du + 1)(dv + 1)
du + 1 + dv + 1

= 1
2

2
1

du+1 + 1
dv+1

≤ 1
2

(
du + dv

2
+ 1

)

. (4)
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Let �G be the maximum degree of G. Then,

(du + 1)n1
du + 1 + n1

≤ �Gn1
�G + n1

. (5)

Note that �G = n1. So, Eq. (5) can be rewritten as

(du + 1)n1
du + 1 + n1

≤ �Gn1
�G + n1

= n1
2
. (6)

From Eqs. (3), (4), and (6), we have

ISI(G) =
∑

uv∈E(G1)

(du + 1)(dv + 1)
du + 1 + dv + 1

+
∑

uv∈E′

(du + 1)n1
du + 1 + n1

≤ 1
2

∑

uv∈E(G1)

(
du + dv

2
+ 1

)

+ 1
2

∑

uv∈E′
n1

or

ISI(G) ≤ 1
4

∑

uv∈E(G1)

(du + dv) + 1
2

∑

uv∈E(G1)

1 + n1
2

∑

uv∈E′
1.

From Eq. (1), we can write

ISI(G) ≤ 1
4
M1(G) + m1

2
+ n1

2
n1.

Theorem 3 Let G = G1 + G2. Then,

ISI(G) ≤ 1
4

(M1(G1) + M1(G2)) + m1 + m2
2

+ n1n2
(
n1 + n2

4

)

+
m2n1 + m1n2

2
.

Proof From Eq. (2) and Definition 3, we have

ISI(G) =
∑

uv∈E(G1)

(du + n2)(dv + n2)
du + n2 + dv + n2

+
∑

uv∈E(G2)

(du + n1)(dv + n1)
du + n1 + dv + n1

+

∑

uv∈E′
u∈V (G2)
v∈V (G1)

(du + n2) (dv + n1)
du + n2 + dv + n1

. (7)

From Theorem 1, we have

(du + n2)(dv + n2)
du + n2 + dv + n2

= 1
2

2
1

du+n2 + 1
dv+n2

≤ 1
2

(
du + dv

2
+ n2

)

, (8)

(du + n1)(dv + n1)
du + n1 + dv + n1

= 1
2

2
1

du+n1 + 1
dv+n1

≤ 1
2

(
du + dv

2
+ n1

)

(9)

and
(du + n1)(dv + n2)
du + n1 + dv + n2

= 1
2

2
1

du+n1 + 1
dv+n2

≤ 1
2

(
du + dv

2
+ n2 + n1

2

)

. (10)
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Equation (7) can be rewritten with Eqs. (8), (9), and (10) as

ISI(G) ≤ 1
2

∑

uv∈E(G1)

(
du + dv

2
+ n2

)

+ 1
2

∑

uv∈E(G2)

(
du + dv

2
+ n1

)

+

1
2

∑

uv∈E′
u∈V (G2)
v∈V (G1)

(
du + dv

2
+ n1 + n2

2

)

.

By using Eq. (1), we get

ISI(G) ≤ 1
4
M1(G1) + n2

2
∑

uv∈E(G1)

1 + 1
4
M1(G2) + n1

2
∑

uv∈E(G2)

1 +

1
2

∑

uv∈E′

(
du + dv

2
+ n1 + n2

2

)

or

ISI(G) ≤ 1
4
M1(G1) + n2

2
m1 + 1

4
M1(G2) + n1

2
m2 + 1

2
∑

uv∈E′

n1 + n2
2

+

1
4

∑

v∈V (G1)

dv + 1
4

∑

u∈V (G2)

du.

By Lemma 1, we have

ISI(G) ≤ 1
4
M1(G1) + n2

2
m1 + 1

4
M1(G2) + n1

2
m2 + 1

2

(
n1 + n2

2

)

n1n2 +
1
4
2m1 + 1

4
2m2.

