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Introduction
The integral equations have been investigated from different mathematical areas of 
sciences and technology [1–9]. For this, many authors have been established different 
analytic and numeric methods. For analytical methods, see [10–15]. In addition, for 
numerical method one can see [16–23]. In [3], the authors considered a mixed integral 
equation under certain conditions, and they obtained the solution in a series form. In 
[23], the integral equation with potential kernel is studied. Moreover, in [24] the authors 
discussed the behavior of solution of mixed integral equation with generalized function.

Consider the integral equation:

under the conditions

(1.1)

∫

�

K (
∣

∣x − y
∣

∣)�(y; t)dy+
t

∫

0

F(t, τ)�(x; τ )dτ = f (x; t) = πϑ[γ (t)+ β(t)x − f1(x)];

{

x ∈ R3 ϑ = G/2(1− ν)

}

,

(1.2)

∫

�

�(x; t)dx = P(t),

∫

�

x�(x; t)dx = M(t); t ∈ [0,T ].
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The formula (1.1) is investigated in different forms, depending on the presence of time 
and the domain of integration of position; see [3, 4, 15, 23, 24]. In (1.1), the function f1(x) 
is known as a free term. The pressure and the moment functions P(t), M(t) cause rigid 
displacements γ (t) and β(t) respectively, where γ (t) and β(t) ∈ C[0,T ] . The kernel of 
time F(t, τ ) is positive continuous, while the kernel of position K (

∣

∣x − y
∣

∣) has a singularity. 
Here, � is the domain of contact area of position. Finally, �(x; t) is the unknown function, 
will be determined.

To guarantee the existence of solution of (1.1), we assume

(1) 
∥

∥ f (x; t)
∥

∥

X
= H , is a constant. In addition, the positive functions γ (t) and β (t) are 

continuous and belong to the class C [0,T ] such that |δ(t)| ≤ δ and |β(t)| ≤ β , 
while f1(x) ∈ L2(�) .

(2) The kernel of position satisfies 
∫∫

�

∣

∣K (x − y)
∣

∣

2
dx dy ≤ M2, where M is a constant.

(3) The function F(t, τ ) with its partial derivatives are continuous in the class C [0,T ] , 
and for all values of t, τ ∈ [0,T ] we have |F(t, τ )| ≤ L1 < L and 
∣

∣

∣

∂F(t,τ)
∂t

∣

∣

∣ ≤ L2 < L , where L1, L2 and L are constants.

(4) The function �(x; t) satisfies Lipschitz condition for the first argument and Hölder 
condition for the second argument.

In the remainder part of this paper, the solution in a series form is constructed in the 
space L2 (�) × C [0,T ] . Moreover, the solution is constructed in a linear combination 
form of eigenvalues and eigenfunctions, where the solution of Volterra is represented in 
eigenvalues’ form, while the eigenfunctions represent the solution of Fredholm integral 
term in some different domains. Many applications in one, two and three dimensional are 
considered and derived from the problems. The results of this work can be used directly, to 
discuss the solution of the integral equations of the second kind, in different domains. Here, 
the Fredholm integral equation with logarithmic kernel is derived. Moreover, the integro-
differential equation of Cauchy type kernel is established. This equation has appeared in 
both combined infrared gaseous radiation and molecular condition, and elastic contact 
studies.

Method of solutions
Consider the solution of (1.1) in the general series form

where �0(x, t) is the complementary solution and �1(x, t) is the particularly solution.
Therefore, using (2.1) the formula (1.1) takes the form

(2.1)�(x; t) = �0(x; t)+�1(x; t)

(2.2)

∫

�

K (
∣

∣x − y
∣

∣)[�j(y; t)−�j (y; 0)]dy+
t

∫

0

F(t, τ)�j(x, y, τ )dτ

= πϑδj[γ (0)+ β(0)x−γ (t)− β(t)x], j = 0, 1; 0 ≤ t ≤ T < 1.
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Theorem 1 [24]. If the position kernel K (
∣

∣x − y
∣

∣) satisfies Fredholm condition, the inte-
gral operator

is compact and self-adjoint in L2 (�) × C [0,T ].

Theorem  2 [24]. If the integral operator (2.3) is compact and self-adjoint, it can be 
written in the form

where αn and �n are the eigenvalues and the eigenfunctions of the integral operator, 
respectively.

