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Abstract
In this paper, we introduce two reliable efficient approximate methods for solving a
class of fractional Lane–Emden equations with conformable fractional derivative (CL-M)
which are the so-called conformable Homotopy–Adomian decomposition method
(CH-A) and conformable residual power series method (CRP). Furthermore, the
proposed methods express the solutions of the non-linear cases of the CL-M in terms
of fractional convergent series in which its components can be computed in an easy
manner. Finally, the results are given by graphs for each case of the CL-M at different
values of α in order to demonstrate its accuracy, applicability, and efficiency.
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Introduction
The subject of fractional calculus can be considered as a generalization of the classical
integer order calculus (derivative and integration), and due its important role in sci-
ence and engineering, it has been gaining considerable attention of many authors and
researchers [1–5]. The reader who is interested with the field of fractional calculus knows
that there are many definitions of a fractional order derivative and they have been used
to describe several real-life problems in many fields of sciences; the most important
and famous ones are Riemann–Liouville, Grunwald–Letnikov, and Caputo derivatives
[1, 2, 6–10]. Riemann–Liouville and Caputo use the integral in its construction, par-
ticularly the Cauchy integral formula with modifications. Hence, occasionally, we need
complex computations to get the fractional derivative in the sense of Riemann–Liouville
and Caputo. Furthermore, they do not satisfy the non-linear derivative rules as product,
quotient, and chain rules. More recently, a new definition of fractional derivatives which
is the so-called conformable fractional derivative has been introduced and attracted the
attention of many researchers because it contains many characteristics that correspond
to the usual derivative, particularly the Leibniz rules [11–16]. This definition is very sim-
ple and more welcome than other fractional definitions since it has been receiving a lot
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of attention, many applications and phenomena can be modeled based on the CFDs, and
it contains many interesting advantages such as the following: it is a local derivative that
simulates the normal derivative because it depends on the limit in its formulation and it
generalizes all concepts of ordinary calculus and can solve different fractional differen-
tial equations with all cases. In addition to this definition, there is another type of local
derivatives called non-conformable fractional derivative, and for this purpose, the authors
point out the publications [17–22]. In recent years, many authors have handled and stud-
ied the Lane–Emden equations because they were used to formulate lots of phenomena
in physics and astrophysics [23–28].
The aim of this paper is to find the approximate solution of fractional Lane–

Emden equations with conformable fractional derivative (CL-M) using the conformable
Homotopy–Adomian decomposition method (CH-A) and conformable residual power
series method (CRP); both of these methods are effective and easy to use for solving non-
linear CL-M, without linearization or discretization. The benefit of these techniques over
the other methods is that they can be performed directly to the given problem by choos-
ing an appropriate value for the initial guess approximations, and they also reduce the
difficulty appearing in the computation of the complicated terms [29–36].
This paper is organized as follows: In the “Preliminaries” section, a prelimi-

nary introduction of the conformable fractional order derivative is presented. In
“The CH-A for solving CL-M” section, we introduced the CH-A for solving CL-
M. The basic idea of the CRP technique for solving CL-M was given in the
“A CRP for solving CL-M” section. Finally, a conclusion has been drawn.

Preliminaries
In this section, a brief introduction to the definition and properties of the conformable
fractional derivative will be given [11, 12, 37–40].

Definition 1 Given a function y :[ 0,+∞) → R, then the CFD of order α of y is given by:

CDα(y)(x) = lim∈→0

y(x+ ∈ x1−α) − y(x)
∈ (1)

for all x > 0, α ∈ (0, 1). If y is α-differentiable in some (0, a), a > 0 and lim
x→0

y(α)(x) exist,

then define y(α)(0) = lim
x→0

y(α)(x).

Definition 2 The conformable integral of order α is defined by:

CIαt (y)(t) =
t∫

a

y(x)xα−1dx, a ≥ 0. (2)

where the integral is the usual Riemann improper integral and α ∈ (0, 1).

Lemma 1 Let α ∈ (0, 1] and f , g beα-differentiable at a point t > 0, then:

1. CDαxp = pxp−α

2. If in addition f is differentiable, thenCDα f (x) = x1−α df
dx
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3.CDα(λ) = 0, for all scalar function y(x) = λ

4. CIα(xμ) = �(α + μ − n)

�(α + μ + 1)
, μ ∈ R, α ∈ (n, n + 1] for all n ∈ N

5. CIα(CDαy(x)) = y(x) −
n∑

k=0

yk(0)
k!

xk

The CH-A for solving CL-M
In this section, we present the CH-A for solving CL-M; the CH-A is a hybrid method in
which it combines between the HAM and the Adomian decomposition method (ADM).
The calculations involved in this technique are more easy than the standard HAM espe-
cially when the non-linear term in the CL-M is decomposed by using the Adomian
polynomials. To start the procedure, let us consider the general form of CL-M of order
α > 0:

CD2αy + 2α
xα

+ CDαy + f (y) = 0 (3)

where x > 0 and 0 < α ≤ 1.
To solve this problem using CH-A, first, rewrite Eq. (3), as follows:

CDα[ x2αCDαy]= −x2α f (y) (4)

Then, integrate Eq. (4) twice with respect to x, so the general fractional solution of Eq. (3)
is given by:

y(x) = c2 +
∫

c1x−2αdαx−[
∫

x−2α[
∫

x2α f (y)dαx] dαx] (5)

where c1 and c2 are constants and dαx = x1−αdx.
In order to solve Eq. (5) bymeans of HAM, we need to seek the auxiliary linear operator:

L[�(x, q)]= �(x, q) (6)

We now define the non-linear operator as:

N[�(x, q)]= �(x, q) − c2 −
∫

c1x−2αdαx+[
∫

x−2α[
∫

x2α f (y)dαx] dαx] (7)

Consequently, the mth-order (m ≥ 1) deformation equations can be expressed using the
Adomian polynomials as:

[ ym −χmym−1]= �HRm(
⇀ym−1) (8)

where

Rm(
⇀ym−1) = ym−1− (1−χm)(c2+

∫
c1x−2αdαx−[

∫
x−2α[

∫
x2αAmdαx] dαx] ) (9)

Hence

ym = χmym−1 + �HRm(
⇀ym−1) (10)

Starting with an initial approximation:

y0 = c2 +
∫

c1x−2αdαx (11)

So, we have:

ym+1(x) = −[
∫

x−2α[
∫

x2αAmdαx] dαx] , m = 0, 1, 2, ... . (12)
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where

χm =
{
0, m ≤ 1
1,m > 1

and {Am}+∞
m=0 is the set of Adomian polynomials of f (y) which is defined as follows:

Am = 1
m!

dm

dθm
[ f (

+∞∑
i=0

θ iyi)]θ=0, m = 0, 1, 2, ... . (13)

Finally, the exact solution of Eq. (3) can be calculated by:

y(x) =
+∞∑
m=0

ym(x) (14)

and the nth-order approximate solution of Eq. (3) is given by:

yn(x) =
n∑

m=0
ym(x) (15)

Now, we examine some known and charming cases that have been resulting from Eq. (3)
as follows:

Case 1 Set f (y) = yk , k = 0, 1, 2, ... . in Eq.(3), then the following equation for x > 0 is
called:

CD2αy + 2α
xα

CDαy + yk = 0, 0 < α ≤ 1, k = 0, 1, 2, ... . (16)

The CL-M of the first kind.

To solve this problem, we apply Eq. (13) to compute the set of Adomian polynomials
{Ak}+∞

k=0 of the non-linear function f (y) = yk .
Hence, according to Eq. (14), the general fractional solution of Eq. (16) is given as

follows:

y(x) =
+∞∑
m=0

ym(x)

where y0 is given by Eq. (11) and ym, m = 1, 2, 3, ..., is given by Eq. (12).

Problem 1 Set the initial conditions y(0) = 1 and y′(0) = 0 into Eq. (16), then the
general fractional solution of Eq. (16) in terms of Adomian polynomials is given by Eqs.
(11), (12), and (14), respectively.

Problem 2 Set k = 0 into Eq. (16), then we have:

CD2αy + 2α
xα

CDαy + 1 = 0, 0 < α ≤ 1 (17)

According to the initial conditions given in problem 1 and by integrating twice, then,
the exact solution of this equation (see Fig. 1) can be obtained by :

y(x) = 1 − x2α

6α2 (18)
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Problem 3 Set k = 1 into Eq. (16) and by using the initial conditions y(0) = 1 and
y′(0) = 0, then we have:

CD2αy + 2α
xα

CDαy + y = 0, 0 < α ≤ 1 (19)

According to Eqs.(11) and (12), with A0 = y0, A1 = y1, A2 = y2, etc., then the solution of
Eq. (19) is (see Fig. 2):

y(x) = 1 − x2α

6α2 + x4α

120α4 − x6α

5040α6 (20)

Problem 4 Set k = 2 into Eq. (16) and by using the initial conditions y(0) = 1 and
y′(0) = 0, then we have:

CD2αy + 2α
xα

CDαy + y2 = 0, 0 < α ≤ 1 (21)

Also by using Eqs.(11) and (12), with A0 = y20, A1 = 2y0y1, A2 = 2y0y2 + y21, etc., then the
solution of Eq. (21) is (see Fig. 3):

y(x) = 1 − x2α

6α2 + x4α

60α4 − 11x6α

7560α6 (22)

Case 2 Consider f (y) = ey as in Eq. (3), then the following equation for x > 0 is called:

CD2αy + 2α
xα

CDαy + ey = 0, 0 < α ≤ 1 (23)

The CL-M of the second kind.

