
Journal of the Egyptian
Mathematical Society

El-Hadidy Journal of the EgyptianMathematical Society           (2020) 28:37 
https://doi.org/10.1186/s42787–020-00097–1

ORIGINAL RESEARCH Open Access

The searching algorithm for detecting a
Markovian target based on maximizing the
discounted effort reward search
Mohamed Abd Allah El-Hadidy1,2

Correspondence:
melhadidi@science.tanta.edu.eg
1Department of Mathematics,
Faculty of Science, Tanta University,
Tanta, Egypt
2Mathematics and Statistics
Department, College of Science,
Taibah University, Yanbu, Saudi
Arabia

Abstract

This paper presents the searching algorithm to detect a Markovian target which moves
randomly inM-cells. Our algorithm is based on maximizing the discounted effort
reward search. At each fixed number of time intervals, the search effort is a random
variable with a normal distribution. More than minimizing the non-detection
probability of the targets at time interval i, we seek for the optimal distribution of the
search effort by maximizing the discounted effort reward search. We present some
special cases of one Markovian and hidden target. Experimental results for a Markovian,
hidden target are obtained and compared with the cases of applying and without
applying the discounted effort reward search.
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Introduction
The searching problem for missing targets had begun since the fifties of the last cen-
tury. Scientists have presented different types of research plans that fit the nature of the
research area. The targets were placed sometimes in difficult terrain areas on the surface
of the ground or in the deep of the sea. In order to increase the probability of detection or
minimize the search effort, specialists in this field dived the areas to be searched in a set
with identical or different states. The search area is divided into cells of different forms.
Hong et al. [1, 2] divided the area into hexagonal cells. They proposed an approximation
algorithm for the optimal search path. This algorithm optimizes an approximate path to
compute the detection probability, by using the conditional probabilities and then find-
ing the maximum probability of detection of this search path. Song and Teneketizs [3]
determined the optimal search strategies with multiple sensors that maximize the total
probability of successful search where the target is hidden in one of a finite set of different
cells. Teamah et al. [4] divided the search region into square cells. They minimized the
probability of undetected and the searching effort (is bounded by a normal distribution)
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by using multiple searchers. They studied some special cases when the target is hidden in
one ofM-identical cells and when the effort is unrestricted.
It is getting harder in the case of search for two related randomly moving or located

targets. El-Hadidy [5] studied this interesting problem by dividing the search region into
square cells. A first investigation of this new search model (discrete search model where
the targets have a motion with a discrete state-time stochastic process on a discrete state
space) is presented by El-Hadidy [5] to find two related Markovian targets. This model
minimized the expected effort of detecting two related targets. This mathematical model
allows us to include the search effort as a function with fuzzy parameter (discounted
parameter) where search effort is bounded by a normal random variable. Since there is a
whole uncertainty in determining the target location at any time interval, this gave him
a strong justification for using the fuzzy logic. On the other hand, this uncertainty was
affected on the effort distribution. Thus, his model is not only new, but also it is a first
investigation that uses a fuzzy logic in the optimal search theory. He formulated a very
interesting problem, that is, a fuzzy multi-objective nonlinear stochastic minimax dis-
counted effort reward problem. This problem can be considered as a better motivation
for the fuzzy extension stochastic optimization problem. The Kuhn-Tucker conditions
were applied to solve it and gave the minimum expected effort to detect the Markovian
targets. Furthermore, this problem was solved in the special cases of locating targets and
unbounded effort. Also, he presented a dynamic programming algorithm that gives the
optimal distribution of an effort which makes the discounted effort reward of finding the
targets maximized. In addition, this algorithm can be considered for these special cases.
The effectiveness of this model has been presented in some real-life applications. Several
studies for different kinds of optimal search plans for the lost targets on the lines, in the
plane, and in the space have been studied, as in El-Hadidy et al. [6–36].
The main contributions of this paper center around studying theM-states search prob-

lem for two related lost targets, an extension of the problem that studied in El-Hadidy [5].
The related targets either located in one of a finite set of different states or moved through
them according to discrete state and time stochastic process (discrete-time Markovian
targets). This situation occurs when the located targets are very important such as search-
ing for the spider landmines (see https://www.youtube.com/watch?v=XH0n6I0qMZA)
and when they are moving such as two related submarines on the ocean. The effort must
be divided among the states to find the targets. This search effort at each fixed number of
time intervals is a random variable that has a normal distribution. Our purpose here is to
obtain the optimal distribution of effort that maximizes the discounted effort reward of
finding the targets. This minimizes the probability of undetection and the cost of finding
the targets.
The rest of the paper is organized as follows. The “Problem formulation” section

discusses the problem and provides the optimal values of the minimum search effort
and the maximum probability of detection. The “One Markovian target” section
gives special cases of one Markovian and hidden target. The “Application” section
presents simulation examples, with numerical results for a Markovian and hidden
target. These results are compared with the cases of applying and without applying
the discounted effort reward search. This comparison can be shown in the effective-
ness of this solution. Finally, the “Conclusion and future research” section concludes
the paper.

https://www.youtube.com/watch?v=XH0n6I0qMZA
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Problem formulation
In this section, we present the same model which has been studied before by El-Hadidy
[5] but without using fuzzy logic. This model uses the same discrete approach that was
used in El-Hadidy [5] where the targets move on discrete state space (M-cells) with a
discrete-time Markovian motion.