Volterra integral equation

In this section, we discuss the solution of Volterra integral equations, with continu-
ous kernel in time. This solution represents the eigenvalues of the integral equation of 
(1.1). For this aim, the solution of (1.1) can be written in a closed Fourier series form in 
L2(�)× C[0,T ] as follows:

where �2k(x) , �2k−1(x) are the even and odd functions, respectively.
Using (2.4) and (2.5) in (2.2), we have the following results

the second and third equations of (2.6) give the same results for even and odd func-
tions, so it is suffice to consider the first equation, where A(0)

k (0) is constant will be deter-
mined. In addition, taking j = 1 in (2.5) and following the same previous way, we get

(2.3)K� =
∫

�

K (
∣

∣x − y
∣

∣) �(x, t)dx

(2.4)

∫

�

K (
∣

∣x − y
∣

∣)�(y, t)dy = αk �k(x); k = 0, 1, 2, 3, . . .

(2.5)�j(x; t) =
∞
∑

k = 1

[

A
(j)
2k(t)�2k(x)+ A

(j)
2k−1(t)�2k−1(x)

]

, j = 0, 1,

(2.6)

A
(0)
k (t)+ αk

t
∫

0

A
(0)
k (τ ) F(t, τ )dτ = A

(0)
k (0) (j = 0, k ≥ 1)

A
(0)
2k (t)+ α2k

t
∫

0

A
(0)
2k (τ ) F(t, τ )dτ = A

(0)
2k (0)

A
(0)
2k−1(t)+ α2k−1

t
∫

0

A
(0)
2k−1(τ )F(t, τ )dτ = A

(0)
2k−1(0)

A
(1)
2k (t)+ α2k

t
∫

0

A
(1)
2k (τ ) F(t, τ )dτ = πϑα2kb2k [γ (t)− γ (0)]
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where
∞
∑

k=1

b2k�2k = 1,
∞
∑

k=1

b2k−1�2k−1 = x,

(k ≥ 1, 0 ≤ t ≤ T < 1, A
(1)
2k (0) = A

(1)
2k−1(0) = 0).

Equations (2.6)–(2.7) represent a system of Volterra integral equations which have the 
same kernel F(t, τ ), and different free terms.

Therefore, the solution of these equations is unique in the class C[0,T ] depending on 
the free terms A(0)

k (0) , γ (t) and β(t).
Put t = 0 in (1.1) and (2.2), and j = 0 in (2.1), we obtain the constant value A(0)

k (0) in 
the form

Moreover, put j=1, the same previous technique leads us to
A
(1)
2k (0) = A

(1)
2k−1(0) = 0.

Hence, the values of the constants A(0)
k (0), A

(1)
2k (0) and A(1)

2k−1(0) are completely 
determined.

Convergence of the series

In view of (2.6) and (2.7), the general solution of (1.1) can be adapted in the form

where A(0)
k (t) and A(1)

k (t) satisfy the inequality

and �k(x) is the eigenfunctions of integral operator (2.3).

Theorem 3 For the uniformly convergent inequality (2.9) the series (2.8) holds and the 
solution (1.1) is unique in L2 (�) × C [0,T ].

Proof After differentiating (2.6) with respect to t , we get a nonhomogeneous linear dif-
ferential equation of the first order, which has a general solution in the form of com-
plementary and particularly solution. From this solution, we can obtain the following 
relation

Similarly, the solution of (2.7) gives the following relation

(2.7)A
(1)
2k−1(t)+ α2k−1

t
∫

0

A
(1)
2k−1(τ ) F(t, τ )dτ = πϑa2k−1b2k−1[β(t)− β(0)],

A
(0)
k (0) = π ϑ γ (0) αk .

(2.8)�(x; t) =
∞
∑

k=1

[

A
(0)
k (t)+ A

(1)
k (t)

]

�k(x),

(2.9)
∞
∑

k=1

[

A
(0)
k (t)+ A

(1)
k (t)

]2
< ε, (ε ≪ 1)

∣

∣

∣A
(0)
i (t)

∣

∣

∣ ≤ π ϑ |αi| γ (0) e
(∣

∣

∣α
−1
i

∣

∣

∣F
)

T
, |F(t)| < F , 0 < ϑ < 1, γ (0) ≪ 1.
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Finally, using the above solutions we get the following

General solution of the integral equation (1.1)

In general, we consider the Volterra integral equation

The general solution of the above equation is given by

where C is a constant.
In (2.11), for even values of k we consider w(t) = γ (t), while for odd values let 

w(t) = β(t).

