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Abstract
Investigating dynamic free vibration response of isotropic thin rectangular plate resting
on two-parameter elastic foundation is of interest in the field of geotechnics, structure,
highway, railway and mechanical engineering. This study employs analytical approach
to the investigation of free vibration analysis of isotropic rectangular plate submerged
in fluid and resting on combined elastic foundations under different support
conditions. The nonlinear partial differential equation of the system is transformed into
nonlinear ordinary differential equation using the Galerkin method of separation. The
resulting ordinary differential equation is solved using Adomian decomposition
method (ADM). The reliability of the solutions obtained is validated with numerical and
existing results as reported in the literature. Also, the bending moment and stress are
analysed. The analytical solutions are used for the investigation of dynamic behaviour
of plates in fluid, effect of aspect ratio, effect of elastic foundation parameters on
natural frequency and effect of bending moment and stress on the mode of the
vibrating plate. From the results, it is observed that the increase in elastic foundation
parameter increases the natural frequency. Increasing the aspect ratio increases the
natural frequency. Increasing the combined elastic foundation parameters increases
the natural frequency. Natural frequency of plates reduces when submerged in fluid
with the mode shapes not significantly affected. The node and antinodes of the mode
shapes are affected by moment and stress. It is expected that the present study will
add to the existing knowledge in the field of vibration of plates.

Keywords: Dynamic analysis, Rectangular plate, Deflection, Winkler and Pasternak,
Adomian decomposition method

Introduction
Recently, interest has arose into the study of dynamic behaviour of thin rectangular plate.
This is because plates are considered an important structural member due to their wide
acceptable usage in various fields of engineering. This is also due to their light weight
and high strength. Therefore, the study and analyses of natural frequency and modal
behaviour are justified. In the study of free vibration analysis of thin rectangular plate
on elastic foundation, Motaghian and Akin [1] used an exact method in obtaining the
solution. In another study, Rezaiefar and Galal [2] worked on free vibration of rectangular

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-020-0071-4&domain=pdf
mailto: safolu@outlook.com
http://creativecommons.org/licenses/by/4.0/


Sobamowo et al. Journal of the EgyptianMathematical Society           (2020) 28:19 Page 2 of 17

plate with nonlinear load using finite element method. The adoption of two-parameter
foundation has proven to be more reliable than onlyWinkler foundation due to the ability
to take care of the shear interaction among spring element. However, Shariyat andAlipour
[3] used a semi-analytical method of solution to investigate the free vibration analysis
of functionally graded plate on two-parameter elastic foundation. Meanwhile, Benferhat
et al. [4] determine porosity effect on free vibration analysis and bending of function-
ally graded plate resting on two-parameter foundation. Much attention is given to plates
under fluidic interaction due to the importance and application in ship building, marine,
nuclear and ocean engineering. The study of plate-fluid interaction in engineering is jus-
tified for safety and design purpose. Many literatures had studied the characteristic of
immersed and submerged plate in fluids. Lamb [5] carried out an analytical approach
into the investigation of fluid-plate coupled system. He determined the natural fre-
quency of clamped circular plate in contact with water using Rayleigh’s method; however,
Sobamowo et al. [6] investigated plates in a porous medium. In another work, Kwak [7]
determined the added virtual mass incremental (AVMI) factor which ascertained the fact
that the increase in inertial is due to the presence of fluid in plates. Further study, Soedel
and Soedel [8] established a coupled equation of motion of plate carrying fluid. Kerboua
et al. [9] later developed a mathematical model for free vibration of plates in contact
with fluid using the finite element method. In a later work, Ozdemir [10] employed the
finite element method in the vibration response of rectangular Mindlin plate on theWin-
kler foundation. Also, Mohd et al. [11] performed a numerical analysis on semi-empirical
relations. Nikbakhat and Behnamfar [12] demonstrated an experiment on the structures
under subway-induced vibrations. In recent time, researches have proposed and applied
several semi-analytical methods in analysing dynamic behaviour of rectangular plate rest-
ing on nonlinear foundations. Bayat et al. [13] applied the homotopy perturbationmethod
(HPM) for nonlinear free vibration of tapered beams. Werfalli and Aburuga [14] used
the Galerkin method for the analysis of rectangular plate. Analytical method [15–18] has
proven to be themost reliablemethod of solutionwhen compared to others like numerical
and semi-analytical, but the shortcomings of handling nonlinear problem have not been
overcome. Adomian and Rach [19] proposed the method of Adomian decomposition
method (ADM) in the beginning of 1980. The aim of ADM polynomial is to weaken the
nonlinear terms in the governing equation into a series function. Unlike VIM and HPM
that have shortcomings of determination of Lagrange multiplier and small parameters,
ADM gives a better solution with fast rate of convergence coupled with high accuracy and
minimum calculation because discretization of variables or perturbation is not required:
ability to solve nonlinear problems without linearization nor use assumptions of weak
nonlinearity. Some related works on ADM are [20–27]. Based on the review of the sub-
ject, the topic, analytical approach to investigation of free vibration analysis of isotropic
rectangular plate submerged in fluid and resting on combined elastic foundations using
ADM has not been investigated. Therefore, the present study focuses on the application
of ADM to determine dynamic analysis of isotropic rectangular plates resting onWinkler
and Pasternak foundations. The solutions are used for parametric studies.