Theorem 4 Let G = G1 + G2 + · · · + Gk. Then,

ISI(G) ≤ 1
4

k∑

j=1
M1(Gj) + 1

2

k∑

j=2
mjnj−1 + 1

2

k−1∑

j=1
mjnj+1 +

1
4

k−1∑

j=1

(
n2j nj+1 + n2j+1nj

)
+ 1

2

k−2∑

j=1
njnj+1nj+2

+1
2

k−1∑

j=1
mj + mj+1.
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Proof From Eq. (2) and Definition 3, we have

ISI(G) =
∑

uv∈E(G1)

(du + n2)(dv + n2)
(du + n2 + dv + n2)

+

∑

uv∈E(Gj)

j=2,k−1

(du + n(j−1) + n(j+1))(dv + n(j−1) + n(j+1))

du + n(j−1) + n(j+1) + dv + n(j−1) + n(j+1)
+

∑

uv∈E(Gk)

(du + nk−1)(dv + nk−1)

du + nk−1 + dv + nk−1
+

∑

uv∈E′
u∈V (G1)
v∈V (G2)

(du + n2)(dv + n1 + n3)
du + n2 + dv + n1 + n3

+

∑

uv∈E′
u∈V (Gj)

v∈V (Gj+1)

j=2,k−1

(du + nj−1 + nj+1)(dv + nj + nj+2)

du + nj−1 + nj+1 + dv + nj + nj+2
+

∑

uv∈E′
u∈V (Gk−1)
v∈V (Gk)

(du + nk−2 + nk)(dv + nk−1)

du + nk−2 + nk + dv + nk−1
. (11)

Equation (11) can be rewritten using Theorem 1:

ISI(G) =
∑

uv∈E(G1)

1
4
(du + dv + 2n2) +

∑

uv∈E(Gj)

j=2,k−1

1
4
(du + dv + 2nj−1 + 2nj+1) +

∑

uv∈E(Gk)

1
4
(du + dv + 2nk−1) +

∑

uv∈E′
u∈V (G1)
v∈V (G2)

1
4
(du + dv + n1 + n2 + n3) +

∑

uv∈E′
u∈V (Gj)

v∈V (Gj+1)

j=2,k−1

1
4
(du + dv + nj−1 + nj + nj+1 + nj+2) +

∑

uv∈E′
u∈V (Gk−1)
v∈V (Gk)

1
4
(du + dv + nk−2 + nk−1 + nk).

By using Eq. (1), we get
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ISI(G) ≤ 1
4

(M1(G1) + 2n2m1) +
1
4

∑

2≤j≤k−1
(M1(Gj) + mj(2nj−1 + 2nj+1)) +

1
4

(
M1(Gk) + 2nk−1mk

) + 1
4

⎛

⎝
∑

u∈V (G1)

dv +
∑

v∈V (G2)

du

⎞

⎠ +

n1n2
4

(n1 + n2 + n3) + 1
4

⎛

⎜
⎜
⎜
⎜
⎝

∑

u∈V (Gj)

j=2,k−2

dv +
∑

v∈V (Gj+1)

j=2,k−2

du

⎞

⎟
⎟
⎟
⎟
⎠

+

njnj+1

4
(
nj−1 + nj + nj+1 + nj+2

) + 1
4

∑

u∈V (Gk−1)

dv + 1
4

∑

v∈V (Gk)

du +

nk−1nk
4

(
nk−2 + nk−1 + nk

)
.

By Lemma 1, the proof is completed as

ISI(G) ≤ 1
4

(M1(G1) + 2n2m1) + 1
4

∑

2≤j≤k−1

(M1(Gj) + mj(2nj−1 + 2nj+1)) +

1
4

(
M1(Gk) + 2nk−1mk

) + 1
4

(2m1 + 2m2) + n1n2
4

(n1 + n2 + n3) +
1
4

∑

j=2,k−2

(
2mj + 2mj+1

) + njnj+1

4
(
nj−1 + nj + nj+1 + nj+2

) +

1
4

(
2mk−1 + 2mk

) + nk−1nk
4

(
nk−2 + nk−1 + nk

)
.

