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Introduction
Secondhand smoke is defined as “the combination of smoke emitted from the burn-
ing end of a cigarette or other tobacco products and smoke exhaled by the smoker” [1]. 
Thus, secondhand smoke exposure consists of an unintentional inhalation of smoke 
that occurs close to people smoking and/or in indoor environments where tobacco was 
recently used.

Subjects may be exposed to secondhand smoke in multiple sites, such as the home [2], 
public places, cars, homes of relatives  [3], and the workplace  [4]. Exposure to second-
hand smoke is a significant risk factor for a plethora of diseases and adverse health-
related outcomes at a global scale  [5] and is estimated to cause over 600,000 deaths 
annually, the majority of which are due to ischemic heart disease among adults [6].

There is a connection between secondhand smoke and an increased risk of stroke. 
Regular exposure to secondhand smoke, such as in restaurants, increases one’s chance 
of stroke by 50 % [7]. Secondhand smoke is as damaging to a fetus as if the mother were 
inhaling the smoke directly from a cigarette [8]. Just 30 min of exposure to secondhand 
smoke can cause heart damage similar to that of habitual smokers [9].

Due to these, secondhand smoke exposure is a topic of great concern for us because 
of its well-known adverse effects on human health [10]. Worldwide, 40% of children, 
33% of male nonsmokers and 35% of female nonsmokers were exposed to secondhand 
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smoke. The highest proportions exposed were estimated in Europe, the Western 
Pacific, and Southeast Asia, with more than 50% of population exposed. Proportion of 
people exposed was lowest in Africa [6]. The prevalence of secondhand smoke expo-
sure among adolescents in Ethiopia is highest [11].

Different scholars discussed about secondhand smoke in relation to health problem. 
For instance,  [12] discussed the global health burden of secondhand smoke, and [13] 
emphasized a new and alarming consequence of smoking in indoor environments.

All studies mentioned above showed secondhand smoke is a big problem in the 
world as the result of leading peoples to diseases and death. There are a number of 
studies on mathematical model of smoking by taking different assumption. We direct 
refer the reader to the papers [14–17].

In this article, we will see the effect of secondhand smoke in the society. We will 
prepare a mathematical model and interpret the model graphically. The model, we 
will develop extends the work of Eduardo L. L. M and Maribel L. B in paper  [18]. 
We consider death (νP) of secondhand smoker by this infection in addition to natural 
death [19, 20], and we discuss sensitivity analysis of R0 . Different parameters will be 
used for the infection rate �PS from P to S and infection rate δQS from Q to S. The 
infection rate δQS from Q to S means the infection rate when relapse smoking, that is, 
restarting smoking after a period of abstinence. In [21], relapse rates within the first 
year of abstinence ranged from 60 to 90%, while 2 years of continuous cessation indi-
cated a likelihood of 80% to maintain long-term abstinence. A research conducted in 
the USA has the following results [22]. 

1	 The prevalence of relapse is 6.8%.
2	 Prevalence and odds of relapse were higher among young people compared with 

elders.
3	 Former smokers living in smoke-free homes had 60% lower odds of relapse com-

pared with those living in homes that allowed smoking inside.
4	 Odds of relapse were higher among never married, widowed, divorced and separated 

individuals, compared with the married group.
5	 Continuous smoking cessation for 6 months or more significant decreased odds of 

relapse.

We organized this paper as follows. In Section 2, we prepare the proposed model. In 
Sections 3, 4 and 5, we discuss free equilibrium point, reproduction number, sensi-
tivity analysis and endemic equilibrium point, respectively. In Section 6, we discuss 
stability of equilibrium solution. In Section 7, we see the numerical simulation for the 
equilibrium solution. Finally, conclusion, abbreviations and declaration are included.

Formulation of the model
Model assumption

We have the following assumptions in preparing the model. 

1	 There are deaths as a result of smoking and secondhand smoking.



Page 3 of 16Fekede and Mebrate ﻿J Egypt Math Soc           (2020) 28:50 	

2	 The number of healthy and completely recovered people is not directly considered in 
the system.

3	 People can be in one of the three groups: 

(a)	 Secondhand smokers or those at risk of others smoking, represented by P;
(b)	 People who have stopped smoking but are at risk due to their smoking habit 

before, represented by Q.
(c)	 People who are addicted to tobacco and now smoke it, represented by S.

