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Abstract

In this paper, some new integrals involving k gamma function and k digamma
function have been established. An integral is established involving k gamma
function, and its special values are discussed. Similarly, some new integrals have
been established for k digamma function, and different elementary function is
associated with it for different values of k. A nice representation of the Euler-
Mascheroni constant and 7 in the form of k digamma function for different values of
k is also obtained.
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k gamma function
The k gamma function is a generalization of the classical gamma function introduced
by Diaz and Pariguan [1], denoted and defined as

1" -1
Ti(z) = L

, k> 0,zeC\kZ "~ . 1.1
o (2), ) (L)

The symbol for (z),, x is called Pochhammer’s k symbol [2] and is defined as
(2),x = 2(z + k) (2 + 2k)--+(z + (n = 1)k). (1.2)

Due to (1.2), we see that (1.1) has simple poles at 0, — k, — 2k, — 3k, ---. The residue of
k gamma function at these simple poles is W
gamma function is denoted and defined as [4]

see [3]. The integral form of k

Ti(z) = /e’%tz’ Lt (13)
0

The improper integral is convergent for Re(z) > 0. The k gamma function reduces to
the classical gamma function, ie., [y — T as k— 1. A simple change of variable ¢* = ky
reveals the relationship between k gamma function and classical gamma function
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Ii(2) :kiflr(g)‘

The following properties of the k gamma function have been discussed in [5, 6]

Tx(z + k) = 2Tk (2), (1.4)

2) =
sin(77)

In the “An integral involving the k gamma function” section, we will establish an inte-

Ti(2)Ti(k -

gral involving k gamma function and its special cases will also be discussed. In the
“Stirling formula for the k gamma function” section, the Stirling formula will be derived
for the k gamma function. In the “Some integrals representing digamma function” sec-
tion, we will provide few integrals involving the k digamma function. Few special cases
of the k digamma function will also be presented. In the “Euler-Mascheroni constant
and k digamma function” section, we will find the relationship between the Euler-
Mascheroni constant in the form k digamma function for different values of k.

An integral involving the k gamma function
In this section, we will derive an interesting integral involving kK gamma function.
Theorem 2.1 Consider a complex number p of the form p = a + ib. Then

oo

T n nz
% cos(%) = /e’”" ( cosbu)u* ~du, (2.1a)
pk k
0
|F|/<§() si ( > / ~ ' (sinbu™)ut ~ 'du. (2.1b)
Pk k
0

Proof Making the substitution ¢t = (kpu")izdt = pnu” ~ Y (kpu" ) 'du into (1.3), we

get
/ “ (kpu")’ pnu ~(kpu ) Ydu = nptkt - /e Py dy,
0 0
so we get
r [ e -
75(5) ;= /e “du. (2.2)
nprkk ~ A

Similarly, for the conjugate of p, we can write
r [ - -
0

Adding and simplifying (2.2) and (2.3), we get



Ahmed Journal of the Egyptian Mathematical Society (2020) 28:39

T 1 ¥ o\ oz
kz(f)l z izl / - (a+ib)u + e - (a-ibju )I/l7 - ldlzt. (24)
nkd =1\ |pffe® Iplke )

where 6 and |p| are the principal argument and modulus of p, respectively, so that
(2.4) reduces to

r 11 o
kz(z;) : <u9+ izH) _ /e—au (e—tbu +elbu )uT’ldu.
nlpftkk = \ex e~ % A

By Euler’s identity, we can write

% (2 cos <26)) = /6_“"”(2 cos(bu"))ut ~ 'du.
n|p[*kt - k /

This yields the final integral (2.1a). Similarly, subtracting (2.2) and (2.3) and continu-

ing in the same fashion, we get (2.1b).
Corollary 2.2 Take a =0,b = 1,n = 1=|p| = 1,0 =% in (2.1b), and using the rela-
tion (1.5) together with k=1, we see that

. 2 *
lim sin(zr/2) lim L LY i / sin(u)u ™ 'du.
20 zm /2 z—0 \ sin(mz) ) T(1) \2nz
0
This reduces to a well-known integral
7 smu
0
Corollary 2.3 Take z = % ,a=0,b=1,n=2>p=1,0=7into (2.1b)

(3)

. -1 T
/ sm( ) du = PR sin (4 k)
0

As k— 1, the integral reduces to

Vo

sin (uz)du =2

ot~——3

Corollary 2.4 Take z —% k=1,b=0,n=2 into (2.1a); it turns out the Gaussian

integral

~ au? 1 T
du==4/— 0. 2.5
/e u 2\/;,a> (2.5)
0

In general, for m >0 and z = i,k =1,a=1,b =0 into (2.1a), we get
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T 1./1
/e’” duz—l"(—).

m m
0

The integral (2.5) can also be written as

oo

/ e dy = \/g,a > 0. (2.6)