From the above, we can write the general solution of (1.1) in the form:

In this case, the pressure and moments conditions can be adapted in the following form:

where Po, M0, Pk and Mk are constants.
The formula (2.12) is the solution of the integral Eq. (1.1) in the linear combination form 

of eigenvalues and eigenfunctions αk �k(x, y) for the integral equation of position. While, 
Ak(t) represents the solution of Volterra integral equation in time (2.11). The eigenfunc-
tions �k(x, y) will be obtained after knowing the kernel form of (1.1), under the pressure 
and moments conditions (2.13).

∣

∣

∣A
(1)
i (t)

∣

∣

∣
≤ π ϑ |αi| δi e

(∣

∣

∣
α
−1
i

∣

∣

∣
F
)

T

, δi =
{

|γ (t)| = γ for odd values
|β(t)| = β for even values

(2.10)

{ ∞
∑

i=1

[

A
(0)
i (t)+ A

(1)
i (t)

]2
}

1
2

≤ πϑB

{ ∞
∑

i=1

(

|αi|e
∣

∣

∣α
−1
i

∣

∣

∣FT
)2

}
1
2

, B < 1; 0 < ϑ < 1.

Ak(t)+ αk

t
∫

0

F(t, τ )Ak(τ ) dτ = πϑαkbkw(t), 0 < ϑ < 1.

(2.11)

Ak(t) = exp







αk

t
�

0

F(u,u) du











t
�

0

exp(−αk

u
�

0

F(v, v) dv)

×



πϑakbk
dw(u)

du
− αk

u
�

0

Ak(τ )
∂F(u, τ )

∂u
dτ



du+ C



; k = 1, 2, . . . ,

(2.12)�(x, y; t) =
∞
∑

k=1

αk Ak(t) �k(x, y).

P(t) = Po +
∑

k=2,4

Pk γk αk Ak(t),

M(t) = Mo +
∑

k=1,3

Mk βk αk Ak(t),



Page 6 of 12Abdou and Awad  J Egypt Math Soc           (2020) 28:48 

Some applications
Axisymmetric contact problem with generalized kernel

We consider an axisymmetric contact problem with generalized potential kernel, 
impressing stamp of angular form on a plane into a half space. Here, the modules of 
elasticity is changing according to the power law σi = K0 ε

h
i (0 ≤ h < 1) ; σi, εi are the 

stress and the strain rate intensities, respectively, and K0 , h are physical constants. 
Moreover, we consider the equation of stamp is f1(x, y) , which is impressed into the 
lower surface by a variable force in time P(t), that has eccentricity of application e(t) , 
and let M(t) be a moment. The pressure and the moment cause rigid displacements 
γ(t) and β(t), respectively, where γ(t) and β(t) ∈ C [0, T]. Neglecting the frictional 
forces between the two surfaces in the domain of contact area Ω. The given function 
L(ξ , η) is continuous and has two physical meaning as shown in Eq. (3.5).

The unknown function �(x, y; t) represents the difference between the two normal 
stresses of the two surfaces.

Such problem leads to the following mixed integral equation (see [24, 25]).

under the dynamic conditions

To obtain the spectral relationships of the integral equation, we let, in (3.1), t = 0. 
Hence, we have

The formula (3.3) represents an integral equation, in position with generalized 
potential kernel, to represent this integral equation in the form of Fredholm integral 
equation with Weber-Sonien integral formula, we follow.

Firstly, using the polar coordinates, (x, ξ) = (r, ρ) cos(θ ,ψ), (y, η) = (r, ρ) sin(θ ,ψ) . 
Then, using the separation variables method, 
�(x, y; 0) = �(r, θ; 0) = �n(r; 0) cos kθ.