4	 There is a constant flow, α , of healthy people who become at risk of active smokers to 
the state P.

5	 People leave from the states P or S or Q under study due to factors such as living in a 
completely nonsmoking population or the death of the individual.

Description of variables and parameters

In the following table, we describe the variables and parameters to create the math-
ematical model that represents the dynamics of transmission of the habit of smoking 
(Table 1).

The dynamic system

As we see in Fig. 1, 

1	 P increases by α per unit time
2	 P decreases due to natural death ( µP people per unit time); the influence of factors 

that cause a person to move from the population at risk of being an active smoker 
to the population of healthy people ( σP people per unit time); death as secondhand 
smoker ( νP ); and the impact of smoking ( �PS people per unit time).

3	 S increases by the impact of ( �PS and δQS people per unit time).

Table 1  Description of variables and parameters

No Variables/
parameters

Description Value

1 P The number people who have a risk of smoking P ≥ 0

2 S The number people who are smoking tobacco S ≥ 0

3 Q The number of people who have stopped smoking Q ≥ 0

4 α The number of healthy people who become at risk of active smokers α > 0

5 µ The natural death rate over the population 0 < µ < 1

6 ν The death rate of secondhand smoker because of being secondhand smoker 0 ≤ ν ≤ 1

7 κ The death rate of smoker by smoking tobacco 0 ≤ κ ≤ 1

8 η The death rate of quit because of smoking habit before joining the state Q 0 ≤ η ≤ 1

9 σ The exit rate of secondhand smoker to the health people 0 ≤ σ ≤ 1

10 ξ The exit rate of people who have stopped smoking to the healthy population 0 ≤ ξ ≤ 1

11 � Infection rate from P to S 0 < � ≤ 1

12 ζ Exit rate from S to Q 0 ≤ ζ ≤ 1

13 δ Infection rate from Q to S 0 < ν ≤ 1
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4	 S decreases due to natural death ( µS ), death as a result of smoking tobacco ( κS ), the 
influence of factors that cause a person to leave the population of active smokers and 
join the population of people who have stopped smoking.

5	 Q increases due to the influence of factors that cause a person to leave the population 
of active smokers and join the population of people who have stopped smoking

6	 Q decreases due to natural death ( µQ ), deaths as a result of smoker some days before 
( ηQ ) and the influence of factors that cause a person to move from the population to 
other areas and also medical treatment to the population of healthy people ( ξQ).

	 We now describe the dynamic system as follows.

Positivity and boundedness of the solution

Theorem  1  If the initial population sizes of the model are positive, then the popula-
tion sizes at any time are nonnegative. In other words, if P(0) > 0, S(0) > 0 and Q(0) > 0, 
then P(t) > 0, S(t) > 0 and Q(t) > 0 for all t.

(1)
dP

dt
=α − (ν + µ+ σ + �S)P

(2)
dS

dt
= (�P + δQ − (µ+ κ + ζ ))S

(3)
dQ

t
= ζS − (δS + η + µ+ ξ)Q

Fig. 1  Mathematical model of smoking
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Proof
Equation (1) can be expressed as an inequality

Integrating both sides from 0 to t, the solution is obtained as

Since P(0) > 0,P(t) > 0. In the same manner from Eqs. (2) and (3), we obtain

and

, respectively. The latter one is justified by ζS(t) ≥ 0 . �

Theorem 2  All the solutions P(t), S(t) and Q(t) of system (1), (2) and (3) are bounded.

Proof
The population size N(t) is given by

Differentiating both sides with respect to t, we obtain

Substituting (1), (2) and (3) in (4), we have

The solution of Eq. (5) is

As t → ∞, we have

Therefore, the solution of the dynamic system (1), (2) and (3) is bounded. �

dP

P
≥ −(ν + µ+ σ + �S)dt.

P(t) ≥ P(0)e−
∫

(ν+µ+σ+�S)dt .