Problem formulation andmathematical analysis
The present study considers a thin rectangular plate of uniform thickness resting on lin-
ear and nonlinear Winkler foundation and Pasternak foundation under different edge
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conditions. The boundary edge of the plate may be free, clamped, simply supported or
combination of them as shown in Fig. 1. The following assumptions according to Leissa
[28] and Chakraverty [29] are made for the development of the governing equation:

1. Normal to the undeformed mid-surface remains straight and normal to the
deformed mid-surface with the same length.

2. The thickness of plate is smaller compared to the other dimensions.
3. Rotary inertia and shear deformation effect are negligible.
4. Normal stresses σz in the transverse direction to the plate are considered negligibly

small.

Similarly, the following assumptions are considered for fluid pressure �p [9]:

1. Vibration is considered linear; plate is of uniform density and thickness.
2. Flow of fluid is potential, irrotational and homogenous.
3. Fluid is incompressible.
4. Fluid pressure is normal to the plate surface; shear force is ignored because the

flow is inviscid.
5. The motion is considered small.
6. The effect of water dynamic loading has an insignificant effect on mode shapes.
7. The system is conservative.

∂4W (x,y)
∂X4 + 2λ2 ∂4W (x,y)

∂X2∂Y 2 + λ4 ∂4W (x,y)
∂Y 4 − (

�2 + madd − KL
)
W (x, y)

−KNLW 3 (x, y) − gs ∂2W (x,y)
∂X2 = 0,

(1)

The governing equation of the thin plate resting linear and nonlinearWinkler and Paster-
nak foundations also fluid-interaction in dimensionless form is presented in Eq. (1). w
is the transverse deflection, where, �, gs and KL and KNL are the dimensionless natural
frequency, dimensionless Pasternak’s Shear stiffness and dimensionless Winkler’s normal
stiffness and nonlinear Winkler’s, respectively.

Application of Galerkinmethod of dimensionless governing equation
Assuming the two opposite edges Y = 0 and Y = 1 to be simply supported, deflection
function can be represented as follows:

W = W (X) sin (mπY ) , (2)

Substitute Eq. (2) into governing differential Eq. (1), we get [22]:

d4W (X)

dX4 − 2λ2m2π2 d2W (X)

dX2 − (
�2 + Madd − KL − λ4m4π4)W (X) − KNLW 3(X)−gs

d2W (X)

dX2 = 0,

(3)

Fig. 1 Showing rectangular plate resting on the Two-Parameter foundation
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Boundary conditions
Three boundary conditions are considered at x = 0 and x = 1, notation are used for
brevity sake, SS denotes simply supported at both edges of the rectangular plate, SC
means simply supported and clamped at the other ans SF denotes simply supported and
free edge support. Classical plate theory defines the dimensionless support conditions as
follows:
Clamped edge:

W = dW
dX

= 0, (4)

Simply supported edge:

W = d2W
dX2 − ν

(
m2π2λ2

)
W = 0, (5)

Free edge:

d2W
dX2 − ν

(
m2π2λ2

)
W = 0,

d3W
dX3 − (2 − ν)

(
m2π2λ2

) dW
dX

= 0, (6)

wherem is an integer, and ν is the Poisson ratio.

