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the problem in another domain. The obtained solutions by the new technique depend
on r,. We consider that the center of mass of this body does not necessarily coincide
with the fixed point O. We reduce the six nonlinear differential equations of the body
and their three first integrals to a quasilinear autonomous system of two degrees of
freedom and one first integral. We solve the rational case when the frequencies of the
generating system are rational except (w = 1, 2,1/2,3,1/3,...) under the condition
¥y = cos b, ~ 0.We use the fourth-order Runge-Kutta method to find the periodic
solutions in the closed interval of the time t and to compare the analytical method
with the numerical one.
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Introduction
Some asymptotic perturbed techniques [1-3] are widely used by many authors for solv-
ing the ordinary linear and nonlinear systems for differential equations in different prob-
lems of engineering, mathematical physics, and astronomy. As an extension of this type
of problem, we use some perturbation and numerical techniques in the movement of
coherent bodies around a fixed point in the presence of new conditions to obtain peri-
odic solutions of different scales to those obtained before.

As in [4], let the fixed z-axis of the ellipsoid of inertia of the body makes an angle
6, ~ ”/ o with the fixed Z-axis in space. We assume the new value of r,, which is
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sufficiently small instead of sufficiently large value in [4]. We define a large parameter
u proportional to 1/r, instead of the small one in [4]. Consider A, B, C represent the
moments of inertia of the body, p, q, r are the components of the angular velocity vector
andy, y’, " are the direction cosines of the unit vector in direction of the Z-axis. So, the
equations of motion and their three first integrals are derived in the form:

",/ 1.,

P+ Aiqin = ta T (Y — vz + kaAry'y),
g1+ Bipirs = w b (yzy — y"xy + kbB1y"y),

. -2 i / / (1)
rno=u " (=Cipriq1 + y'%g — vy + kCryy),
y=nrny —ulqy", v =upy"—ny, ' =u @y -py).
rt=1+u"%s, ny" =y Tl Yy ey?=1 )
Such that:
s1=s3—22(vy —v") + k(> —v"),
s2 = a(pioyo — p1v) + b(qiovy — q17") .
s3 = a(ply — p) + blaio — ai) — 2xo(v0 — ¥) + (5 — ¥
+kla(yg — v + b(yg® — y™)1.
pi=p/e @a), v>0 u=c/ro, I>=x3+y+2, 4)
k= N/ 2, A1 =(C-B)/A, (ABC). (5)
Reduction of the equations of motion to a quasilinear autonomous system
Solving the first and the second equations of (2) for r1 and y”, we get:
_ 1 -2 "no__ 0 -1 1 -2 "
r1_1+5,u s3t+..., ¥ =y)+tu SZ_EM s3Yg +.... (6)

Differentiating the first and the fourth equations of (1) and using (6) for reduction in
the four remaining equations into two differential equations of the second order, we get:

p1+o’pr = p zpa Tt — Alb Dy + Arb T xgyg — k(AL — o®)yg'v]
+ 1 HAxG (b sy — quy)) — wPpiss + p1(A1Cigt — a” zv)
+ %lQAL +a ' D)1y —a ' pry'] + KAilp (g% — v
+ 11— C)yy' — 51+ Byl + n {05 — A1 Dzgssy
— sop1lzp 20 +a™b) — 2k(A1 + )Y + ..., 7)
74y =uyp1(1+B1) + n > {p1l(1 + BD)sy + (1 — CD)q1y']
— yls3s + 5oy +20b7 v + @t + k(C1y™* — Biyg D]
+ 2y + v+ 32 Ky s
+ [2k(1 = B1)yg — 252+ b Dlsayal + ...

Here:
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w?>=—A1Bi =(A—C)B—C)/AB = (a — 1)(b —1)/ab.
Solving the first and the fourth equations of the system (1) and using (6), we get:

= —jalA_l +ut *IA_I(yé)yé’ —zoy takAy'vg) +...,

(8)
Y =y —u AT Y+

Introducing the new variables p; and y» such that:

/

p=p2+u "ty +u?

1—a (9)
y =v2+utaypa
where:
x1= 10— =zi@a — A1 b7 + kyf (A1 — 0™)].

