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Abstract

The finiteness of the collision time between two different randomly moving particles
is presented by providing more useful analysis that gives stronger and finite
moment. The triangular arrays and the uniform integrability conditions of the all
probable positions non-stationary random sequence are used. In addition, an
important property of Marcinkiewicz laws of large numbers and Hoffman-Jorgensen
inequality are presented in this analysis. All of them are deriving to provide the
sufficient conditions that give more stronger moments of the first meeting time in
the probability space.
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Highlights

� More useful analysis is presented to provide the finiteness of the first meeting time

between two randomly moving particles.

� All probable positions of the first collision time are considered as a random

sequence defined on the probability space.

� The triangular arrays and the uniform integrability conditions of the all probable

positions are used to obtain the sufficient conditions which give the stronger

moments.

� An important and useful property of Marcinkiewicz laws of large numbers is

presented.

� A new and useful result is obtained by using Hoffman-Jorgensen inequality.

Introduction
The particles move in the fluid with one of the famous stochastic processes such as

Levy process and Brownian motion. Physicists are concerned in studying the physical

properties of the particles movement in the reactive medium. The important is study-

ing the finiteness of the collision time expected value between different kinds of
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randomly moving particles within this medium. In the case of linear flows in the fluid,

El-Hadidy [1] and Alzulaibani [2] provided advanced analysis to get the sufficient con-

ditions of this finiteness. They showed that the random sequence of all random vari-

ables of all probable positions of the first collision time is uniformly integerable

function and has a triangular array. This will give a stronger moment of the first colli-

sion time expected value.

In this work, more useful analysis is derived to present the finiteness of expected

value of the first collision time (that was provided in all models studied in El-Hadidy

et al. [3, 4]). In addition, one can use our idea to present more suitable analysis for dif-

ferent n-dimensional models, for moving particles (targets) as studied in El-Hadidy

et al. [5–15]. In these works, the authors get the first moment only, which is not useful

for the sufficient finiteness of this expected value. In the case of the randomly located

target, El-Hadidy et al. [16–21] presented statistical and analytical studies to maximize

the probability of the target detection or minimize the expected value of the searching

time. Here, let Y1, Y2, …, Ym be a finite number of all probable positions of the first col-

lision time defined on a given probability space (Ω,ℵ, P) and they are independent

identically distributed random variables (i.i.d.r.vs). In this probability space, Ω presents

all first meeting probable positions, ℵ is the σ− algebra that provides all algebraic oper-

ations at time t ∈ R+ and P is the probability measure for these operations. In addition,

let the set of all linear paths of the randomly moving particle (moves with stochastic

process s1(t)) in the reactive medium be β(t). The other particle moves with another

stochastic process s2(t). Define β(t) : [0,∞)→ [0,∞) as a class of all convex functions

such that β(2t) = cβ(t), c > 0. El-Hadidy [1] showed that the first moment of the first col-

lision time expected value is finite if W1, W2, …, Wm is uniformly integrable as in the

following Lemma 1 and Theorem 1.

Lemma 1. The set of all random variables W1, W2, …, Wm is uniformly integrable iff

Supm E½βðjWmjÞ� < ∞; for some β̂ðjWmjÞ∈βðjWmjÞ.
Theorem 1. If {Wk}k ∈N, N = {1, 2,…} (sequence of all non stationary and i.i.d.r.vs),

β(t) : [0,∞)→ [0,∞) (be a non-decreasing function), Supm E½βðjWmjÞ� < ∞ and tη¼
infft∈½0;∞�; PðW 1 > t;W 2 > t;…;W ζ > tÞ≤ t

c2 −αqg for ζ > q ≥ 1, η ∈ (0, 1), then

E β Wmð Þ½ �≤c2
Yζ
k¼1

E βk qMkð Þ� �þ βq þ η
� �Yζ

k¼1

E βk Wkð Þ� �þ β tη
� � !

: ð1Þ

Alzulaibani [2] showed that the triangular arrays of {Wk}k ∈N on (Ω,ℵ, P), as in the fol-

lowing Theorem 2 is sufficient to get more stronger moments for the finiteness of the

first meeting time.

Theorem 2. If {Wk, 1 ≤ k ≤ kn, n ≥ 1} is a triangular array, Vnk ¼
Pk
i¼1

riWni; Vn ¼ Vnkn

; ri is the rth moment degree of the variable Wni and ρ2n ¼
Pkn
k¼1

W 2
nk ; then: fV 2

ngn∈N is

uniformly integrable iff fρ2ngn∈N is uniformly integrable.