Secondly, we consider the following two relations [25, 26],

(3.1)

∫∫

�

L(ξ , η)[(x − ξ)2 + (y− η)2]−h�(ξ , η , t)dξ dη +
t

∫

0

F(t, τ)�(x, y, τ )dτ = f (x, y; t)

= π ϑ[γ (t)+ β(t)x − f1(x, y)];
{

� =
√

x2 + y2 ≤ a; ϑ = G(1− ν)−1; 0 ≤ h < 1

}

(3.2)

∫∫

�

�(ξ , η, t) dξ dη = P(t) . . . ,

∫∫

�

ξη�(ξ , η, t)dξ dη = M(t); t ∈ [0,T ].

(3.3)

∫∫

�

L(ξ , η) [(x − ξ)2 + (y− η)2]−h �(ξ , η, 0)dξ dη = π ϑ f (x, y)

1−2F1

(

α,α +
1

2
− β;β +

1

2
; z2

)

= (1+z)−2α
2F1

(

α,β; 2β;
4z

(1+ z)2

)

, (|z| < 1, Re α > 0)

2−
∞
∫

0

Jµ(bx)Jν(ax)dx = aνb−ν−1 Ŵ(
µ+ν+1

2 )

Ŵ(1+ ν)Ŵ(
µ−ν+1

2 )
·F
(

µ+ ν + 1

2
,
ν − µ+ 1

2
, ν + 1, a2/b2

)
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Ŵ(x) is the gamma function, ( α )m
Ŵ (m+α)
Ŵ (α)

 is called Pachmmer symbol and 
2F1(a, b, c; z) is the Gauss hypergeometric function. In addition, Jm(a x) is the Bessel 
function of order m and F(α,β; γ ; z) is the hypergeometric function.

Hence, following the same technique of [23, 24], one arrives to the following integral 
equation

The formula (3.4) represents Fredholm integral equation of the first kind with a kernel 
takes form of generalized Weber-Sonien integral formula.

To obtain the spectral relations of (3.4), we follow:
Consider the known function L (ρ) of (3.4) satisfies

Moreover, assume in (3.4), f (r) = P
(n,µ− 1

2 )

k (1− 2r2); h = µ+ 1
2 , where, 

P
(n,µ− 1

2 )

k (1− 2r2) are the Jacobi polynomials.
After using Krein’s method, see [7], we have the following spectral relationships form.

where the eigenvalues αn
k  are given by

The formula (3.6) represents the solution of (3.4) as a linear combination of eigenval-
ues and eigenfunctions form.

Finally, from the solution of (1.1), we deduce that the semi-symmetric Hertz contact 
problem of frictionless impression of a rigid surface (G, ν) in the domain 
� =

{

(x, y, z) ∈ � :
√

x2 + y2 ≤ a, z = 0
}

 , takes the form

where Ak(t) is the solution of (3.1), αk is given by (3.7) and P(k ,−w−)
k (1− 2r2) are the 

Jacobi polynomials.

(3.4)

1
∫

0

Kh
n (r, ρ)φ(ρ)dρ = π ϑ f (r), Kh

n (r, ρ) =
√
rρ

∞
∫

0

L(ρ)u2h−1 Jn (ρ u)Jn(r u) du.

(3.5)

L(ρ) = Aρ + O(ρ3); (ρ → 0, A = Const. > 0),

L(ρ) = 1+
ℓ− 1
∑

i= 1

Bi

ρi
+ O

(

1

ρℓ

)

(ρ → ∞, Bi - constant)

(3.6)

1
∫

0

Kn(u, v)ρ
k+1

(1− v2)
1
2
−µ

P
(n ,µ− 1

2
)

k
(1− 2v

2)dv = αn
k u

k
P
( n ,µ− 1

2
)

k
(1− 2u

2 ),

(

u = a r, v = a ρ; 0 ≤ µ <
1

2

)

,

(3.7)αn
k = πϑ

Ŵ

(

µ+ k + n+ 1
2

)

Ŵ (k + µ+ 1
2 )Ŵ(

1
2 − µ)

n! (k + n)! Ŵ( 12 + µ)
; (n = 0, 1, 2, 3, ...).