Substituting from (9) into (8), we get:

q1 = —A7 po + AT ha T Y — xeve) + -

" 1 " (10)
Y = v — WA b+ .., xo = a1+ zhat — KAy
Substituting (10) and (9) into (3), we get:
si=siu+27 s+, i=1,2 (11)
where:

s11 = a(pyy — p3) + b(p3, —ﬁ%)/A% — 2[x0(Y20—¥2)

+ Yoo — ¥ + kla(yzy — v3) + by — v,

x/

s12=a [1 _0 ¥ (P20 — P2) + X1(P20¥20 —szz)]

— bAT ypa Mg (20 — 2) — x2(P20720 — P212)]

— axgyd (P20 — p2) + YobAT v (D20 — p2) + (2 — kvd)sa (12)

+ kyla*(p20y20 — p2v2) — b*AT (20720 — P2y2)],
$21 = a(p20y20 — P2v2) — AT (D20¥20 — P272),

/

sp=a [ﬂyé/(lﬂzo p3) + J/o '(y20 — v2) + x1(vi0 — )]

+ bAT DA v (3 — Ibz) +50a" v (720 — 72) — x2 (P — VDI,
s3 =811 + 2 (512 — 29821 + ksa1 ) + ...

Substituting (11), and (12) into (6) yields:
1 _ _ _ 1 _

n=1+ FH A Y=yl T s 4+ s — I sy +.... (13)

Substituting (9), (10), (11), and (12) into (7), we obtain a quasilinear autonomous sys-
tem [5]:
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P2+ @’py = WA (D2, P2, va, V2, 8), T2+ va = W20 (P2, P2, v2, Vs €), (14)
where:
F=F+p'Fh+..., D =Py +pu 1P +.. .,

=f —ay)xi(l — 0Pps, P2 =2 +ay] 1 — oDy + vixy(l —a)™1],

=z — il +ayg 1 — ™) x1y2 + vo 21 — @)1},
@3 = g3+ ayglayy x1(1 — 0)p2 = fol,
= xf)(Alb_ISm + paye) + A7 palCrpapa — ¥y (241 + ba V) ya] — pa(@’sia
+ ypa " ya + zpa” ) — k{yal( = Copays + A1(L+ B)so] — Aipa(vg* — v},

= (L4 B)pasa1 +x5(73 + b)) — A7 ol AT yapa + (1 — Cpaysl
— yalsi1 +20b7 v + yove — k(Cry3 — Biyg ™),

/
= —? [511 (XlJ/z +

1_ V6/> + 2]92512] + C1A1_1152

/

x [jﬂz (m vt T y&) +2p2p2 (X272 — Yo 1)/6/)}
+ xlA1b 5o — AT OBy — v 72 00a ™! = xa)]

/

X _ .
0 > - bA1 IPZPZ]
—a

— %4 vy [J?z (xw
+ zpa ! [; b1 (2b— Dsiys — v <X17/2 + lx_é)a> —P2$21}

+ 92— bYA= b alpa vy — xa2) — ayg papa]

+ k{(l — COIOha v — x272)vevs — avpapave + bAT v v2p3]
+ P2y [2bp2ys — aA1(1 4 By)sar + 2A1521]

/
+A; [(Xl)’z + v . )(J/”2 -vH - +BI)V2522:| },
/

X
@3 = —2s12y2 — ayy pasi1 + (1 + B1) [pzszz + (1 _O

Yo + X17/2>521}
a

+ 2%y (b sa1 — BAT payn) — zgb ™ Nay*pa + saye) + ATHL — Cr)

X .. _ ) _ .
x [bAllyé/Pzpz (l_oal/é/-lrxn/z)lﬂm-% by 2%y + pava(oa”! —Xz)fz)}
R . —bAil . A72 2% / _—1 _ . _ " )
YoYo (ap272 L vab2) H AT [202(00a” vy — x212) Y2 — avg paps)

+ kyglapa(Crys — Biyg®) — 2y2(bAT ' Cijpaya + Biso)].
The last equation of (2) gives the first integral of the system (14) as follows [6]:
ve +vi +2u y (apayn — bAl_lilz)?z +501) ... =1— > (15)

In the next, we will look for the periodic solutions of the system (14) under the condi-
tions A > B> C or A < B < C (? is positive). The first condition [7] gives the slow
rotation of the body about the major axis of the ellipsoid of inertia and the second gives
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a slow rotation of the body about the minor axis of the ellipsoid of inertia. We apply the

large parameter method [8] to solve the autonomous system (14).