The searching technique

The searcher has the ability to move freely on M-cells (the searcher can jump from any
cell to another freely). The searcher will detect the primary target and then its related
target which may be in one of the primary target’s neighbor cells. Since the searcher aims
to find the optimal method to get the minimum distribution of the searching effort that
minimizes the searching cost, we will use all the previous hypotheses to formulate a very
interesting and difficult optimization problem. El-Hadidy [5] showed the probability that
the primary target exists in cell j at time interval i is denoted by Pij, i = 1, 2, ...,N , j =
1, 2, ...,M and consequently the probability of the other target is one of the probabilities:
{
Pi(j−h−1),Pi(j−h),Pi(j−h+1),Pi(j−1),Pi(j+1),Pi(j+h−1),Pi(j+h),Pi(j+h+1)

}
, see Fig. 1.

The searching effort

We let the effort is randomly distributed, then we can consider that the effort which will
be distributed among the cells is L(R) and its value is bounded by a random variableX (i.e.,
0 ≤ L(R) ≤ X). Here, the probability of detection depends on the total amount of effort
Zij, i = 1, 2, ...,N , j = 1, 2, ...,M is applied there by the searcher and not on the way the
effort is applied. We assume that the searches at distinct time intervals are independent

Fig. 1 The neighbor cells of the cell j
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and the motion of the target is independent of the sensors’ actions. The searcher will visit
the cell j through one of its adjacent cells as in the cases in Fig. 2.

The probability of detection

We consider that the conditional probability of detecting the target at time interval i with
Zij amount of effort given that the target is located in state j is given by the detection

Fig. 2 All possible paths to detect the first target in the cell j and time interval i
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function b(i, j,Zij). El-Hadidy [5] showed that the probability of detecting the first target
in the cell j at time interval i is Pij

(
1 − b

(
i, j,Zij

))
, where Zij is the amount of effort, given

that the target is located in cell j. It is known that the number of the cells which surrounds
the cell where the first target is detected at the time interval i is 8, so the other target will
be detected in one of these cells at the same time. We must not forget that the searcher
entered one of these eight cells before the detection of the first target. Therefore, we have
seven cells and the probability of the other target will be distributed on them, see Hong
et al. [1]. Here, the searcher does not enter the cells that he entered before in this time
interval i. Then, the searcher will enter one of the seven cells and leaving only 6 cells with
the target being distributed. Consequently, the probability of detecting the other target is
�ij = 6

∑
� Pi(j+�)

(
1 − b

(
i, j,Zi(j+�)

))
, � = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h +

1. For further clarification, see El-Hadidy [5]. Here, we will deal with the probability of
undetecting the two targets in the cell j at time interval i which is given by Pijb

(
i, j,Zij

)+
�ij where �ij = 6

∑
�Pi(j+�)

(
b
(
i, j,Zi(j+�)

))
, � = −h − 1,−h,−h + 1,−1, 1, h −

1, h, h + 1. Consequently, the probability of undetecting the two targets over the whole
time is given by,

H(Z) = [(P11b(1, 1,Z11) + �11) + (P12b(1, 2,Z12) + �12)

+... + (P1Mb(1,M,Z1M) + �1M)]

× [(P21b(2, 1,Z21) + �21) + (P22b(2, 2,Z22) + �22) + ...

+ (P2Mb(2,M,Z2M) + �2M)]

× ...

× [(PN1b(N , 1,ZN1) + �N1) + (PN2b(N , 2,ZN2) + �N2)

+... + (PNMb(N ,M,ZNM) + �NM)] ,

and it can be written as,

H (Z) =
N∏

i=1

M∑

j=1

[
Pijb

(
i, j,Zij

)+ �ij
]
. (1)

And the total effort of detecting the two targets is,

L(Z) =
M∑

j=1

N∑

i=1

[

Zij +
∑

�

Zi(j+�)

]

, (2)

where
∑

� Zi(j+�), � = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1 is the effort to detect
the other target.

The exponential detection function

In physics, the signal detector is based on an exponential function because the detection
exponential function has much lower computational complexity than the others such as
the Gaussian kernelized energy detector, see Luo et al. [37]. Thus, here in order to model
the effort, we use an exponential detection function, that is, 1− b

(
i, j,Zij

) = 1− e−(Zij/Tj)

and 1−b
(
i, j,Zi(j+�)

) = 1−e−(Zi(j+�)/Tj+� ),� = −h−1,−h,−h+1,−1, 1, h−1, h, h+1,
where Tj and Tj+� are factors due to the searching process (which depending on the
nature of the cells and its dimensions) in the cell j and its neighbors, respectively. Then,
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the probability of undetecting the targets over the whole time is given by,

H(Z) =
N∏

i=1

M∑

j=1

[
Pije−(Zij/Tj) + �ij

]
, (3)

where �ij = 6
∑

�

Pi(j+�)e−(Zi(j+�)/Tj+�), � = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1.

Optimization problemwith discounted effort reward

As in El-Hadidy [5] and Blum et al. [38], we use an exponential function wj(i) = λij , 0 <

λj < 1 that will reduce the possible rewards at time interval i. The tuning parameter λj
permits us to decide indirectly how fast we want to find the targets or in other words
how important are the actions that the searcher will take in the future. Here, we need to
minimize the probability of undetected; then, we use the complement function of wj(i),
that is, 1 − λij . The cost function (3) is combined with the discounted effort function to
develop the final discounted effort reward function:

H(Z; λ) =
N∏

i=1

M∑

j=1

[(
1 − λij

)
Pije−(Zij/Tj) + �ij

]
, (4)

where �ij = 6
∑

�

(
1 − λij+�

)
Pi(j+�)e−(Zi(j+�)/Tj+�) and the unrestricted effort will

become,

L (Z; λ) =
N∑

i=1
Li(Z) =

M∑

j=1

N∑

i=1

[(
1 − λij

)
Zij + �ij

]
≤

N∑

i=1
Xi = X, (5)

where �ij = ∑
�

(
1 − λij+�

)
Zi(j+�).