This paper is organized as follows: Section 2 presents collection of different results

which give more stronger moments. In this section, some Theorems, Lemmas, and

Proposition are presented by using the Marcinkiewicz laws of large numbers and
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Hoffman-Jorgensen inequality. Finally, the concluding remarks about these results and

the future works are provided.

Analysis of the finiteness
Let all probable positions of the first collision time between two randomly moving par-

ticles {W,W1,W2,…,Wk,…} be a (not necessarily stationary) random sequence defined

on a (Ω,ℵ, P) and ℵm
k be the σ− field generated by {Wk,Wk + 1,…,Wm,m ∈N}. Also, let

the coefficient φn defined by: φn ¼ Supk∈ℕ SupfPðBjAÞ−PðBÞ; PðAÞ > 0;A∈ℵ k
1;B∈ℵ

∞
nþk

g; if A and B are two events in (Ω,ℵ, P), then let ψn ¼ Supk∈ℕ Supfj PðA∩BÞ
PðAÞPðBÞ−1j; PðAÞP

ðBÞ > 0;A∈ℵFk
1;B∈ℵ

∞
nþkg ; ψ�

n ¼ Supk∈ℕ Supf PðA∩BÞ
PðAÞPðBÞ ; PðAÞPðBÞ > 0;A∈ℵk

1;B∈ℵ
∞
nþkg ;

ψ
0
n ¼ inf

k∈ℕ
inf f PðA∩BÞ

PðAÞPðBÞ ; PðAÞPðBÞ > 0;A∈ℵk
1;B∈ℵ

∞
nþkg ; which are the coefficients of

dependence and they are stronger than φn. Also, let Mn ¼ max
1≤ k ≤n

jWk j.
Proposition 1. Assuming that n >m ≥ 1 and φm < 1, for Vk ∈ R

+, one can obtain,

P max1≤ k ≤n−mþ1 Vkj j > t½ �≤ 3
1−φm

maxm≤ k ≤nP Vkj j þ m−1ð ÞMn >
t
3

h i
: ð2Þ

If φm<1
2
and τ(Vn −Vk) are symmetric for n > k ≥ 1 then,

P Vnj j þ m−1ð Þ max1≤ i≤n Xij j > t½ �≥ 1
2
−φm

� 	
P max1≤ k ≤n−mþ1 Vkj j > t½ �: ð3Þ

Proof: Assuming that n >m, C1 = {V1 > t + v} and for 1 < k ≤ n, v > 0, one can get,

Ck ¼ V 1≤vþ t;…;Vk−1≤vþ t;Vk > vþ tf g:

Also, let Vm
k ¼ 0; if k≥mPkþm−1

s¼kþ1 Ws; otherwise



As in Kolmogorov [22], for 1 ≤ k ≤ n −m + 1,

one can obtain Ck∩f−Vn þ Vkþm−1≤vg⊆Ck∩fVn−Vm
k > tg and

Pn
k¼1Ck ¼ f max

1≤ k ≤n
V k

> vþ tg: Thus, P½Vn þ ðm−1Þ max
1≤ i≤n

jWij > t�≥P½Vn þ ðm−1Þ max
1≤ i≤n

jWij > t; max
1≤ k ≤n

V k

þðm−1ÞMn > vþ t�

≥
Xn
k¼1

P Ck ;Vn þ m−1ð ÞMn > t½ �≥
Xn−mþ1

k¼1

P Ck ; SVn−V
m
k > t

� �

≥
Xn−mþ1

k¼1

P Ck ;−Vn þ Vkþm−1≤v½ �≥ min1≤ k ≤n−mP −Vn þ Vkþm−1≤v½ �−φmð Þ
P max1≤ k ≤n−mþ1Vk > vþ t½ �: ð4Þ

Also, according to Lin and Lu [23], for n > k ≥ 1,if LðVn−VkÞ are symmetric, then P½