(3.8)�(u; t) =
∞
∑

k=1

αn
k Ak(t)u

k P
(n,µ− 1

2 )

k (1− 2u2)
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Ring stamp

The solution of the problem of an elastic half-space, after neglecting the frictional forces 
and external forces, inclined ring stamp problem, a ≤ r ≤ b, takes the form

Γ(x) is the Gamma function, and E
(

2
√
rρ

r+ρ

)

 represents the complete elliptic integral 

form.
Using the hypergeometric series 9.111, pp.1054 of [27],

the formula (3.9), yields

We combine the relation between elliptic form and the Bessel function, then we have

where Jn(·) is the Bessel function of order n.
In the ring stamp, the spectral relationships that equivalent to (3.6) takes the form:

Moreover, the complete solution of the problem reduces to:

An integral equation with logarithmic kernel

We consider the integral equation

(3.9)

Kn(u, v) =
√
π Ŵ(n+ 1/2)e2k

22n−1 n! (u+ v)
F

(

n+
1

2
, n+

1

2
, 2n+ 1, e2

)

,

(

e = E

(

2
√
uv

u+ v

))

(3.10)
F(α, δ, γ , z) =

1

β(δ, γ − δ)

t
∫

0

t
δ−1(1− t)γ−δ−1(1− t z)−α

dt;

(β is Beta function Reγ > Reδ > 0),

Kn(u, v) =
e2n

π(u+ v)

1
∫

0

zn−
1
2 (1− z)n−

1
2 (1− e2z)−n− 1

2 dz

(3.11)Kn(u, v) =
√
uv

∞
∫

0

Jn(uτ )Jn(vτ )dτ

(3.12)

1
�

0

Kn(u, v)
vn+1

√
1− v2

P
(n,− 1

2 )

k (1− 2v2)dv =











πϑ
Ŵ(k+n+ 1

2 )Ŵ(k+
1
2 )

n! (k+n)! unP
(n,− 1

2 )

k (1− 2u2), u < 1

πϑ(−1)k
Ŵ(k+n+ 1

2 )Ŵ(k+
1
2 )

n! (k+n)! unP
(− 1

2 ,n)

k (2u2 − 1), u > 1

(3.13)�(u; t) =
∞
�

k=1

Ak(t)











πϑ
Ŵk+n+ 1

2 )Ŵ(k+
1
2 )

n! (k+n)! unP
(n,− 1

2 )

k (1− 2u2), u < 1

πϑ(−1)k
Ŵ(k+n+ 1

2 )Ŵ(k+
1
2 )

n! (k+n)! unP
(− 1

2 ,n)

k (2u2 − 1), r > 1

(3.14)
1

∫

−1

ln
∣

∣x − y
∣

∣�(y)dy = f ∗(x)
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For obtaining the spectral relationships of (3.14), we use the orthogonal polynomial 
method.

Therefore, we assume that the Chebyshev polynomials of the first kind are
Tn(x) = cos(n cos−1 x), x ∈ [−1, 1], n ≥ 0. With weight function (1− x2)−

1
2.

And the Chebyshev polynomials of the second kind are given by
Un(x) = sin[(n+1) cos−1 x]

sin(cos−1 x)
, n ≥ 0 , with weight function (1 − x2)

1
2.

After using, the orthogonal polynomials method with some well-known algebraic and 
integral relations associated with Chebyshev polynomials see [28, 29], we have

Finally, the general solution takes the form

Also, for logarithmic kernel, we can have the solution

Many special cases can be derived from the generalized kernel (3.4) as the following 
(Figs. 1, 2).

(3.15)
1

∫

−1

ln
∣

∣x − y
∣

∣

√

1− y2
Tn(y)dy =

{

π ln 2 n = 0,

π Tn(x)
n , n ≥ 1.

(3.16)�(x; t) =
∞
�

n=1

An (t)







π ln 2 n = 0,

π
Tn(x)

n
, n ≥ 1.

(3.17)�(r; t) =
∞
�

k=1

Ak(t)











2πϑ
2n+1

√
rP

(
1
2 ,−

1
2 )

k (1− 2r2), r < 1

2(−1)kϑπ
2n+1

√
rP

(− 1
2 ,

1
2 )

k (2r2 − 1), r > 1

Fig. 1 h = 0.5, n = 0 (elliptic kernel)
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Conclusions
From the above results and discussions, the following conclusions may be deduced:

1 The integral Eq.  (1.1) under the conditions (1.2) is established from the semi-sym-
metric Hertz contact problem of frictionless impression of a rigid surface (G, ν) hav-
ing an elastic material in the domain � =

{

√

x2 + y2 ≤ a, z = 0
}

 , where 

f1(x, y) ∈ L2(�) describes the surface of stamp, which is impressed into an elastic 
layer surface. The variable pressure P(t) is eccentricity of application e (t) and the 
variable momentum M(t) , 0 ≤ t ≤ T < 1 , cause rigid displacements γ (t) and β(t)x . 
Respectively the force F(t, τ ) t, τ ∈ [0,T ] is called the characterized resistance func-
tion of the material, G is the displacement magnitude, ν is Poisson’s coefficient, and 
�(x, y, t) is the unknown function.