The formal construction of the periodic solutions for a rational value

of the natural frequency o

We achieve the periodic solutions py(t, u™1), pa(r, u™1), ya(r, u™), ya(t, u™1) of sys-
tem (14) when:

P2(0,0) = j2(0,0) = (0, u™") = 0. (16)
The generating system of (14) is obtained when ;t — oo in the form:

..(0 0 (0 0
By + 0’y =0, 17 +5" =0 (17)

So the periodic solutions of system (17), when the period Ty = 27 n, become:

péo) = M; cos wt + My sin wt, y2(0) = M3 cos T, (18)

where M;, i = 1,2, 3 are constants to be determined.
Assuming the following solutions of system (14) [9]:

o
pa(t, ) = A711 Ccos wT +1\712 sin ot + Z,u_ka(r),
k=2

o0
ya(T, 1) = Mscos T+ Y *Hi (1),
k=2

with a period T (') = Tp 4+ a(~1) which reduces to (18) at  — o0o. Let us define
the quantities M;, i =1,2,3as follow:

M= M;+ Bi(u™), i=123, (20)

1

where §; are functions of u~" which represent the deviations of the initial values of

P2, P2, v for system (14) from their initial values of generating system (17) such that
Bi(0) = 0.

Let us express the initial conditions (16) by the relations:

pO,u) =M1, O~ =My, 1aOuT) =Ms, y20p7h) =0. (21)
We rewrite the periodic solutions (18) in the form:

péo) = E cos (wT — &), yz(o) = M3 cos T, (22)

where E = \/M12 + M% and ¢ = tan~! Mg/Ml. Using (22) and (12), we get:

Page 5 of 12



Ismail J Egypt Math Soc (2021) 29:2 Page 6 of 12

sﬁ) = E*[(acos’s — 05) + ba)2A172(sir12 e —0.5)+ O.S(ba)ZAf2 —a) cos2(wt — ¢)]
— 2M3[x6(1 —cosT) + y’o sint] — O.SkMB%Cl(l — cos 271),

sgg) = azEy(;/xf)(l — a)fl[cosa — cos(wt — ¢)]
+ Eyybyd AT o1 —a'AT)[sine + sin(wt — ¢)]
+ aEMs(x1 + ayg k){cose — 0.5 cos[(w + 1)t — &] — 0.5 cos[(w — 1)t — ¢]}
+ wbAT EM3 (oA — bky){0.5 cosl(w + 1)t — &] — 0.5 cos[(w — 1)T — &]}
+ EMs(z), — vy k){acose + 0.5(ba)A1_1 —a)cos[(w — 1)t — €]
— 0.5(bwA]! + a) cos[(w + 1)t — €]},

S(z(i) = EM3s{acose + ().S(ba)Al_1 —a)cos[(w— 1)t — €]
— 0.5(bwA]! + a) cos[(w + 1)t — €]},

sé%) = E*y[a*(cos® ¢ — 0.5) + laza)zAl_Z(sin2 g —0.5)
— 0.5(a® — bza)zAl_Q) cos2(wt —&)] + 0.5M§(d}(1 + bAl_lxz)(l — cos2T)
+ y{Mslaxy(1 —a)~ (1 — cost) + by, oz_lAl_1 sin t].

Substituting (22) and (23) into (16), we get:

FY = M)L(0) cos 0t + MyL() sinwt + .. .,
¢§0) = M3N(w)cost + ..., (24)
F,DEO) = MK (w) coswt + MK (w) sinwt + ...,

where:

L(w) = o*[—(aM? + bo*AT*M3) + 0.25(M7F + M3)(C1AT! + 3a + bo®A[ )]
+ 20*M3x)y — i [zoat + ax1(1 — 0®)] + k{A1(¥§* — 0.5M3)
+ 0.5M32[a(A; — 20%) + w?b]},
N(w) = —(aM?} + bo*A7*M3) — 0.5(M? + M3)[aB; + w*AT*(1 — b)]
+ 2M3xy — vy [2ph™" — axi(1 — )] + k(M3 (b — a) — Biyg*,
K(w) = =20y [aPxgM1(1 — a) ! + wypbMy(1 — a *ATHAT?
+ 0.25a LA Cry (M3 + M3)] — 20 aMiMs[x1 + ayik + z — y§ k]
+ aMyM3[2A1ky — zpa ' — aArky] (1 + B1) — x1(1 + By)].