Method of solution: Adomian decompositionmethod
Description of Adomian decomposition method

The Adomian decomposition method (ADM) is developed by George Adomian in 1990s.
It is a semi-analytical method of solving partial and ordinary nonlinear equation. It uses
‘Adomian polynomials’ for fast convergence of nonlinear aspect of differential equation.
The principle of operation is as follows:
Considering the following equation:

Lw + Nw + Rw = g(x) (7)

where L is a linear operator,N is the nonlinear operator, R is the remaining linear operator
and g is the inhomogeneous term. If L is the fourth order operator, it is defined by:

L = d4

dx4
, (8)

Assuming L is invertible, then inverse operator L−1 is given as:

L−1(.) =
x∫

0

x∫

0

x∫

0

x∫

0

(.)dxdxdxdx, (9)

Therefore,

L−1Lw = w(x) − w(0) − xw′(0) − 1
2!
x2w′′(0) − 1

3!
x3w′′′(0), (10)

Applying L−1to both sides Eq. (7) gives:

w = 	0 − L−1Rw − L−1Nw + L−1g(x), (11)

where

	0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(0), if L = d
dx

w(0) + xw′(0), if L = d2
dx2

w(0) + xw′(0) + x2
2!w

′′(0), if L = d3
dx3

w(0) + xw′(0) + x2
2!w

′′(0) + x3
3!w

′′′(0), if L = d4
dx4

(12)
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The decomposition principle comprises decomposing the solution to the sum of infinite
number of terms defined by the series:

w =
∞∑

n=0
wn, (13)

The nonlinear term is written as:

N(w) =
∞∑

n=0
An, (14)

where A′
ns are the Adomian polynomials.

An = 1
n!

[
∂n

∂ξn

(( ∞∑

i=0
ξ iwi(x)

))]

ξ=0

n = 0, 1, 2, 3 . . . ; (15)

where ξ is a grouping parameter.

A0 = N(w0),
A1 = N(w0)w1,
A2 = N ′(w0)w2 + 1

2!N
′′(w0)w2

1,
(16)

Substituting Eqs. (13) and (14) into (7) gives:
∞∑

n=0
wn = 	0 − L−1R

( ∞∑

n=0
wn

)

− L−1
( ∞∑

n=0
An

)

+ L−1g(x), (17)

The iterative schemes are:

w = 	0 + L−1g(x), (18)

wn+1 = −L−1Rwn − L−1An, (19)

where n ≥ 0
This results to:

w0 = 	0 + L−1g(x),
w1 = −L−1Rw0 − L−1A0,
w2 = −L−1Rw1 − L−1A1,

(20)

where n ≥ 0

Application of ADM to the solution of nonlinear equation under investigation

According to basic rule of ADM, Eq. (3) is written as:

wn(x) = w(0) + w′(0)x + w′′(0)x
2

2!
+ w′′′(0)x

3

3!
− L−1[Rw]−L−1[Nw]+L−1 [

g(x)
]
,

(21)

Applying Eq. (5) into Eq. (21), we have:

wn(x) = w′(0)x + w′′′(0) x33!
−L−1

[
2m2π2λ2 d

2w
dx2 − (

�2 + Madd − kL − λ4m4π4)w − gs d
2w
dx2

]
− L−1 [

kNLw3] ,

(22)
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w′(0) and w′′′(0) are unknown which are represented by B and C, respectively:

wn(x) = Bx + Cx3
3! − L−1

[
2m2π2λ2 d

2w
dx2 − (

�2 + Madd − kL − λ4m4π4)w − gs d
2w
dx2

]

−L−1 [
kNLw3] ,

(23)

In Adomian’s polynomial, A′s are expressed as:

A0 = (w0)
3 ;

A1 = 3 (w0)
2 w1;

A2 = 3 (w0)
2 w2 + 3w0 (w1)

2 ;
A3 = 6w0w1w2 + (w1)

3 + 3 (w0)
2 w3;

A4 = 6w0w1w3 + 3w0 (w2)
2 + 3 (w1)

2 w2 + 3 (w0)
2 w4;

(24)

The other polynomials are generated in similar way as Eq. (24).

w0 = Bx + 1
6
Cx3; (25)

w1 = −L−1
[
2m2π2λ2 d

2w0
dx2 − (

�2 + Madd − kL − λ4m4π4)w0 − gs d
2w0
dx2

]

−L−1 [kNLA0] ,
(26)

w2 = −L−1
[
2m2π2λ2 d

2w1
dx2 − (

�2 + Madd − kL − λ4m4π4)w1 − gs d
2w1
dx2

]

−L−1 [kNLA1] ,
(27)

w3 = −L−1
[
2m2π2λ2 d

2w2
dx2 − (

�2 + Madd − kL − λ4m4π4)w2 − gs d
2w2
dx2

]

−L−1 [kNLA2] ,
(28)

...