Let X be a random variable with a normal distribution. It has a probability density func-
tion f (x) and distribution function F (x) . The purpose here is to minimize Zij,Zi(j+�), λj
and λj+� , and thus, we have different types of decision variables and parameters in the
objective function. This leads us to consider our problem as a multi-objective nonlinear
programming problem aims to minimize H(Z; λ) subject to the constraints: L(Z; λ) ≤ X,

Zij ≥ 0, �ij > 0 and
M∑

j=1

(
Pij +∑

� Pi(j+�)

) = 1, where Z is a function on X. Since

the detection function is exponential, then the problem will become a convex nonlinear
programming problem (NLP) as follows,
NLP:

min
Zij ,Zi(j+�),λj ,λj+�

H(Z; λ) =
∏N

i=1

∑M

j=1

[(
1 − λij

)
Pije−(Zij/Tj)+

6
∑

�

(
1 − λij+�

)
Pi(j+�)

(
e−(Zi(j+�)/Tj+� )

)]
,

sub. to Z (X)= (Z ∈ RNM | Li(Z; λ) ≤ Z (Xi) ,

L(Z; λ) =
∑N

i=1

∑M

j=1

[(
1 − λij

)
Zij +

∑

�

(
1 − λij+�

)
Zi(j+�)

]

≤
∑N

i=1
Li(Z; λ) = X

)
,

Zij ≥ 0,Zi(j+�) ≥ 0, 0 < λj < 1, 0 < λj+� < 1,
∑M

j=1

(
Pj +

∑

�
Pj+�

)
= 1 ∀ i = 1, 2, ...,N ,

� = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1 and j = 1, 2, ...,M .
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where RNM is the feasible set of constrained decisions. The unique solution is guaranteed
by the convexity of H(Z; λ) and Z (X) .
Since we have two kinds of probabilities: (1) the probability of the target in each cell and

(2) the probability of detecting the target, the carrying out of the search space (M- dif-
ferent states) with the greatest possible probability ≤ 1 will save the time and the effort.
Hence, the detection probability (objective function) will be affected by the constraint
∑M

j=1
(
Pj +∑

� Pj+�

) = 1. In addition, the targets jump between the cells with transition
Markov matrix (stochastic matrix). Thus, at each time interval i, there exists a transition
probability from state j (or j + � ) to another state, that is, Pij

(
or Pi(j+�)

)
, this probabil-

ity is computing from the stochastic matrix (see the “Application” section). This leads us
to consider Pij

(
or Pi(j+�)

)
that is not a given parameter but a constraint where its max-

imum and minimum values effect directly on Zij,Zi(j+�), λj and λj+� . This probability
is used in the formulation of the objective function; then, we call our problem as non-
linear stochastic programming problem. One can think Zij,Zi(j+�) have the same type
of decision variables although they used on different cells. Here, each cell has a differ-
ent nature from the other so the searching methods (search devices used and etc.) differs
from the cell to other. Beside that, we consider that the probability of detection in state j
(or j + � ) at time interval i depends only on the total amount of effort applied there by
the searcher and not on the way the effort is applied. Thus, we consider Zij,Zi(j+�) are
the effort different variables.

Definition 1 Z̄ ∈ Z (X) is said to be an optimal solution for problem (NLP) if Z ∈ Z (X)

does not exist such that H(Z; λ) ≤ H
(
Z̄;

−
λ

)
with at least one strict inequality holds, with

probability P (Li(Z; λ) ≤ X) ≤ β , β ∈[ 0, 1] .

Now, we have the corresponding nonlinear stochastic programming problem (NLSP)
as,
NLSP:

min
Zij ,Zi(j+�),λj ,λj+�

H(Z; λ) =
∏N

i=1

∑M

j=1

[(
1 − λij

)
| Pije−(Zij/Tj)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)

(
e−(Zi(j+�)/Tj+� )

)]
,

sub. to P (Li(Z; λ) ≤ Xi) ≤ β , β ∈[ 0, 1] ,
Zij ≥ 0,Zi(j+�) ≥ 0, 0 < λj < 1, 0 < λj+� < 1 ,
∑M

j=1

(

Pj +
∑

�

Pj+�

)

= 1 ∀ i = 1, 2, ...,N ,

� = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1and j = 1, 2, ...,M .