S(t) ≥ S(0)e
∫

(�P+δQ−(µ+κ+ζ ))dt > 0

Q(t) ≥ Q(0)e−
∫

(δS+η+µ+ξ)dt > 0

N (t) = P(t)+ S(t)+ Q(t).

(4)
dN (t)

dt
=

dP(t)

dt
+

dS(t)

dt
+

dQ(t)

dt
.

(5)

dN (t)

dt
=α − (ν + µ+ σ)P − (µ+ κ)S − (η + µ+ ξ)Q

≤α − (P + S + Q)µ

=α − Nµ.

N (t) ≤
α

µ
+

(

N (0)−
α

µ

)

e−t .

N (t) ≤
α

µ
.
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So, let the total population size at time t be denoted by N(t). So, 
N (t) = P(t)+ Q(t)+ S(t). We assume that N(t) is constant, and for the purpose of com-
putation, we take P(t), Q(t) and S(t) as proportions of N(t) where P(t)+ Q(t)+ S(t) = 1. 
Thus, the region that we consider for our model is

In this paper, P(t), Q(t) and S(t) are proportions of N(t).

Free equilibrium point
Smoking-free equilibrium points are steady-state solutions of a mathematical model 
indicating that there is no smoking (only presented secondhand smoker). Thus, setting 
dP

dt
= 0,

dS

dt
= 0 and 

dQ

dt
= 0, we obtain

From (7), we get S = 0. Substituting this value in (6) and (8) and calculating P and Q, we 
have respectively P =

α

ν + µ+ σ
 and Q = 0. Thus, the free equilibrium point of the 

dynamic systems [(1), (2), (3)] is

Reproduction number
The basic reproduction number, R0 , of an infectious disease is the average number of 
secondary cases generated by a single primary case in a fully susceptible population [23]. 
R0 is the most widely used epidemiological measurement of the transmission potential 
in a given population. Statistical estimation of R0 has been performed for various infec-
tious diseases [24, 25], aiming toward understanding the dynamics of transmission and 
evolution and designing effective public health intervention strategies. In particular, R0 
has been used for determining the minimum coverage of immunization, because the 
threshold condition to prevent a major epidemic in a randomly-mixing.

It is primarily used as a threshold parameter: If R0 < 1, the disease will fade out of the 
population, but if R0 > 1 , the disease will persist and become endemic to the population. 
Furthermore, the larger the magnitude of R0 , the faster the disease will spread and pre-
sumably the more difficult it will be to control.

Even though there are different methods in which R0 can be calculated, we use the next-
generation method. This is the most common method of calculating R0. In this method, we 
place appropriate terms from the infected class equations into the vectors F and V. Terms 
that describe appearances of new infections in each compartment belong in F, and other 
terms belong in V. The Jacobian matrices obtained by differentiating F and V with respect 
to the relevant subset of variables are computed and evaluated at a nontrivial disease-free 

� = {(P,Q, S) ∈ R3
: P + S + Q = 1, and P, S,Q ≥ 0}.

(6)α − (ν + µ+ σ + �S)P = 0

(7)(�P + δQ − (µ+ κ + ζ ))S = 0

(8)ζS − (δS + η + µ+ ξ)Q = 0

(P, S,Q) =

(

α

ν + µ+ σ
, 0, 0

)

.
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equilibrium, resulting in the matrices DF and DV , respectively. So, the reproductive num-
ber R0 is defined as the spectral radius of the matrix DF(DV )−1, denoted by ρ(DF(DV )−1).

Let X = (P, S,Q). Then, 

where

Let M0 =

(

α

ν + µ+ σ
, 0, 0

)

. Then,

and

Here,

Hence,

where

And

dX

dt
= F(X)− V (X),

F(X) =





α

�PS + δQS
ζS



 and V (X) =





(ν + µ+ σ + �S)P
(µ+ κ + ζ )S

(δS + η + µ+ ξ)Q





DF(M0) =







0 0 0

0
�α

µ+ ν + σ
0

0 ζ 0







DV (M0) =







ν + µ+ σ
�α

ν + µ+ σ
0

0 µ+ κ + ζ 0
0 0 η + µ+ ξ






,

det(DV ) = (ν + µ+ σ)(µ+ κ + ζ )(η + µ+ ξ).