Theorem 5 Let G = G1 × G2. Then,

ISI(G) ≤ 1
4

(n2M1(G1) + n1M1(G2)) + m1n2�2 + m2n1�1
2

.

Proof Assume that ui,uk ∈ V (G1), vj, vl ∈ V (G2). From Definition 3, we can write

ISI(G) =
∑

(ui,vj)(uk ,vl)∈E(G)

dudv
du + dv

or

ISI(G) =
∑

(ui,vj)(ui,vl)∈E(G)

j �=l

1
1

dui+dvj
+ 1

dui+dvl

+
∑

(ui,vj)(uk ,vj)∈E(G)

1
1

dui+dvj
+ 1

duk+dvj
. (12)

By using Theorem 1, we get

1
1

dui+dvj
+ 1

dui+dvl

≤ 1
2
dui + dvj + dui + dvl

2
= dui

2
+ dui + dvl

4
, (13)

1
1

dui+dvj
+ 1

duk+dvj
≤ 1

2
dui + dvj + duk + dvj

2
= dvj

2
+ dui + duk

4
. (14)
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Equation (12) is rewritten using Eqs. (13) and (14).

ISI(G) ≤
∑

ui∈V (G1)

∑

(vj ,vl)∈E(G2)

(
dui
2

+ dui + dvl
4

)

+

∑

vj∈V (G2)

∑

(ui,uk)∈E(G1)

(dvj
2

+ dui + duk
4

)

. (15)

Let �1,�2 be the maximum degree of G1,G2 respectively.

dui
2

+ dui + dvl
4

≤ �1
2

+ dui + dvl
4

, (16)

dvj
2

+ dui + duk
4

≤ �2
2

+ dui + duk
4

. (17)

By Eqs. (16) and (17), we have

ISI(G) ≤
∑

ui∈V (G1)

∑

(vj ,vl)∈E(G2)

(
�1
2

+ dui + dvl
4

)

+

∑

vj∈V (G2)

∑

(ui,uk)∈E(G)

(
�2
2

+ dui + duk
4

)

.

From Eq. (1), we get

ISI(G) ≤
∑

ui∈V (G1)

(
�1
2

+ M1(G2)

4

)

+
∑

vj∈V (G2)

(
�2
2

+ M1(G1)

4

)

.

The following is obtained:

ISI(G) ≤ m2n1�1
2

+ n1M1(G2)

4
+ m1n2�2

2
+ n2M1(G1)

4
.

Theorem 6 Let G = G1[G2] . Then,

ISI(G) ≤ n2�1m2 + �2m1 + M1(G2)

2
+ n2M1(G1)

2
.

Proof Assume that ui,uk ∈ V (G1), vj, vl ∈ V (G2). From Definition 4 and dG1[G2] =
n2dG1(u) + dG2(v), we get

ISI(G) =
∑

(ui,vj)(uk ,vl)∈E(G)

dudv
du + dv

=
∑

ui∈V (G1)

∑

(vj ,vl)∈E(G2)

j �=l

1
1

n2dui+dvj
+ 1

n2dui+dvl

+
∑

uj∈V (G2)

∑

vl∈V (G2)

∑

(ui,uk)∈E(G1)

1
1

n2dui+dvj
+ 1

n2duk+dvl

. (18)

Assume that �1,�2 be the maximum degree of G1,G2 respectively. From Theorem 1,
we have

1
2

2
1

n2dui+dvj
+ 1

n2dui+dvl

≤ n2dui + dvj + n2dui + dvl
2

≤ n2�1 + dvj + dvl
2

(19)
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and
1
2

2
1

n2dui+dvj
+ 1

n2duk+dvl

≤ n2dui + dvj + n2duk + dvl
2

≤ �2 + n2(dui + duk )
2

. (20)

Equation (18) is rewritten by Eqs. (19) and (20):

ISI(G) ≤
∑

vjvl∈E(G2)

(

n2�1 + dvj + dvl
2

)

+
∑

uiuk∈E(G2)

(

�2 + n2(dui + duk )
2

)

.