2 The displacement problem of anti-plane deformation of an infinite rigid strip has 
width 2a , after putting t = 1 , F(t, τ) = 1 , f (x, t) = H and φ(x, 1) = ψ(x).

 Here, H is the displacement magnitude and ψ(x) is the unknown function, see [8, 
30].

3 Moreover, we can derive the following special relations

where

(4.1)

1
∫

0

Kh
n (r, ρ)P

n
m(ρ) (1− ρ2)h−1 ρn+1dρ =

{

Ah
nmr

nPh
n(r) r < 1

Bh
nmQ

(h−1, n)
n (2r2 − 1) r > 1

Ah
n k = 22(h−1)πϑŴ(k+n+h)Ŵ(k+h)[Ŵ(k + n+ 1)m!]−1,

(

Ph
k (r) = P

(n,h−1)
k (1− 2r2)

)

Fig. 2 h = 0.5, n = 1 (potential kernel)
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Here Γ(.) is the Gamma function while P(α,β)
m (x) , Q(α,β)

n (x) are the Jacobi polynomial 
of the first and second type, respectively.

3.1 The spectral relations for the elliptic kernel in the Jacobi polynomials form are

4.1 The spectral relations, with Carleman functions, when n = 1
2 are

5.1 In addition, for n = − 1
2 in the Jacobi polynomial form, are

6.1 The spectral relations for the potential kernel in the Jacobi polynomial form, 
when µ = 0 , n = 1

2 are
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Bh
n k = (−1)k 22h−1 (sin πh)Ŵ(k+n+h)Ŵ(k+h)[πŴ(k + n+ 1)m!]−1, k = 1, 2, . . .

(4.2)

1
�

0

K0(r, ρ)
ρ

�

1− ρ2
P
(0,− 1

2 )

k (1− 2ρ2)dρ =























πϑ

�

Ŵ(k+ 1
2 )

k!

�2

P
(0,− 1

2 )

k (1− 2r2), r < 1,

πϑ(−1)k

�

Ŵ(k+ 1
2 )

k!

�2

P
(− 1

2 ,0)

k (2r2 − 1), r > 1,

(4.3)

1
�

0

K 1
2

(u, v) v
3
2 (1− v2)

µ− 1
2 P

(
1
2 ,µ−

1
2 )

k (1−2v2)dv =











Dk

√
uP

(
1
2 ,µ−

1
2 )

k (1− 2u2), u < 1

(−1)kDk

√
uP

(µ− 1
2 ,

1
2 )

k (2u2 − 1), u > 1

Dk = πϑ
Ŵ(µ+ k + 1)Ŵ(k + µ+ 1

2 )Ŵ(
1
2 − µ)

k!Ŵ(k + 3
2 )Ŵ(

1
2 + µ)

.

(4.4)

1
�

0

K
− 1
2

(u, v)v
1
2 (1− v2)

µ− 1
2 P

(− 1
2 ,µ−

1
2 )

k (1−2v2)dv =











D∗
ku

− 1
2 P

(− 1
2 ,µ−

1
2 )

k (1− 2u2), u < 1

(−1)kD∗
ku

− 1
2 P

(µ− 1
2 ,−

1
2 )

k (2u2 − 1), u > 1

D∗
k = πϑ

Ŵ(µ+ k) Ŵ(k + µ+ 1
2 ) Ŵ(

1
2 − µ)

k!Ŵ(k + 1
2 )Ŵ(

1
2 + µ)

.

(4.5)

1
�

0

K 1
2

(r, ρ)
ρ
3
2

�

1− ρ2
P
(
1
2 ,−

1
2 )

n (1− 2ρ2)dρ =







An
√
rP

(
1
2 ,−

1
2 )

n (1− 2r2), r < 1

Bn
√
r P

(− 1
2 ,

1
2 )

n (2r2 − 1), r > 1
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