Using the definition (13), the analytical series solution is obtained.

W (x) =
∞∑

m=0
Wm(x) = W0(x) + W1(x) + W2(x) + . . . ; (29)

where the constant B and C are found using Eqs. (4), (5) and (6). Setting the controlling
parameters to 0 then substitute the values into Eq. (29) lead to the following simultaneous
expression:

ψ
(n)
11 (�)w0 + ψ

(n)
12 (�)w2 = 0

ψ
(n)
21 (�)w0 + ψ

(n)
22 (�)w2 = 0

(30)

The polynomials ψ11,ψ12,ψ21 and ψ22 are represented in terms of the natural frequency
�. Meanwhile, ψ11,ψ12,ψ21 and ψ22 are representing a series expression obtained from
Eq. (29). Therefore, Eq. (30) may be written in matrix form as:

[
ψ

(n)
11 (�) ψ

(n)
12 (�)

ψ
(n)
21 (�) ψ

(n)
22 (�)

] {
w0
w2

}

=
{
0
0

}

, (31)

The following characteristic determinant is obtained applying the non-trivial condition:
[

ψ
(n)
11 (�) ψ

(n)
12 (�)

ψ
(n)
21 (�) ψ

(n)
22 (�)

]

= 0, (32)
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Solving Eq. (32) gives the natural frequencies.
∣
∣
∣�(i)

j − �
(i−1)
j

∣
∣
∣

∣
∣
∣�(i)

j

∣
∣
∣

≤ ε, j = 1, 2, 3, . . . n (33)

where the iteration counter is represented by i, the estimated value of the jth dimension-
less natural frequency is �

(i)
j and small number chosen is ε. For this study, ε = 0.0001.

The results show that the use of only few iterations gives a convergent solution.
The deflection series solution of the governing equation for SF boundary condition is:

W (x) = x − 8367x3
14521 + 24211x5

75362 − 8315x7
314432 + 1515x9

369907 − 23x11
178680 + 107x13

11628921 − 5x15
33008094

+ 4x17
644113311 − x19

15929564220 + x21
599979099008 − x23

87813673294953 + x25
4724940354278380

− x27
959420400780756366 + x29

69863109901089499689− x31
18793443763260581094762

+ x33
1779726318335411523907948 − x35

612598163066578778270048320 + · · · · · ·

(34)

Modified of Adomian decomposition method procedure

The small domain limitation of semi-analytical method has been overcome by the intro-
duction of an after treatment method in power series method. Laplace-Padè approximant
has proven to be a very reliable approach that also increases the convergence rate of the
iteration. The Padè is a form of converting the analytical solution obtained through ADM
method to polynomial rational form. The basic procedures are as follows:
1. Apply Laplace transform to the series solution Eq. (34) and setting:

s = 1
t
. (35)

2. Apply Padè approximation to the solution from previous step to obtain the following
approximation in the following rational form:

[
L
M

]
= P0 + P1t + P2t2 + · · ·PLtL

q0 + q1t + q2t2 + · · · qMtM
. (36)

and setting t = 1
s .

3. Apply inverse Laplace transform on:
[
L
M

]
(37)

approximant.

Application of Adomian-Padèmethod

The accuracy of the ADM is improved using the principle of Laplace-Adomian-Padè
method (MADM)
Apply Laplace transform to the series solution Eq. (34) as:

L [w(t)] = 1
s2 − 50202

14521s4 + 173212
4493s6 − 1268962

9521s8 + 1141417
768s10 − 1253711

244s12 + 15240749
266s14 − 13271621

67s16
+ 55221251

25s18 − 45818617
6s20 + 255463610

3s22 − 294396257
s24 + 3282837217

s26 − 11349424550
s28

+ 126558379800
s30 − 437537619900

s32 + 4879018493000
s34 − 16867742330000

s36 + 188093601500000
s38

− 650277183600000
s40 ,

(38)
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Also, replacing s = 1
t , and calculating Padè approximant of