— oo

Stirling formula for the k gamma function
The Stirling formula is an approximation of the factorial for large n. It associates an ap-
propriate function to the growth of n! which is given as

T(n+1) =n!~n"e "V2nn, neN. (3.1)

In fact, it is quite accurate even for small #; for example, the Stirling formula gives
99% accuracy when compared with the value of 10! A formula similar to the Stirling
formula can be obtained for the k gamma function as follows:

Theorem 3.1 For k>0, Re(z) >0,

Te(z+1) = (Z)Z/k /127”2/](. (3.2)
kz

Proof Consider

oo =

Te(z +1) = / e~ Tédt = / e~ Tz Int gy (3.3)

0 0
Now if we let f(t) = - %—i—z Int and notice that its critical value is f () = 0=t
1 ) _2
=z / k = awhich gives maximum value f (a) = - kZ' / k < 0 fork > 0. Now if we

expand the function f{£) by Taylor series around its critical point, we get

(t-a)

2!

£(6) = f(@) + (t-a)f (a) + 7' (@) +0((t-a)).

Since a is the critical point of the function, the second term of the series vanishes,
and the rest simplifies to

fe) = -2+ ln@_g;Z/k(t_;/ky+o((t_;/k>3).

Substituting it into (3.3) and ignoring the higher order terms, we get

2 1 :
o ()
Fk(z+1):z/ke'%/e dt.

0

Substituting

1
t-z /k:y
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o

Ti(z41) =z/%e "t / e 5 (=) gy (3.4)

- z1/k

Since the integrand of the integral in (3.4) is a Gaussian curve whose peak, the max-

1
imum value, lies at t = z / k so at t <0 the integral is negligible. Therefore, we can ex-

tend the lower limit to —o

2 1 :
z “ —ézl_ /k<t—z /k>
Fk(z+1)zz/ke’§/e dt.

— oo

Using (2.6), we can write as

Z z
Ti(z+1) =z [ke~t

This simplifies to (3.2) as claimed. Notice that for k— 1 (3.5) reduces to (3.1).

Some integrals representing digamma function
The logarithmic derivative of the k gamma function for Re(z), k>0 is known as k di-
gamma function, denoted and defined as [7]

0
hele) = 5 ToaTi(a) = £ (1)
Taking the logarithmic derivative of the relation (1.4), we see that

9 loglk(z + k) = 9 logz + 2 logl'k(z).

0z 0z 0z
Using (4.1), we can write
1
Ve ) = p(2) +. @)

The relation (4.2) is sometimes called the functional equation of k digamma function.

Remark 4.1 Notice that for k— 1, y(z) — w(2).

A series representation of k digamma function is derived in [3] by taking the logarith-
mic derivative of the inverse of k—analogue Weierstrass form of the k gamma function

oz T nk :
Ti(z) =z 'kie ¥ ( >eﬁ.
LII z + nk

And is given by

ST o (I
Vi(2) = Z+klogk k+;(rzk z+nk>' (4.3)

where y is the Euler-Mascheroni constant given by the following series form
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|
y = Z; — log(n) = 0.5772156649.

We can rearrange the series (4.3) to write

1 - 1
l//k(z):EI _% Z<ﬂ+1/ _nk—&-z)' (44)

n=0

Next, we derive some integrals involving k digamma function.
Theorem 4.2 Let s > 0 be a real number then for k>0

]ﬁ';kdx = % [x//k (s + k) - ¥ G)] =¥i(s) -y (%) - % log(2), (4.5)
/ L ;(:H)k) dx = % (‘Vk (W) Yk (;)) ; (4.6a)
/x(l + k) Zx dx = yls) - i (ﬁ) - HTH log(2), (4.6b)

oo

/ tanh(kx)e ~dx — {wk (S * 2k> n(3)- %] (4.7)

0

Proof Using the Taylor series of -—, the LHS of (4.5) becomes

[

Interchanging integral and summation

1+ Tak?

1

/ _ n—lxkn—k+s—ldx.
n=1

0 "=

1
S IS 1
_ -1 kn — k+s -1 _ oy -
_Z /x dx_z( 1) (kn_k+s>'

0 n=1

Rearranging the sum into even and odd terms, we can write

- 1 1
_;(2nk—2k+s - 2nk—k+s>'

Adding and subtracting 5z under the summation and factoring out 3, we get

1< 1 1
2; nk nk—f—s_k 24| nk n+S—2k

Changing the index of the sum, we get
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nk + =0

1< 1 1 1< 1 1
72; (n+1)k s+k 2; (n+ 1)k nk+%
2
Adding and subtracting (logk)/k — y/k and using (4.4), we get the first equality of

(4.5). To prove the second equality of (4.5), we take Legendre duplication k analogous
formula r =2 in corollary 3.14 in [8]

Ti(22) = 27 ~33(2m) ~ Tk (2)Tx (z + g) : (4.8)

Taking the logarithm of (4.8)

loglk(2z) = (% - %) log2 +% logk - % log(2m) + logl'(z)
+ logl'x (z + ]2(> . (4.9)

Taking derivatives of (4.9) with respect to z and using the definition (4.1), we get

v (22) = % {t//k(z) +yy (z + g) } + % log(2). (4.10)

Replacing z by s/2 in (4.10)

nis) = {wk (5)+we (#) } +1 log(2).