By Eq. (1), it is obtained as

ISI(G) ≤ n2�1m2 + M1(G2)

2
+ n2M1(G1)

2
+ �2m1.

Theorem 7 Let G = G1 ◦ G2. Then,

ISI(G) ≤ �1
δ1 + n2

ISI(G1) + n1�2
δ2 + 1

ISI(G2) + n2m1
2�1 + n2
2δ1 + 2n2

+

n1m2
2�2 + 1
2δ2 + 2

+ (�1 + n2) (�2 + 1)
δ1 + δ2 + n2 + 1

n1n2.

Proof From Definition 7, we have

ISI(G) =
∑

uv∈E(G1)

(du + n2)(dv + n2)
du + n2 + dv + n2

+ n1
∑

uv∈E(G2)

(du + 1)(dv + 1)
du + dv + 2

+

∑

uv∈E′
u∈V (G2)
v∈V (G1)

(du + n2)(dv + 1)
du + n2 + dv + 1

.

Note that

(du + n2)(dv + n2)
du + n2 + dv + n2

= dudv
du + dv + 2n2

+ n2(du + dv) + n22
du + dv + 2n2

≤ dudv
du + dv

du + dv
du + dv + 2n2

+ n2(du + dv) + n22
du + dv + 2n2

and
(du + 1)(dv + 1)
du + dv + 2

= dudv
du + dv + 2

+ du + dv + 1
du + dv + 2

≤ dudv
du + dv

du + dv
du + dv + 2

+ du + dv + 1
du + dv + 2

.

Then,

ISI(G) ≤
∑

uv∈E(G1)

dudv
du + dv

du + dv
du + dv + 2n2

+
∑

uv∈E(G1)

n2(du + dv) + n22
du + dv + 2n2

+

n1
∑

uv∈E(G2)

dudv
du + dv

du + dv
du + dv + 2

+ n1
∑

uv∈E(G2)

du + dv + 1
du + dv + 2

+

∑

uv∈E′
u∈V (G2)
v∈V (G1)

(du + n2)(dv + 1)
du + n2 + dv + 1

.
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Assume that �1(δ1),�2(δ2) be maximum (minimum) degree of G1,G2 respectively.

ISI(G) ≤
∑

uv∈E(G1)

dudv
du + dv

2�1
2δ1 + 2n2

+
∑

uv∈E(G1)

n22�1 + n22
2δ1 + 2n2

+

n1
∑

uv∈E(G2)

dudv
du + dv

2�2
2δ2 + 2

+ n1
∑

uv∈E(G2)

2�2 + 1
2δ2 + 2

+

∑

uv∈E′
u∈V (G2)
v∈V (G1)

(�1 + n2)(�2 + 1)
δ1 + n2 + δ2 + 1

.

By Eq. (2), we obtain

ISI(G) ≤ �1
δ1 + n2

ISI(G1) + n1�2
δ2 + 1

ISI(G2) + n2m1
2�1 + n2
2δ1 + 2n2

+

n1m2
2�2 + 1
2δ2 + 2

+ (�1 + n2) (�2 + 1)
δ1 + δ2 + n2 + 1

n1n2.

Conclusions
The topological indices are used theoretically to predict the physical-chemical properties
of a chemical structure. In particular, they are used to estimate the physical and chemical
properties of the new molecular structure without experimentation.
The ISI(G) index which is a significant predictor of the total surface area of octane iso-

mers has been many studied among topological indices. The graph operations play an
important role in graph theory. Upper bounds for new graphs that are obtained by graph
operations are given. These bounds are based on minimum-maximum degree, vertex-
edge numbers. The results of this study may be used as a predictor especially in the
chemical graph theory.
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