The constraint P̃ (Li(Z; λ) ≤ Xi) ≥ 1−β has to be satisfied with its complement proba-
bility of at least (1− β) and can be restated as P̃

(
Li(Z;λ)−E(Xi)√

Var(Xi)
≤ Xi−E(Xi)√

Var(Xi)

)
≥ 1− β . Here,

we consider that X has a normal distribution because one of the important advantages
of the normal distribution is that they are sensitive to shifts in the searching effort at any
time interval i. For the complement probability, we have P̃

(
Li(Z;λ)−E(Xi)√

Var(Xi)
≥ X−E(Xi)√

Var(Xi)

)
≤

β , where Xi−E(Xi)√
Var(Xi)

is a standard normal random variable. If Kp represents the value
of the standard normal random variable at which φ(Kp) = β , then this constraint
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can be expressed as φ
(
Li(Z;λ)−E(Xi)√

Var(Xi)

)
≤ φ(Kp). This inequality will be satisfied only if:

Li(Z;λ)−E(Xi)√
Var(Xi)

≤ Kp, i.e., Li(Z; λ) − E (Xi) ≤ Kp
√
Var (Xi). Thus, the NLSP is equivalent to

the following nonlinear stochastic programming problem (NLSP(1)),
NLSP(1):

min
Zij ,Zi(j+�),λj ,λj+�

H(Z; λ) =
∏N

i=1

∑M

j=1

[(
1 − λij

)
Pije−(Zij/Tj)

+6
∑

�
(1 − λij+� )Pi(j+�)

(
e−(Zi(j+�)/Tj+� )

)]
,

sub. to Li(Z; λ) − E (Xi) ≤ Kp
√
Var (Xi),

Zij ≥ 0,Zi(j+�) ≥ 0, 0 < λj < 1, 0 < λj+� < 1,
∑M

j=1

(

Pj +
∑

�

Pj+�

)

= 1 ∀ i = 1, 2, ...,N ,

� = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1 and j = 1, 2, ...,M .

Which is equivalent to,

min
Zij ,Zi(j+�),λj ,λj+�

H(Z; λ) =
∏N

i=1

∑M

j=1

[(
1 − λij

)
Pije−(Zij/Tj)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)

(
e−(Zi(j+�)/Tj+� )

)]
,

sub. to Z(X)=
(
Z ∈ RNM |g (Z; λ)=

∑M

j=1

[(
1 − λij

)
Zij+

∑

�

(
1−λij+�

)
Zi(j+�)

]

−E (Xi) − Kp
√
Var (Xi) ≤ 0

)
,

Zij ≥ 0,Zi(j+�) ≥ 0, 0 < λj < 1, 0 < λj+� < 1,
∑M

j=1

(
Pj +

∑

�
Pj+�

)
= 1 ∀ i = 1, 2, ...,N ,

� = −h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1and j = 1, 2, ...,M .

Maximum probability of detection with minimum effort

Since H(Z; λ) is an exponential function, then it can be easy to prove that H(Z; λ) is
convex functions, and then the necessary Kuhn-Tucker conditions are obtained as in
Mangasarian [39].

∂HK (Z; λ)

∂Zσθ

+ U
N∑

σ=1

∂gσ (Z; λ)

∂Zσθ

= 0, (I)

∂HK (Z; λ)

∂Zσ(θ+�)

+ U
N∑

σ=1

∂gσ (Z; λ)

∂Zσ(θ+�)

= 0, (II)

∂HK (Z; λ)

∂λθ

+ U
N∑

σ=1

∂gσ (Z; λ)

∂λθ

= 0, (III)

∂HK (Z; λ)

∂λθ+�

+ U
N∑

σ=1

∂gσ (Z; λ)

∂λθ+�

= 0, (IV)

gσ (Z; λ) ≤ 0, (V)

Ugσ (Z; λ) = 0,U ≥ 0. (VI)
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Implies to,

−
(
1 − λσ

θ

)
Pσθ

Tθ

.e−
(
Zσθ
Tθ

)∏N
i=1
i�=σ

∑M

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)⎤

⎦+ U
(
1 − λσ

θ

) = 0,

(6)

− 6
∑

�

(
1 − λσ

θ+�

)
Pσ(θ+�)

Tθ+�

.e−
( Zσ(θ+�)

Tθ+�

)∏N
i=1
i�=σ

∑M

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)e

(
Zi(j+�)
Tj+�

)⎤

⎦+ U
(
1 − λσ

θ+�

) = 0,

(7)

− σλ
(σ−1)
θ Pσθ .e

−
(
Zσθ
Tθ

)∏N
i=1
i�=σ

∑M

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)⎤

⎦− Uσλσ−1
θ Zσθ = 0,

(8)

− 6σ
∑

�

λ
(σ−1)
θ+� Pσ(θ+�).e

−
( Zσ(θ+�)

Tθ+�

)∏N
i=1
i�=σ

∑M

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)⎤

⎦− Uσλσ−1
θ+�Zσ(θ+�) = 0,

(9)

U

⎧
⎨

⎩

M∑

j=1

[(
1 − λσ

j

)
Zσ j +

∑

�

(
1 − λσ

j+�

)
Zσ(j+�)

]

− E (Xσ ) − Kp
√
Var (Xσ )

⎫
⎬

⎭
= 0,

(10)

where, −Zσθ ≤ 0, −Zσ(θ+�) ≤ 0, λj − 1 < 0, λj+� − 1 < 0,
∑M

j=1
(
Pj +∑

� Pj+�

)

= 1 ∀ i = 1, 2, ...,N , σ �= i and θ = 1, 2, ...,M.
If U > 0, then we found that Zσθ = −Pσθ ; this is impossible because Zσθ > 0 and 0

≤ Pσθ ≤ 1. Thus, if U = 0, and subtracting (8) from (6), we have,

(
σλσ−1

θ − (1 − λσ
θ )

Tθ

)
Pσθ e

−
(
Zσθ
Tθ

)

∏N
i=1
i�=σ

∑M

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+ 6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)⎤