To solve problem (23) using CH-A and according to Eqs.(11) and (12), with A0 =
1, A1 = y1, A2 = y2 + 1

2y
2
1, A3 = y3 + y1y2 + 1

3!y
3
1, ..., the solutions will be drawn as:

y0 = 0, yk+1(x) = −[
∫

x−2α[
∫

x2αAkdαx] dαx] , k = 0, 1, 2, ... (24)

Therefore, the general fractional power series solution is (see Fig. 4) given by:

y(x) = − x2α

6α2 + x4α

120α4 − x6α

1890α6 (25)

A CRP for solving CL-M
The implementation of the CRP will be described in this segment in order to get the
fractional power series solution of the CL-M represented by Eq. (3) subject to the initial
conditions:

y(x0) = a, y′(x0) = b (26)

The solution of Eq. (3) with respect to Eq. (24) is proposed by CRP as a fractional power
series expansion about the initial point x = x0 as follows:

y(x) =
+∞∑
m=0

ym(x) (27)

where ym is expressed by ym = cm (x−x0)mα

αmm! , m = 0, 1, 2, ... .
Clearly, for the casem = 0, 1, we have from the initial conditions given by Eq. (26) that

c0 = a and c1 = b.
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By truncating the summation into Eq. (27), we get the kth approximate series:

yk(x) =
k∑

m=0
cm

(x − x0)mα

αmm!
(28)

For the convergence of the fractional power series Eq. (28), we advise to see [41].
For simplification and before employing the CRP, Eq. (3) can be written in the form:

xαCD2αy + 2αCDαy + xα f (y) = 0 (29)

Now, to evaluate cm that appears in the series expansion given by Eq. (28), substituting
yk(x) into Eq. (29), we obtain the following kth residual function:

Resk(x) =xα
k∑

m=2
α2m(m − 1)cm

(x − x0)(m−2)α

αmm!
+ 2α

k∑
m=1

αmcm
(x − x0)(m−1)α

αmm!

+ xα f

⎛
⎝ k∑

m=0
cm

(x − x0)mα

αmm!

⎞
⎠

Then, Res∞(x) = lim
k→∞

Resk(x) clearly Res∞(x) = 0 for each x ∈[ x0, x0 + a].

Fig. 1 The CH-A solution of Eq. (17)
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Furthermore, CD(k−1)αResk(x0) = 0, k = 1, 2, 3, ..., k which is coming from lemma 1
(property 3) and this is a basic rule to compute the coefficients cm, m = 2, 3, ..., k.
However, finding cm demands to solve the algebraic expression:

CD(k−1)αResk(x0) = 0, x ∈[ x0, x0 + a] (30)

In this manner, all the desired coefficients cm will be found.
For solving Eq. (3) using CRP, different cases for Eq. (3) will be discussed as follows:

Case (i) Consider Eq. (17), subject to the initial conditions y(0) = 1 and y′(0) = 0,
according to the initial conditions given above, and by using Eq. (30), hence, we
have c0 = 1, c1 = 0, c2 = −1

3 , cm = 0 for all m ≥ 3, substituting these values
into Eq. (28) then the general fractional series solution in this case can be
obtained by:

y∞(x) = 1 − x2α

6α2

The nature of CRP solution of Eq.(17) is given in Fig. 1.
Case (ii) In this case, the problem under consideration combines Eq. (21) together with

the initial conditions y(0) = 1 and y′(0) = 0 also according to the given initial
conditions and Eq.(30); then, we have c0 = 1, c1 = 0, c2 = −1

3 , c3 = 0, c4 =
2
5 , c5 = 0, ...; then, the fractional power series solution is:

Fig. 2 The CH-A solution of Eq. (19)
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y6(x) = 1 − x2α

6α2 + x4α

60α4 − 11x6α

7560α6

Also, the nature of the CRP solution of Eq. (21) is presented in Fig. 3.
Case (iii) Consider the problem given by Eq. (23) with respect to the initial conditions

y(0) = 0 and y′(0) = 0, then after taking the initial conditions in consideration
and by employing Eq. (30), we get c0 = c1 = 0, c2 = −1

3 , c3 = 0, c4 = 1
5 ,

c5 = 0, ...; thus, the fractional power series solution in this case is:

y6(x) = − x2α

6α2 + x4α

120α4 − x6α

1890α6

The quality of the CRP solution of Eq. (23) is given in Fig. 4.

Conclusions
In this paper, we applied CH-A and CRP to find the approximate analytic solution of some
classes of CL-M in terms of infinite fractional power series. The proposed methods intro-
duced an easy way to compute the components of the solution that have been converging
rapidly to the exact solution. The results obtained by CH-A and CRP prove that these
algorithms are highly effective and convenient in non-linear cases of the CL-M and can
be employed to examine a wide class of non-linear fractional mathematical models.

Fig. 3 The CH-A solution of Eq. (21)
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Fig. 4 The CH-A solution of Eq. (23)
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