Using (24) and (25), the following functions are obtained:
©(To) = —mnw ™' MaL(®), §(To) = wnMiL(w),
hy(Tp) = 0, hy(To) = mnM3N (w), (26)

23(To) = —nw MoK (@), §3(To) = nnMiK (o).

Substituting by the initial conditions (21) into the first integration (17) when t = 0, we
get:

M3 +2M3 B3 + B3 +2u Layf Ms(My + B1) = 1 — 4> (27)

Let yg depends on y ™!, we get:
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Yo = wll, 0<TI <1 (28)

Taking into consideration, Eqs. (27) and (28), we get M3, B3 as follows:
—27 L 50
M3=1, /33:—(1F/L MI_EM r-+.... (29)

The independent conditions for periodicity are:

— (L1(®) — 0’ Ny(0)mno "My + u = Gs(To) + ... =0,
(L1 (@) — *Ny(@))mnMy 4+ 1~ G3(To) +... =0, (30)
1 (Hy(To) + p Ha(To)MzH + ... = a(u™),

where L1 (w), Ni(w)are obtained from L(w), N(w) replacing M; by (M; + Bi), i=1,2,3
to get:

L1(®) — 0* N1 (0) = Wo(w) (M} + M3) — {2y Wi(w) + ky§ Wa(w)] — kWs(w)M3,

(31)
where:
Wo(w) = (a—1)(a+ b —2)/2b, Wi(w) = [3(a+ b) — 2(2ab + 1)]/ab,
Waw) =201 — @+b),  Wa) = ?b. (32)
For zeros approximation for power series of 1/u, Eq. (30) give:
My =M, =0. (33)

Since the z-axis is directed along with the major or the minor axis of the ellipsoid of
inertia of the body, we get: Wy(w) > 0 for all w under consideration.
Assume that:

Vi [z Wh + kg Wal + kWa(w)M3 # 0. (34)

Using (30), we get 81, B2 in power series expansions of powers less than 2. Then for
the rational values of the natural frequency w does not equal to (1,2,1/2,3,1/3,...), we
get the required periodic solutions and the correction of the period a (1 ~1) as:

p@ ™ =p w1 —a) "y + aMzcosTl+ .,

o) =p (1 —b) My + AT M xasint] + ..,

r(z, ) =1 - 0250 2M3[kM3Cy + 4x)(1 — cos T) + ¥ sin T — kM3Cy cos27] + ...,
y(r,p,_l) = Mscost — 0.5;1._2F2 cosT+ ...,

Y (o, = —Mssint 4+ 05072 sint + ...,

_ _ _ z;
v (T, 1 1) = )’6/ +u 2M3[x6(1 —a) 1),6/ — 0.5M3C; (ﬁlg—l + O.5ky6/>

/

+ kyg) cos2t]+ ...,
(35)

2z,
—xy(1—a) Yy cost + y,(1 — b) Ly sint + O.25M3C1(ﬁ
P _

Page 7 of 12
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auh) = 2M*2nn{M3x6 — zhy — 0.5k [yé/Z(bBl —aAy) + Byl (1 —y) — 0.125C1M§] } I

(36)

The obtained solutions (35) and (36) are considered as the generalization of the corre-

sponding problem in gravity field which studied in previous works [10] (when k=0), the
deviations between them are given by:

Apr = 11 — o) T HkM3 Y (A1 — @) cosT + ..,
Aqi = ,flAl—lMg{ 1 — o) k(AL — 0D 1 — kAlyo”} sint + ...,
Arp = —0.25u 2M3kCi (1 — cos27) + .. .,

Ay =u 201 +..., Ay =p7?0]+...,
Ay = —0.25u_2M§C1ky6’(1 —cos2T) +...,

Aa(u™ = —u2wnk [yéa(bBl — aAy) — 0.5M3(b — a) + Bryj (1 — y(;/)} + ...
(37)

Geometric interpretation of the motion
The geometric interpretation for the motion of the body at any instant of time to Euler’s
angles definitions 8, v, ¢ is given by [11]:

6 = 6y + " 2cosec Bo[Ba(t + to) — B2 (t)] + . . .,
¥ = o + 0.5Mgl C™lrg (1 — xoATDE+ T/ Mgl/C [y (t + to) — Y1 (t)] + ...,
¢ =o+1[ry" —0.5MgtC  ry cosbo(x1 — xeATHIE+ ...,

(38)

where:

1

05(t) = M3 [yf) ¥d (1 —b)~!sin ro_lt —xpvd A —a) " cosry 't

A _
=+ 0.5C1 (ﬁbo—l — 0.667](}/6’) CcOoS 2}"0 1t:| )

Y1(t) = 0.25(x1 + szfl) +sin 2rglt + 5 (1 — b))~ cos rglt + 51 —a) "ty sin rglt.
(39)

Numerical solutions

In this section, we use a computer program to determine the obtained solutions (19)
and their derivatives for the time in the interval t € [0, 300]. On the other hand, we use
the fourth-order Runge—Kutta method [12] through another program to obtain numeri-
cal solutions for the autonomous system (14). In the end, we compare both solutions
to check the accuracy of the method of solutions. These results are obtained through
Tables 1 and 2. From these Tables, we deduce that the numerical solutions are in agree-
ment with the analytical ones which prove the accuracy of considered methods.
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Conclusions

We conclude that the problem of the motion of a rigid body about a fixed point is studied
in many works [13—-18] in both the uniform and gravity fields. We study our problem in
case of a right angle of nutation 6y when its center of mass does not necessarily coincide
with the fixed point. The equations of motions of the problem are obtained and reduced
to a quasilinear autonomous system. The obtained system is solved by assuming a large
parameter achieved from an angular velocity component tends to zero. The obtained
solutions are treated through computer programs in a bounded interval of time. The
autonomous system is treated with the Runge—Kutta method in the same interval of
time to obtain the numerical solutions of the motion. Both obtained solutions are in full
agreement with others which prove the accuracy of both numerical and analytical tech-
niques used in solving the problem. For the geometric interpretation obtained, we note
that:

The precession angle ¢/

From (38) when u — oo, we deduce that the precession angle v is sufficiently
large because r, is sufficiently small, that is, we obtain a case of large precession
¥ =0 +05MgtClry L — xeAT D 2.

The nutation angle 6
We obtain a case of steady regular permutation: 6 = 6.

The pure rotation angle ¢
The case of a large pure rotation is obtained which depends on 1/r, in the form:

¢ = o + [ro — 0.5MgeC 1yt cos O (x1 — x2A7 H1E.

The large parameter technique used here is considered as the only one suitable for
this problem in the origin domain of r, tends to zero. Poincaré—Lindstedt method or
Krylov Boboliubov Mitropolski one is failed to solve this problem because they depend
on achieving a small parameter in domain r,, tends to infinity. We conduct a comparison
of the results of this manuscript with the results of the previous work. The results were
obtained in [19] deals with the disk problem which satisfies the symmetry moments of
inertia about two principal axes of the ellipsoid of inertia but our results here treat the
general rigid problem in a limiting value of the Euler’s angle 6, ~ 7/5. The advantage of
our used technique [20] depends on a large parameter  — oo. The obtained solutions
are checked using two programs to assert their accuracy through Tables 1 and 2. The
main results in our work are the obtained analytical solutions in Eq. (35) which is rep-
resented through computerized digital data in Table 1. The secondary results are prov-
ing the validity of these solutions which are given through the Runge—Kutta method in
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Table 1 Represents the values of the obtained analytical solutions using the large

(2021) 29:2

parameter method in the interval t < [0, 300]

t P2a Y24 Xg=dp,,/dt Ya=dy, /dt

0 1.88117E—15 1 0 0

10 1.52189E—15 0.809017 —1.10572E—-15 —0.587785

20 581312E—-16 0.309017 —1.78909E—15 —0.951057

30 —581312E—-16 —0.309017 —1.78909E—15 —0.951056

40 —15219E—15 —0.809017 —1.10572E—15 —0.587785

50 —1.88117E=15 -1 — 2.84048E—22 — 1.50996E—-07
60 —1.52189E—15 —0.809017 1.10572E—15 0.587785

70 —581312E—-16 —0.309017 1.78909E—15 0.951056

80 581312E—-16 0.309017 1.78909E—15 0.951056

90 15219E—15 0.809017 1.10572E—15 0.587785

100 1.88117E—15 1 5.68096E—22 3.01992E—-07
110 1.52189E—15 0.809017 —1.10572E—15 —0.587785
120 581312E—16 0.309017 —1.78909E—15 —0.951057
130 —581313E—16 —0.309017 —1.78909E—15 —0.951056
140 —1.52189E—15 —0.809017 —1.10572E—15 —0.587785
150 —1.88117E—=15 —1 448654E—23 2.38498E—08
160 —1.52189E—15 —0.809017 1.10572E—15 0.587785