⎦ = 0.
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Then, we have,
(

σλσ−1
θ −

(
1 − λσ

θ

)

Tθ

)

Pσθ e
−
(
Zσθ
Tθ

)

= 0; (11)

or

N∏

i=1
i�=σ

M∑

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+ 6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)⎤

⎦ = 0. (12)

Since the probability of the first target in the cell j is greater than zero, then

Pσ(θ+�)e
−
( Zσ(θ+�)

Tθ+�

)

> 0 . In addition, Tj is a factor due to the search in cell j and the
dimensions of it (it is a given value where this value returns to the nature of the search-
ing process). Consequently, we obtain the optimal value of λ∗

j at time step i from (11) by

solving the equation: iλi−1
j −

(
1−λij

)

Tj
= 0, this leads to:

λij + iTjλ
i−1
j − 1 = 0. (13)

Similarly, by subtracting (9) from (7), we have,

∑

�
6
(

σλσ−1
θ+� −

(
1 − λσ

θ+�

)

Tθ+�

)

Pσ(θ+�)e
−
( Zσ(θ+�)

Tθ+�

)

×
∏N

i=1
i�=σ

∑M

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

+6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)⎤

⎦=0.

This gives the optimal value of λ∗
j+� at time step i by solving the following equation:

λij+� + iTj+� λi−1
j+� − 1 = 0. (14)

Let ri = E (Xi) − Kp
√
Var (Xi), then from (10) we get,

∑M

j=1

[(
1 − λij

)
Zij +

∑

�

(
1 − λij+�

)
Zi(j+�)

]
− ri = 0,

at least one of these boundaries satisfies that,
(
1 − λij

)
Zij +

∑

�

(
1 − λij+�

)
Zi(j+�) − ri = 0. (15)

Also, from (12), we conclude that at least one of these boundaries satisfies such that,

(
1 − λij

)
Pije

−
(

Zij
Tj

)

+ 6
∑

�

(
1 − λij+�

)
Pi(j+�)e

−
(

Zi(j+�)
Tj+�

)

= 0. (16)

From (15), (16) and by subsisting with λ∗
j and λ∗

j+� , we get

Zij= ln

⎡

⎢⎢⎢⎢⎢⎢
⎣

(
1 − λi∗j

)
Pij

(
1 − λi∗j

)
Zij +∑

�

⎡

⎣
(
1 − λi∗j+�

)
⎛

⎝Zi(j+�) − 6Pi(j+�)e
−
(

Zi(j+�)
Tj+�

)⎞

⎠

⎤

⎦− ri

⎤

⎥⎥⎥⎥⎥⎥
⎦

Tj

(17)
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If we know the optimal effort Z∗
i(j+�), then from (17) in (15), we get:

Z∗
ij = Pije

−
(

ri−
∑

�

(
1−λi∗j+�

)
Z∗
i(j+�)

Tj
(
1−λi∗j

)

)

−
⎛

⎝

∑
�

(
1 − λi∗j+�

)
Z∗
i(j+�) − ri

(
1 − λi∗j

)

⎞

⎠ (18)

Also, if we know the optimal effort Z∗
ij, we can get Z∗

i(j+�) from solving the following
equation:

(1 − λi∗j )

⎡

⎢
⎣Pije

−
(

ri−
∑

�

(
1−λi∗j+�

)
Z∗
i(j+�)

Tj
(
1−λi∗j

)

)

−
⎛

⎝

∑
�

(
1 − λi∗j+�

)
Z∗
i(j+�) − ri

(
1 − λi∗j

)

⎞

⎠

⎤

⎥
⎦

+
∑

�

(
1 − λi∗j+�

)
Z∗
i(j+�) − ri = 0.

(19)

By knowing the minimum values λ∗
j , λ∗

j+� ,Z∗
ij and Z∗

i(j+�), we can obtain the minimum
value of H(Z; λ). This minimum values will maximize the probability of detecting the
targets with minimum cost.

An algorithm

We use the following dynamic programming algorithm in contribution to solve larger
instances of our problem to obtain the minimum search effort. The steps of the algorithm
can be summarized as follows:

Step 1. Insert the total number of time intervals N and the total number of cells M,
E (Xi) , Var (Xi) , Kp, the probability of the initial state of the first target P0, and the
one-step transition probability matrix P.

Step 2. At time interval i, use P and P0 to generate P̄ij = Pij +∑
� Pi(j+�) the transition

probability matrix of the two targets. Based on some recent information about the
expected location of the other target, we can let Ai = ∑

� Pi(j+�),� = −h −
1,−h,−h + 1,−1, 1, h − 1, h, h + 1. Thus, one can obtain the value of P̄ij.

Step 3. Calculate the values of λj and λj+� from Eqs. (11) and (12), respectively.
Step 4. By the given values of E (xi) and Var (xi) at each time interval i = 1, 2, ...,N , input

the values of ri where ri = E (Xi) − Kp
√
Var (Xi), elsewhere go to step 8.

Step 5. From equations (18) and (19), compute the values of Zij,Zi(j+�), elsewhere go to
step 8.

Step 6. Substitute with the value of λj, λj+� ,Zij,Zi(j+�),Pij,Ai in (4) to compute the
value of H(Z). Now, put j = j + 1, if j ≤ M, then return to step 2, else put i = i + 1
and test the condition i ≤ N if yes then go to step 2 else go to step 7.

Step 7. Give the total value of H(Z) and then stop.
Step 8. End (stop).