Vn þ ðm−1Þ max
1≤ i≤n

jWij > t�≥ð1
2
−φmÞP½ max

1≤ k ≤n−mþ1
Vk > t�.Since,

P max1≤ k ≤n V kj j > t½ �≤P max1≤ k ≤n V k > t½ � þ P max1≤ k ≤n −Vkð Þ >½ �; ð5Þ

then by using (4) and (5), and as in Skorokhod [24, 25], one can get P½jVnj þ ðm−1Þ
max
1≤ i≤n

jWij > t�

≥ min1≤ k ≤n−m P Vn−Vkþm−1j j≤v½ �−φmð ÞP max1≤ k ≤n−mþ1 Vkj j > vþ t½ � ð6Þ



Alzulaibani Journal of the Egyptian Mathematical Society           (2020) 28:35 Page 4 of 7
It is clear that, for n > k ≥ 1, if LðVn−VkÞ are symmetric and ψ
0
m > 0; then for n >

m ≥ 1, one can get,

2P Vnj j þ mþ 1ð Þ max1≤ i≤n W ij j > t½ �≥ψ0
m P max1≤ k ≤n−mþ1 Vkj j > t½ �: ð7Þ

By using the above Proposition 1, Szewczak [26] presented the generalization of the

Hoffman-Jorgensen inequality [27] as in the following Proposition 2.

Theorem 3. If {Wk}k ∈N, N = {1, 2,…} be a non-stationary random sequence, Mn

¼ sup1≤ k ≤nj
Pn

k¼1Wk j and if E[|X1|
p] < ∞ , p > 0, then for v > 0, α > 0, n > m,

2−p 1þ vð Þ−pE max
1≤ k ≤n

V kj jpI
max

1≤ k ≤n
V kj jp > α2p 1þ vð Þp

� 	
2
664

3
775

≤pnm v
ffiffiffi
αp

p� �
E max

i≤ k ≤n
V kj jpI

max
1≤ k ≤n

V kj jp > α

� 	
2
664

3
775þmpE Mp

nI mpMp
n>αð Þ

h i
;

where I(.) is the indicator function and pnmðuÞ ¼ φm þ P½ max
m≤ k ≤n

jVk j > u�:Proof: From
Proposition 2 if n >m ≥ 1, then one can get,

P max
1≤ i≤n

V kj j > vþ 2t þ u

� 

≤P m: max

1≤ i≤n
Xij j > u

� 

þ ψ�

mP max
m≤ k ≤n

V kj j > t

� 

P max

1≤k ≤n−m
Vkj j > v

� 

:

Now, let Zn =max1 ≤ k ≤ n|Vk| this implies that,

P Zn > 2 t þ vð Þ½ �≤pnm sð ÞP Zn > t½ � þ P mMn > t½ �

Thus, if I put v = vt, then I get,

P Zn > 2 1þ vð Þt½ �≤pnm vtð ÞP Zn > t½ � þ P mMn > t½ �:
And, let Z be a positive random variable, then one can get,
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E ZI Z>αð Þ
� � ¼ αP Z > α½ g þ

Z ∞

α
P Z > u½ �du:

If E[|X1|
p] <∞, p > 0, n >m ≥ 1, τ ∈ (0, 1) and tτ ¼ inf ft > 0;φm þ P½ max

m≤ k ≤n
jVk j > t�

≤4−pτg; then one can obtain the same result as in Szewczak [26],

E max
m≤ k ≤n

V kj jp
� 


≤
4p

1−τ
mpE max

1≤ i≤n
W ij jp

� 

þ tpτ

� 	
: ð8Þ

As in Szewczak [26] (Proposition 12), the strictly stationary sequence {Wk}k ∈N of all

probable positions of the first meeting time satisfies:

1−φmð ÞP M�
n=m½ � > w

� 

≤P Mn > w½ �≤m 1−φmð ÞP M�

n=m½ �þ1
> w

� 

;

where φm < 1 and y ≥ 0, n ≥m ≥ 1. That is useful with the above propositions to prove

the following Theorem 4 which provides the maxima of a strictly stationary sequence

{Wk}k ∈N. This gives more stronger moments for the finiteness of the first collision time

at any random position w in the reactive medium.

The direct consequence of Lemmas and Theorems in this paper, are useful to get the

finiteness of the first meeting time between the randomly moving particles in the

reactive medium.

Concluding remarks
The main contributions of this paper can be summarized as follows:
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1. More useful analysis that shows the finiteness of the collision time between two

different randomly moving particles has been discussed.

2. The triangular arrays and uniform integrability conditions of the non-stationary

random sequence of all probable positions are used.

3. The sufficient conditions that give more stronger moments of the collision time in

the probability space has been presented.

4. New results obtained here are more useful and general than the results in El-

Hadidy [1] and Alzulaibani [2].

5. In the future research, one can apply more advanced analysis by studying these

sufficient conditions for the n-dimensional stochastic particle motion in the fluid.
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