170 —581311E=-16 —0.309016 1.78909E—15 0.951057

180 581314E—16 0309018 1.78909E—15 0.951056

190 1.5219E—15 0.809017 1.10572E—15 0.587785

200 1.88117E—15 1 1.13619E—21 6.03983E—07
210 1.5219E—15 0.809017 —1.10572E—15 —0.587785
220 5.81312E—16 0.309017 —1.78909E—15 —0.951056
230 —581312E—16 —0.309017 —1.78909E—15 —0.951056
240 —1.5219E—-15 —0.809017 —1.10572E—15 —0.587785
250 —1.88117E=15 —1 1.27079E—=21 6.75532E—07
260 —1.52189E—15 —0.809016 1.10572E—-15 0.587786
270 —581313E-16 —0.309018 1.78909E—15 0.951056
280 581311E—-16 0.309017 1.78909E—15 0.951057
290 1.52189E—15 0.809017 1.10572E—15 0.587785
300 1.88117E—15 1 —897307E—-23 —4.76995E—08

Table 2. So we confirm that the presented numerical results would correlate to results
obtained by other distinguished numerical techniques (except the Runge—Kutta method)
will reveal the same results obtained in Table 1.
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Table 2 represents the values of the numerical solutions using fourth-order Runge-Kutta
method in the interval t < [0, 300]

t Pan Yan Xp=dp,,/dt Yn=dy,,/dt

0 1.8812E—15 1 0 0

10 1.5247E—15 0.809035 —1.09756E—15 —0.587738

20 5.9028E—16 0.309102 —1.77911E=15 —0.951001

30 —5.6779E—-16 —0.308864 —1.78633E—15 —0.951064

40 —1.5106E—15 —0.808859 —1.11651E—15 —0.587913

50 —1.8809E—15 —0.999934 —2.35325E-17 —0.000245929
60 —1.5383E—15 —0.809126 1.07833E—15 0.5875

70 —6.1263E—16 —0.309316 1.77147E=15 0.950862

80 54519E—16 0.30861 1.79318E—15 0.951078

90 1.4963E—15 0.808661 1.13524E—15 0.588073
100 1.8803E—15 0.999868 4.70583E—17 0.000491738
110 15517E—15 0.809217 —1.05894E—15 —0.587262
120 6.3487E—16 0.309529 —1.76355E—15 —0.950724
130 —5.225E-16 —0.308356 —1.79974E—15 —0.951091
140 —14818E—15 —0.808463 —1.1538E—15 —0.588234
150 —1.8795E—15 —0.999802 —7.05736E—17 —0.000737578
160 —1.5648E—15 —0.809309 1.03937E—15 0.587025
170 —6.5702E—16 —0.309743 1.75536E—15 0.950585
180 4.9974E—16 0.308102 1.80602E—15 0951104
190 14671E—15 0.808265 1.17217E=15 0.588394
200 1.8783E—15 0.999736 9.40748E—17 0.000983447
210 15777E—=15 0.809399 —1.01965E—15 —0.586787
220 6.7906E—16 0.309956 —1.74689E—15 —0.950446
230 —4.7689E—16 —0.307848 —1.81201E—-15 —0951117
240 —14521E—15 —0.808067 —1.19036E—15 —0.588553
250 —1.8769E—15 —0.99967 —1.17558E—16 —0.00122914
260 —1.5903E—15 —0.80949 9.99769E—16 0.586549
270 —7.0098E—16 —0.310169 1.73814E—15 0.950307
280 4.5398E—-16 0.307593 1.81772E—15 095113

290 1.4369E—15 0.807869 1.20835E—15 0.588713
300 1.8751E—15 0.999603 141019E—16 0.00147495
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