DV−1
=

1

det(DV )





A B 0
0 C 0
0 0 D



,

A = (µ+ κ + ζ )(η + µ+ ξ),

B = −
�α

ν + µ+ σ
(η + µ+ ξ)

C = (ν + µ+ σ)(η + µ+ ξ)

D = (ν + µ+ σ)(µ+ κ + ζ ).
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Here, R0 represents the average number of smokers that a single smoker would produce 
during their period of infection in a population of exposed people.

Sensitivity analysis
Sensitivity analysis tells us how important each parameter is to interpret the model. Sen-
sitivity allows us to measure the relative change in a variable when a parameter changes. 
The sensitivity of R0 with respect to a parameter is the ratio of the relative change in the 
variable ( R0 ) to the relative change in the parameter. When the variable is a differenti-
able function of the parameter, the sensitivity index may be alternatively defined using 
partial derivatives [26]. Thus, for a parameter p, we denote sensitivity of R0 with respect 
to p by SR0

p  and as in [27] defined by

We calculate the sensitivity analysis of parameters involved in R0 as follows.

(9)

DF(DV−1) =
1

det(DV )







0 0 0

0
�α

µ+ ν + σ
C 0

0 ζC 0






,

R0 = ρ(DF(DV )−1) =
�αC

(µ+ ν + σ)det(DV )

=
�α(ν + µ+ σ)(η + µ+ ξ)

(ν + µ+ σ)(ν + µ+ σ)(µ+ κ + ζ )(η + µ+ ξ)

=
�α

(ν + µ+ σ)(µ+ κ + ζ )

S
R0
p =

p

R0

[

∂R0

∂p

]

.

(10)S
R0
�

=
�

R0

[

α

(ν + µ+ σ)(µ+ κ + ζ )

]

> 0

(11)S
R0
α =

α

R0

[

�

(ν + µ+ σ)(µ+ κ + ζ )

]

> 0

(12)S
R0
ν =

ν

R0

[

−�α

(ν + µ+ σ)2(µ+ κ + ζ )

]

< 0

(13)S
R0
µ =

µ

R0

[

−(2µ+ ν + σ + κ + ζ )�α

(ν + µ+ σ)2(µ+ κ + ζ )2

]

< 0

(14)S
R0
σ =

σ

R0

[

−�α

(ν + µ+ σ)2(µ+ κ + ζ )

]

< 0

(15)S
R0
κ =

κ

R0

[

−�α

(ν + µ+ σ)(µ+ κ + ζ )2

]

< 0
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We can see that SR0
�

 and SR0
α  are positive. This indicates that � and α are directly propor-

tional to R0. This means an increase (or decrease) in � and α will cause an increase (or 
decrease) in R0 with the same proportion. So, the average number of secondary cases of 
infection increases (or decreases) in the community. It can also be seen that the remain-
ing five parameters ν,µ, σ , κ and ζ are inversely proportional to R0. So, an increase (or 
decrease) in these parameters leads to minimizing (or maximizing) the endemic nature 
of smoking in the community. The relationship between R0 and the above parameters 
can be described graphically as shown below (Fig. 2).

Endemic equilibrium point
Endemic equilibrium is steady-state solutions when the smoking persists in the population. 
Assume that the smoking will persist in the population. Thus, in (7), if S  = 0, then

From (6) and (8), we get

Substituting (18) and (19) in (17), we obtain the quadratic equation (in a variable S)

(16)S
R0
ζ =

ζ

R0

[

−�α

(ν + µ+ σ)(µ+ κ + ζ )2

]

< 0

(17)�P + δQ = µ+ κ + ζ .

(18)P =
α

ν + µ+ σ + �S

(19)Q =
ζS

η + µ+ ξ + δS

(20)(�δζ − �δL)S2 + (δML(R0 − 1)+ δζL− �NM)S + LMN (R0 − 1) = 0,

Fig. 2  Parameters versus reproductive number
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where R0 is given as in (9), L = ν + µ+ σ ,M = µ+ κ + ζ , and N = η + µ+ ξ . From 
Eq. (20), we can calculate

where U = �δζ − �δM,V = δML(R0 − 1)+ δζL− �NM and W = LMN (R0 − 1). If 
R0 > 1, , then

since U < 0. In this case, P and Q can be found by substituting Eq. (22) into Eqs. (18) and 
(19), respectively. If R0 < 1, then −V > 0 and W < 0 , and thus either S is negative real 
number or complex number. In this case, S does not exist and hence P and Q. If R0 = 1, 
then V = δζL− �NM and W = 0. Consequently,

We write the above discussion as a theorem as follows.