This algorithm works to estimate the minimum value of λj, λj+� ,Zij and Zi(j+�) where
in step 1 we input the total number of N andM. In addition, we insert the values of E (Xi)

and Var (Xi) during each time interval i = 1, 2, ...,N . Based on the values of P0 and P, we
calculate the value of Pij as in step 2. By considering the values of Ai = ∑

� Pi(j+�),� =
−h − 1,−h,−h + 1,−1, 1, h − 1, h, h + 1, then we get the probability of detecting the
two targets during the time interval i in the cell j is given by P̄ij = Pij + Ai. At time
interval i, the algorithm computes the values of λj and λj+� as in step 3 and the value of ri
where ri = E (xi) + Kp

√
Var (xi) as in step 4. After that, the algorithm goes to step 5 and
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computes Zij,Zi(j+�) from (18) and (19) respectively. Now all anonymous values become
known, then go to step 6; else, end the process. At the end of step 6, compute the value
ofH(Z). Do all the above steps for all time intervals and all cells whenever the conditions
j ≤ M, i ≤ N are satisfied. Finally, in step 7, give the total value of H(Z) and then end the
process.

OneMarkovian target
In this section, we will consider two cases for one Markovian target as follows.

Applying discount effort case

In the case of one target, the above DNLSP is equivalent to the following nonlinear
stochastic programming problem (NLSP(2)),
NLSP(2):

min
Zij ,λj

H(Z; λ) =
∏N

i=1

∑M

j=1

[(
1 − λij

)
Pije−(Zij/Tj)

]
,

sub. to Z (X)=
{
Z ∈ RNM | g(Z; λ) =

∑M

j=1

[(
1 − λij

)
Zij
]

−E (Xi) − Kp
√
Var (Xi) ≤ 0

}
,

Zij ≥ 0, 0 < λj < 1,
∑M

j=1
Pj = 1 ∀ i = 1, 2, ...,N and j = 1, 2, ...,M .

Then, from (6),(8), and (10), we have,

−
(
1 − λσ

θ

)
Pσθ

Tθ

.e−
(
Zσθ
Tθ

) N∏

i=1
i�=σ

M∑

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)⎤

⎦+ U
(
1 − λσ

θ

) = 0, (20)

−σλ
(σ−1)
θ Pσθ .e

−
(
Zσθ
Tθ

) N∏

i=1
i�=σ

M∑

j=1

⎡

⎣
(
1 − λij

)
Pije

−
(

Zij
Tj

)

)

⎤

⎦− Uσλσ−1
θ Zσθ = 0, (21)

U

⎧
⎨

⎩

M∑

j=1

[(
1 − λij

)
Zij
]

− ri

⎫
⎬

⎭
= 0, (22)

If U > 0, then we found that Zσθ = −TθPσθ ; this is impossible because Zσθ ,Tθ > 0
and 0 ≤ Pσθ ≤ 1. Thus, if U = 0, and subtracting (21) from (20), we have,

λij + iTjλ
i−1
j − 1 = 0. (23)

which is the same result as in (13) (this gives λ∗
j ). In addition, to obtain Z∗

ij, we found that
at least one of the boundaries for (21),(22) and (23) (where U = 0) equal to 0 as follows:

(
1 − λij

)
Pije

−
(

Zij
Tj

)

= 0, (24)

[(
1 − λij

)
Zij
]

− ri = 0. (25)

Then, we have
(
1 − λij

)
Pije

−
(

Zij
Tj

)

=
[(

1 − λij

)
Zij
]

− ri which gives,

Zij = ln

⎡

⎣

(
1 − λi∗j

)
Pij

(
1 − λi∗j

)
Zij − ri

⎤

⎦

Tj

(26)
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Also, (26) can be obtained from (17) after substituting with

∑

�

⎡

⎣
(
1 − λi∗j+�

)
⎛

⎝Zi(j+�) − 6Pi(j+�)e
−
(

Zi(j+�)
Tj+�

)⎞

⎠

⎤

⎦ = 0.

Thus, one can get:

Z∗
ij = Pije

−
(

ri
Tj
(
1−λi∗j

)

)

+ ri(
1 − λi∗j

) (27)

The optimal value of undetecting probability function is given by:

H(Z∗; λ∗) =
N∏

i=1

M∑

j=1

⎡

⎢⎢⎢⎢⎢⎢
⎣

(
1 − λi∗j

)
Pij exp

⎡

⎢⎢⎢⎢⎢⎢
⎣

−
Pije

−
(

ri
Tj
(
1−λi∗j

)

)

+ ri(
1−λi∗j

)

Tj

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎤

⎥⎥⎥⎥⎥⎥
⎦

(28)

Without applying discount effort case

Here, we do not use the discount effort function or we put λj = 0 in the above NLSP(2),
then we need to minimize the searching effort Zij only. This makes the above NLSP(2)
will take the form:
NLSP(3):

min
Zij

H(Z) =
∏N

i=1

∑M

j=1

[
Pije−(Zij/Tj)

]
,

sub. to Z (X)=
{
Z ∈ RNM | g(Z) =

∑M

j=1

[
Zij
]− E (Xi) − Kp

√
Var (Xi) ≤ 0

}
,

Zij ≥ 0,
∑M

j=1
Pj = 1 ∀ i = 1, 2, ...,N and j = 1, 2, ...,M .