[ 5
5
]
and letting t = 1

s , gives
the following:

[
5
5

]
=

(
s2 − 50202

14521
)

(
s4 − 173212

4493
) , (39)

Applying the inverse Laplace transform to the Padè approximant of Eq. (39), the MADM
solution is:

w(t) = 76381
244507

sin
(
50800t
20387

)
+ 12871

144730
sinh

(
50800t
20387

)
, (40)

Moment and stress

The bending moment ofMx andMy in x and y direction are:

Mx = −D0

(
∂2w
∂x2

+ ν
∂2w
∂y2

)
, (41)

The surface stresses σx and σy in the x and y directions are:

σx = 6
Mx
h2

, (42)

where D0 is the flexural rigidity, ν is the Poisson’s ratio and w is the transverse deflection.

Comparison of the results using numerical method

Obtaining analytical solution for the natural frequency of this governing differential non-
linear Eq. (1) may be very difficult due to the nonlinear Winkler parameters introduced.
Therefore, the next alternative approach is the numerical method. In this study, the finite
difference method is employed for the discretization of the governing Eq. (3) along with
the boundary conditions of Eqs.(4), (5) and (6). The rectangular plate illustrated in Fig. 2
is meshed along the spacexdivided into equally spaced (�x) points. The mesh points in
the space are in x1, x2, x3, . . . xN−1, xN where the edge nodes are x1 and xN , respectively.

�x = xN − x0
N

⇒ 1 − 0
11

= 0.09

For the validation of the analytical solutions obtained from the ADM, controlling param-
eters are set as 0 for validation. Investigating the effect of nonlinear Winkler parameter,
nonlinear equation is formed and solved using the Jacobian matrix of Newton-Raphson
method.

Discretizing the governing equation

wi+2−4wi+1+6wi−4wi−1+wi−2
(�x)4 − 2λ2m2π2

{
wi+1−2wi+wi−1

(�x)2

}

− (
�2 + Madd − kL − λ4m4π4)wi − kNLw3

i − gs
{
wi+1−2wi+wi−1

(�x)2

}
= 0,

(43)

Fig. 2 Discretization of the thin rectangular plate into 12 nodes
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Having applied the finite difference approximation, grouping and rearranging the term,
the final algebraic form of the finite difference equation becomes:

wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2 − 2λ2m2π2 (�x)2 (wi+1 − 2wi + wi−1)

− (
�2 + Madd − kL − λ4m4π4) (�x)4 wi + kNL (�x)4 w3

i − gs (�x)2

(wi+1 − 2wi + wi−1) = 0
(44)

The discretization in Eq. (43) clearly shows that central difference approximation is
employed in the discretization of the governing equation. Indirectly, the inner nodes
(i = 2 : N − 1) will be utilized for solving the model. Therefore, only ten interior nodes
will be used while the two node boundaries are excluded.

Discretizing the boundary conditions

For the sake of brevity, only the SS boundary condition is shown here, while the other
boundary conditions SC and SF are solved following the same approach. The starting
point and end are presented in the following unique form:

x = i,wi = 0,
d2W
dX2 = 0 ⇒ wi+1 − 2wi + wi−1 − ν

(
m2π2λ2

)
wi

(�x)2
= 0, (45)

i = 1,w1 = 0, w2 − 2w1 + w0 − ν
(
m2π2λ2

)
w1 = 0. Therefore,w2 = −w0

x = i,wi = 0,
d2W
dX2 −ν

(
m2π2λ2

)
W =0 ⇒ wi+1 − 2wi + wi−1−ν

(
m2π2λ2

)
wi

(�x)2
= 0,

(46)

i = 12, w12 = 0,w13 − 2w12 +w11 − ν
(
m2π2λ2

)
w12 = 0,w13 +w11 = 0. Therefore,

i ⇒ 2 w4 − 28125w3
6761

+ 42728w2
6761

+ w0 −
(−639π4 + 639�2)w2

9739369
= 0, (47)

...
i ⇒ 11 w13 + 42728w11

6761 − 28125w10
6761 + w9 − (−639π4+639�2)w11

9739369 = 0,
(48)

Resolving the matrix yields the natural frequency.