Theorem 3  The endemic equilibrium point of the dynamic system (1), (2) and (3) exists 
if R0 > 1 or R0 = 1 and δζL > �NM and does not exist if R0 < 1. For R0 > 1 or R0 = 1 
and δζL > �NM, the endemic equilibrium point is the ordered triple (P, S, Q), where S, P 
and Q are given as in (22), (18) and (19), respectively.

Stability
The physical stability of the equilibrium solution of the dynamic system (6), (7) and (8) is 
related to its eigenvalue.

Definition 4  The equilibrium solution of the dynamic system is stable if all the eigen-
values of the Jacobian matrix of the dynamic system evaluated at the equilibrium solu-
tion have negative real part, otherwise the solution is unstable.

The Jacobian matrix of the dynamic system is

Free equilibrium point

At the free equilibrium point, the Jacobian matrix (23) becomes

(21)S =
−V ±

√

V 2 − 4UW

2U
,

(22)S =
−V −

√

V 2 − 4UW

2U

S =
−V − |V |

2U
=

{

negative, if V > 0
zero, if V ≤ 0

(23)





−(ν + µ+ σ + �S) − �P 0
�S �P + δQ − (µ+ κ + ζ ) δS
0 ζ − δQ − (δS + η + µ+ ξ)




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The eigenvalues of this matrix are

We see that �1 and �3 are negative. If R0 < 1, then �2 < 0 and hence the free equilibrium 
point is stable. If R0 > 1, then �2 > 0 and hence the free equilibrium point is unstable. 
From this discussion, we now have the following theorem.

Theorem 5  If R0 < 1, then the free equilibrium point is stable. If R0 > 1, then the free 
equilibrium point is unstable.

Endemic equilibrium point

The Jacobian matrix (23) of the dynamic system (6), (7) and (8) at the endemic equilibrium 
point is

where (P∗, S∗,Q∗) = (P, S,Q), here P, S and Q are given as in (18), (19) and (22). Its char-
acteristic polynomial is

where

Here, our objective is to show all the roots of the characteristic polynomial (24) have 
negative real part. However, it is difficult to show this due to the complexity of a1, a2 
and a3. Later, we will illustrate the stability of the endemic equilibrium solution using 
numerical simulations, by imposing the value of parameters or variables. It is easy to see 
that if a3 > 0 and a1a2 − a3 > 0, then all the roots of (24) have negative real part. In this 
case, the endemic equilibrium point is stable by Routh–Hurwitz criteria. By this criteria, 
if a3 < 0 or a1a2 − a3 < 0, then the endemic equilibrium point is unstable.







−(ν + µ+ σ)
−�α

ν + µ+ σ
0

0 (µ+ κ + ζ )(R0 − 1) 0
0 ζ − (η + µ+ ξ)






.

�1 = −(ν + µ+ σ), �2 = (µ+ κ + ζ )(R0 − 1) and �3 = −(η + µ+ ξ).





−(L+ �S∗) − �P∗ 0
�S∗ 0 δS∗

0 ζ − δQ∗
− (δS∗ + N )



,

(24)P(γ ) = γ 3
+ a1γ

2
+ a2γ + a3,

(25)a1 = L+ �S∗ + δS∗ + N

(26)
a2 = δLS∗ + LN + δ�(S∗)2 + �NS∗ + δ2S∗Q∗

− ζ δS∗ + �
2S∗P∗

(27)
a3 = δ2LS∗Q∗

+ �δ2(S∗)2Q∗
− LδζS∗ − �ζ δ(S∗)2 + �

2δP∗(S∗)2

+ �
2NS∗P∗
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Numerical simulation
The following initial values (IV) for P, S and Q have been taken at t = 0 . 