By applying the Kuhn-Tucker conditions, we have,

−Pσθ

Tθ

.e−
(
Zσθ
Tθ

) N∏

i=1
i�=σ

M∑

j=1

⎡

⎣Pije
−
(

Zij
Tj

)⎤

⎦+ U = 0, (29)

U

⎧
⎨

⎩

M∑

j=1
Zij − ri

⎫
⎬

⎭
= 0, (30)

Leads to,

Zij = ln
[ Pij
Zij − ri

]Tj

(31)

Using (27), we have,

Z∗
ij = Pije

−
(

ri
Tj

)

+ ri (32)

The optimal value of undetecting probability function is given by:

H(Z∗) =
N∏

i=1

M∑

j=1

⎡

⎢⎢
⎣Pij exp

⎡

⎢⎢
⎣−Pije

−
(

ri
Tj

)

+ ri
Tj

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦ (33)
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Table 1 The values of Zij , i = 1, 2, 3, j = 1, 2 and H(Z; λ) for arbitrary values of ri

i Kp ri Pi1 Pi2 Zi1 Zi2 H(Z; λ)

1 3 1.42 0.6 0.4 2.484837732 7.277516996

2 4 1.62 0.64 0.36 2.028837488 4.642491673 0.0001085052634

3 5 1.82 0.656 0.344 2.026195219 3.850945598

Randomly located target

Let the probability of the target in cell j, j = 1, 2, ...,M, be πj. After the cell j has been
searched, the searcher may either continue to search the same cell or switch without any
delay to another cell. The searching process in each cell is conducted independently of
previous searches and takes one unit of time. Thus, if the target has been stated in the
cell j with probability ξj, where 0 < ξj < 1, Song and Teneketizs [3] showed that the
probability of detecting the target in the ith time interval is Pij = πjξj

(
1 − ξj

)i−1 , i =
1, 2, ...,N ; j = 1, 2, ...,M. Consequently, in the case of applying the discount effort function
case (applying discount effort case) as in NLSP(2), we get the equivalent optimization
problem,
NLSP(4):

min
Zij ,λj

H(Z; λ) =
∏N

i=1

∑M

j=1

[(
1 − λij

) (
πjξj(1 − ξj)

i−1) e−(Zij/Tj))
]
,

sub. to Z (X)=
{
Z ∈ RNM | g(Z; λ) =

∑M

j=1

[(
1 − λij

)
Zij
]

−E (Xi) − Kp
√
Var (Xi) ≤ 0

}
,

Zij ≥ 0, 0 < λj < 1,
∑M

j=1
πjξj

(
1 − ξj

)i−1 = 1 ∀ i = 1, 2, ...,N and j = 1, 2, ...,M.

As in applying discount effort case , we get

λij + iTjλ
i−1
j − 1 = 0, (34)

Z∗
ij = πjξj

(
1 − ξj

)i−1 e
−
(

ri
Tj
(
1−λi∗j

)

)

+ ri(
1 − λi∗j

) , (35)

and the optimal value H(Z∗; λ∗) is given by:

H(Z∗; λ∗)

=
N∏

i=1

M∑

j=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(
1 − λi∗j

) (
πjξj(1 − ξj)

i−1
)
exp

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−

(
πjξj(1 − ξj)i−1) e

−
⎛

⎝ ri
Tj
(
1−λi∗j

)

⎞

⎠

+ ri(
1−λi∗j

)

Tj

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(36)

Table 2 The values of Zij , i = 1, 2, 3, j = 1, 2 and H(Z) for arbitrary values of ri without using λ

i Kp ri Pi1 Pi2 Zi1 Zi2 H(Z)

1 3 1.42 0.6 0.4 1.538171065 1.597516996

2 4 1.62 0.64 0.36 1.720266059 1.762491673 0.01092360248

3 5 1.82 0.656 0.344 1.901750775 1.941437401
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Table 3 The optimal values of Zij , i = 1, 2, 3, j = 1, 2 when we use the discount effort reward function
for a Markovian target

i Zi1 Zi2
(
1 − λi1

)
Zi1

(
1 − λi2

)
Zi2

1 2.484837732 7.277516996 1.490902639 1.455503399

2 2.028837488 4.642491673 1.704223490 1.671297002

3 2.026195219 3.850945598 1.896518725 1.879261452

In addition, if we do not apply the discount effort inNLSP(4), then we get the following
optimization problem,
NLSP(5):

min
Zij

H(Z) =
∏N

i=1

∑M

j=1

[(
πjξj

(
1 − ξj

)i−1
)
e−(Zij/Tj)

]
,

sub. to Z (X)=
{
Z ∈ RNM | g(Z) =

∑M

j=1
Zij − E (Xi) − Kp

√
Var (Xi) ≤ 0

}
,

Zij ≥ 0,
∑M

j=1
πjξj

(
1 − ξj

)i−1 = 1 ∀ i = 1, 2, ...,N and j = 1, 2, ...,M .

and the optimal value of λ∗
j at time step i is given from solving the equation (13) or (23)

or (34). Also, the optimal values of Z∗
ij and H(Z∗) are given by:

Z∗
ij =

(
πjξj

(
1 − ξj

)i−1
)
e
−
(

ri
Tj

)

+ ri, (37)

H(Z∗) =
N∏

i=1

M∑

j=1

⎡

⎢⎢⎢
⎣

(
πjξj

(
1 − ξj

)i−1
)
exp

⎡

⎢⎢⎢
⎣

−
(
πjξj

(
1 − ξj

)i−1
)
e
−
(

ri
Tj

)