Rearranging we get the second equality of (4.5).

;{l//k (S;k> - ’//k(;)} =y (s) - l/’k(%) - % log(2).

To derive (4.6a), we replace s by s + k, s + 2k, s + 3k, s + nk in (4.5); we get

1

/x”k‘ld 1 s+ 2k s+k
Trx =T ) "Wl
0
1

x‘”k‘ld 1 s+ 3k s+ 2k
/W P\ ) T (4.11)

0
) M M
x’*”k’ld 1 s+(n+1k\  (s+nk
Tk o\ 2 Vi\72 ) )
0

Now observing that the RHS of (4.11) is a telescoping sum, so adding all the (n + 1)

terms in (4.11), we get

]x‘l(l + k4 a4 mx”k)dx:1<l//k<s+ (n+1)k> _‘//k(i)). (4.12)

1+ ak 2 2 2

The series under the integral on LHS of (4.12) is a finite geometric series with com-
mon ratio x*, so summing it, we get (4.6a). In a similar fashion, we can derive (4.6b) by

successively replacing s by 5/2,5/22,5/23, -8 [on in the second equality of (4.5).
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Remark 4.3 The ratio test shows that the infinite series > 7" is convergent for all
real value of x as long as s > 0.
For the relation (4.7), first, we write the integrand as an exponential function

y y l-e" 2kx
/ tanh(kx)e = dx = / P ~dx. (4.13)
0 0

By making the substitution kx = — logV/tf=dx = — 5 dt in (4.13), we can write

1

1 1
1 1-tk 1 -1 1 pk-1
tanh(kx)e‘”‘dx:—/ kﬁ‘ldt:—/z—,dt_ _/2—1(‘#'
2) 1+¢ 2) 1+1t¢ 2) 1+¢
0

0 0

ot~~——3

By using the first equality of (4.5), we can write

ot~~——_3

After a bit simplification

I | s+ 2k 1 s\ 1 s
tanh(kx)e = dx = 5 |:!//k< 7 > BbAL (E) AL (k + 4)] (4.14)

o~—3

Using the relation (4.2), Eq. (4.14) reduces to the required result (4.7)
Remark 4.4 Equation (4.7) can be also be written in the form of Laplace transform
of tanh(kx), that is

1o =3 v () -wi ) - 2.

Special values: Replacing k=1 = s in the first equality of (4.5), we can write

og2) = v - v() |

Replacing k=2, s =1 and for k=4, s =2, we get from (4.5)

5=0(3)-v(3) =206 - (4.15)

Replacing k=1/2, s =1, we get from (4.5)
/ 1 1 3 1
[t =3 n3) ()]
0

Euler-Mascheroni constant and kK digamma function

In this section, we represent the Euler-Mascheroni constant in the form k digamma
function for different values of k.
Proposition 5.1 Substituting k=4 and z =1 in (4.3), we see that

e - 2) )35 w22
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p,(1) = 14> log4——+2(4n 4n1+1>. (5.1)

The series in (5.1) is not hard to sum. First, observe that this series can be written as

203(4}4 4n+1> i](4ﬂ_1 dx_/z an-1 _ ,,

n=1

Now employing the Taylor series
! 3 4 ! 3
x X x
= -———dx = | —————d
/<l—x4 1—x4) * /(1+x)(1+x2) *
0 0

- Z(l_ 2(11+x) ) 2(9;1:91@)) dx

Evaluating the integral, we get the sum of the series

= /1 1 T 3
;(@ - 4n+1> =1-7 - log(2). (5.2)

Substituting (5.2) into (5.1), we get a nice representation of the Euler-Mascheroni

constant in the form of 4—digamma function
b4
y= -4g,(1) - 5 - log(2). (53)
Or more elegantly
w42y = -8y,(1) -2 log(2).

From (4.15) and (5.3), we get some more such representations
T
y = —4y,(3) + - log(2),

y = -4y,(3) +y, @) =z G) - log(2), (5.4)

3 1 1 3 1 1
y = —4y,(3) "“//2(2) _‘//2<2> +4‘//;<4> - 4‘//;<2> -1

Adding (5.3) and (5.4), we get such representation for

= 4[‘/’4(3) - ‘//4(1»

Conclusion

In this paper, we established and investigated few new definite integrals involving k gamma
function and k digamma function. Known results of the classical gamma function and clas-
sical digamma function were obtained as special cases of k gamma function and k digamma
function. We also established nice representations of 7 and of the Euler-Mascheroni con-
stant which were generated, and many more can still be obtained.
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