IV1 IV2 IV3 IV4

P(0) 0.75 0.65 0.55 0.45

S(0) 0.15 0.20 0.25 0.30

Q(0) 0.10 0.15 0.20 0.25

For numerical simulation, we use Runge–Kutta 4–5 methods and MATLAB 2018 soft-
ware. It will be seen separately for free and endemic equilibrium point.

Free equilibrium point

The values of parameters used for simulation are α = 0.5, δ = 0.5, ν = 0.02,µ = 0.0135,

σ = 0.2, κ = 0.02, ζ = 0.3, η = 0.02, ξ = 0.1 , and the remaining parameter � can be cho-
sen by considering R0.

�

R0 < 1 0.035

R0 > 1 0.165

Since the free equilibrium point does not depend on �, in both cases, we have

We will construct the graphs in each case for t ∈ [0, 400] as follows. 
	(i)	 � = 0.035

	As it can be seen in Fig. 3, for R0 < 1 we conclude that the graphs of P, S and Q for dif-
ferent initial values approach P = 2.1413, S = 0 and Q = 0 , respectively, as t → ∞ 
respectively. We recall that the point (P, S,Q) = (2.1413, 0, 0) is smoking-free equi-
librium point of the model. Hence, the smoking-free equilibrium point is stable.

	(ii)	 � = 0.165

	As it is described in Fig. 4, for R0 > 1 we conclude that the graphs of P, S and Q for 
different initial values do not approach P = 2.1413, S = 0 and Q = 0 , respectively, 
as t → ∞ . We again recall that the point (P, S,Q) = (2.1413, 0, 0) is smoking-free 
equilibrium point of the model. Thus, smoking-free equilibrium point is unstable.

Endemic equilibrium point

We take α = 0.3, ν = 0.01,µ = 0.0035, σ = 0.2, � = 0.2, δ = 0.05, κ = 0.01, ζ = 0.2, η = 0.02 
and ξ = 0.1. In this case, the endemic equilibrium point is

We will construct the graphs for t ∈ [0, 400] as follows. In Fig.  5, we see that for 
R0 > 1 we conclude that the graphs of P, S and Q for different initial values approach 
P = 0.8846, S = 0.7085 and Q = 0.8916 as t → ∞ , respectively. Therefore, the endemic 
equilibrium point is stable.

(P, S,Q) = (2.1413, 0, 0).

(P, S,Q) = (0.8846, 0.7085, 0.8916).
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Fig. 3  R0 = 0.2242 < 1

Fig. 4  R0 = 1.0594 > 1
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We next consider α = 0.3, ν = 0.01,µ = 0.035, σ = 0.2, � = 0.2001, δ = 0.2, κ = 0.01,

ζ = 0.2, η = 0.02 and ξ = 0.1. Here, the endemic equilibrium point is

We will construct the graphs for t ∈ [0, 600] as follows. In Fig.  6, we notice that for 
R0 = 1 and δζL > �NM we conclude that the graphs of P, S and Q for different initial 
values approach P = 0.6125, S = 1.2232 and Q = 0.6121 as t → ∞ , respectively. So, 
here the endemic equilibrium point is stable.

Conclusion

1	 The average number of new smokers from a single addicted smoker is given by 

 Secondhand smoker persists in the population if R0 > 1 or R0 = 1 and δζL > �NM. 
Secondhand smoker will be disappeared over time if R0 < 1.

2	 An increase (or decrease) in � leads an increase (or decrease) secondhand smoker in 
the community.

(P, S,Q) = (0.6125, 1.2232, 0.6121).

α�

(ν + µ+ σ)(µ+ κ + ζ )
.

Fig. 5  R0 = 1.3163 > 1
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3	 An increase (or decrease) in the parameters ν,µ, σ , κ and ζ leads to minimizing 
(or maximizing) the endemic nature of smoking in the community. So secondhand 
smoker will be minimized or maximized.

4	 If the average number of smokers that a single addicted smoker produces is less than 
one, the population of secondhand smokers disappears over time.

5	 If the average number of smokers that a single addicted smoker produces is greater 
than one, the population of secondhand smokers persists.
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