+ ri
Tj

⎤

⎥⎥⎥
⎦

⎤

⎥⎥⎥
⎦
. (38)

Application
Wewill consider the above dynamic programming algorithm in the above cases and com-
pare between them to show the effectiveness of our model. Now, consider a Markovian
target moves on two states with a transition matrix

Q =
[
0.2 0.8
0.4 0.6

]

,

with initial probabilities: P01 = 3
5 ,P02 = 2

5 and Tj = j , j = 1, 2, i = 1, 2, 3. The probabil-
ities Pi1 and Pi2 are 2

3 − {
(0.4)i−1} /15 and 1

3 + {
(0.4)i−1} /15 for i = 1, 2, 3, respectively

(see Bhat [40]). In addition, let Xi has a normal distribution with mean E(xi) = 0.82 and
variance Var(xi) = 0.04. We assume that the standard normal random variable Kp takes

Table 4 The values of Zij , i = 1, 2, 3, j = 1, 2 and H(Z; λ) for a randomly located target when we use
the discount effort reward function

i Kp ri Pi1 Pi2 Zi1 Zi2 H(Z; λ)

1 3 1.42 0.080 0.480 2.382422809 7.313020396

2 4 1.62 0.064 0.096 1.938598035 4.537997779 2.424444331×10−7

3 5 1.82 0.0512 0.0192 1.950824992 3.736286098
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Table 5 The values of Zij , i = 1, 2, 3, j = 1, 2 and H(Z) for a randomly located target when we do not
use the discount effort reward function

i Kp ri Pi1 Pi2 Zi1 Zi2 H(Z)

1 3 1.42 0.080 0.480 1.435756142 1.435756142

2 4 1.62 0.064 0.096 1.630026606 1.657997779 0.0001396316723

3 5 1.82 0.0512 0.0192 1.826380548 1.826777901

the values {3, 4, 5} and λj = {0.4, 0.8} to obtain the optimal values of Zij, i = 1, 2, 3, j = 1, 2
from (27) and H(Z; λ) from (28), see Table 1.
When we do not use the discount effort reward function and using the above assump-

tion in this application, we get the optimal values of Zij, i = 1, 2, 3, j = 1, 2 (from (32)) and
H(Z) (from (33)) as in Table 2.
From the numerical calculations, we found that the value ofH(Z; λ) (see Table 1) is very

small than the value of H(Z) (see Table 2). This shows the effectiveness of our model.
That happens although the values of Zij, i = 1, 2, 3, j = 1, 2 in Table 2 are greater than the
values of them in Table 1. Really this is true but when we use the discount effort reward
function, the optimal values of Zij are calculated from

(
1 − λi∗j

)
Z∗
ij as in Table 3, where

λ1 = 0.4, λ2 = 0.8.
This shows that the values of Z∗

ij, i = 1, 2, 3, j = 1, 2 in the case of using the discount
effort reward function are smaller than the value of them in the other case.
On the other hand, if the probability of the target in the cell j, j = 1, 2 be π1 = 0.2,

π2 = 0.8, respectively, and if we consider the target has been stated in the cell j with
probability ξ1 = 0.4, ξ1 = 0.6, and when we use the discount effort reward function, the
optimal values of Zij, i = 1, 2, 3, j = 1, 2 are calculated from (35) and H(Z; λ) from (36),
see Table 4.
In without applying the discount effort reward function case, we get the optimal values

of Zij, i = 1, 2, 3, j = 1, 2 (from (37)) and H(Z) (from (38)) as in Table 5.
Also, we see that the value of H(Z; λ) in Table 4 is very small than the value of H(Z) in

Table 5. From Table 4, the optimal values of Zij, i = 1, 2, 3, j = 1, 2 are greater than the
values of them in Table 5. Thus, the optimal values of Zij are calculated from

(
1 − λi∗j

)
Z∗
ij

as in Table 6, where λ1 = 0.4, λ2 = 0.8.
As in Table 6, the values of Z∗

ij, i = 1, 2, 3, j = 1, 2 in the case of using the discount effort
reward function are smaller than the value of them in the other case.

Conclusion and future research
A newmethod has been presented to give the maximum discounted effort reward and the
minimum possible cost for detecting two related targets (i. e., the targets which are related
together in the movement). This method is different from the method which has been
presented in El-Hadidy [5]. We minimize the values of the search effort Zij, the tuning

Table 6 The optimal values of Zij , i = 1, 2, 3, j = 1, 2 when we use the discount effort reward function
for a randomly located target

i Zi1 Zi2 (1 − λi1)Zi1 (1 − λi2)Zi2

1 2.382422809 7.313020396 1.429453685 1.462604079

2 1.938598035 4.537997779 1.628422349 1.633679200

3 1.950824992 3.736286098 1.825972193 1.823307616
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parameter λj, and the probability of undetected Pij, i = 1, 2, ...,N and j = 1, 2, ...,M at
the same time. We present some special cases of one Markovian and hidden target. The
experimental results are obtained from detecting two targets; one of them moves with a
Markov process, and the other is randomly located. Also, compare these results in two
cases, considering and ignoring the discount effort reward.
In future works, we will investigate and analyze the stability of NLSP(1), NLSP(2),

NLSP(3), NLSP(4), and NLSP(5) by characterizing the set of feasible discounted effort
reward parameters. Also, we can study the related dual problem of these problems. Also,
this model is more suitable for using the multiple searchers case by considering the
combinations of movement of multiple targets.
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