Results and discussion
ADM is used in obtaining solution for free vibration analysis of a uniform thickness thin
rectangular plate resting on elastic foundation and submerged in fluid. The accuracy
of the analytical solutions obtained is validated with numerical and analytical solution
of different method as reported in the cited literature [30] and presented in Table 1.
Good agreement of the result is observed along the entire values under different bound-
ary conditions. Generally, the natural frequency is expressed in dimensionless form �.
Comparing the analytical solution with the numerical shows that even for 5 iterations
compared to 10 of numerical, the hybrid method still predicts better than the numeri-
cal, though the numerical has an edge handling the nonlinear term in the model. Results
obtained with ADM is equally in good agreement compared to the analytical solution
obtained by the reported literature [31] using DTM. The analytical solution by DTM con-
verges at 21 iterations compared to ADM of 5 iterations. It is observed that the number
of iterations needed to obtain convergence in relation to the natural frequency varies. For
instance, fundamental mode requires 2–3 iterations for ADM while the second and third
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Fig. 3 Application of Laplace Padè approximant on ADM

iterations require more iterations. This phenomenon is attribute to more complex series
function combination. The results shown in Table 1 demonstrate that, though fundamen-
tal natural frequency gives a reasonable prediction of the rectangular plate behaviour,
more iterations are still required to give other higher mode natural frequencies and also
increase the accuracy. It is interesting to note that present results agree very well with the
past results.
Figure 3 illustrates the modification of the Adomian decomposition method by using

the Laplace-Padè approximant approach. It is observed that MADM helps to improve the
results most especially when the domain of the analysis is getting wider.

Mode shapes

The mode shape for the first two natural frequencies are shown in Fig. 4. It is important
to note that the mode shape obeys the classical theory of vibration. For bending moment
and stress, location of the vibrating node and antinodes are somehow different due to the
vanishing mode of the boundary condition. Figures 4 and 5 show mode shape due to the
bending moment and stress; it is clearly shown that the location of node and antinodes of

Fig. 4 Showing mode shapes of SS and SC boundary conditions
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Fig. 5 Fundamental mode shape of SS plate under bending moment and stress respectively

the vibrating plate changes. While Fig. 6 depicts the extrema mode shape variation. It is
clearly revealed that Figs. 5 and 6 when compared to Fig. 4 have different mode shapes.
Invariably, the extrema mode shape location differs based on the boundary conditions.
When the plate is submerged in fluid, the same mode shapes as illustrated in Fig. 4 are
obtained; this is in accordance with the experimental result obtained by [33, 34]

Variation of foundation parameter on natural frequency

To investigate the variation effect of the elastic foundation on the first two natural
frequencies of the thin rectangular plate under different boundary conditions discussed
earlier, the material properties of the thin rectangular plate model are as follows [9]:
E = 207 Gpa, material density ρ = 7850 kg/m3, thickness of the plate h = 0.01m and

density of the water ρ = 1000 kg/m3. Thin rectangular plate is considered. Reservoir with
a dimension of 5 m × 5 m × 5 m is used as a case study. Since dimensionless analysis is
conducted, the results on natural frequencies obtained are valid for all thickness of the
plate.
Table 2 illustrates the effects of the foundation parameter on natural frequency. In

this case, consideration is given to (a) Elastic Winkler-type foundation (gs = 0, kL =
10, 50, 100), (b) Elastic Pasternak-type foundation (kL = 0, gs = 10, 50, 100) and (c)
Two-parameter elastic foundation (kL = 50, gs = 10, 50, 100)
Parametric effect of nonlinear Winkler foundation is carried out as mentioned ear-

lier using the finite difference method of numerical due to difficulty encountered when

Fig. 6 Second mode shape of SC under moment and stress
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Table 2 Two-parameter foundation effect on first two natural frequencies of vibrating rectangular
plate

Edge condition Natural
frequency

kL = 50, λ = 0.5 kL = 50, λ = 1.5

gs = 10 gs = 50 gs = 100 gs = 10 gs = 50 gs = 100

SS �1 17.3464 26.3758 34.4842 34.3159 39.653 45.4515

�2 46.9493 61.5091 75.8769 65.1907 76.3477 88.3341

SC �1 21.5364 30.1136 38.0430 37.2582 42.6778 48.5309

�2 56.5026 69.9870 83.7489 73.2330 84.0060 95.7134

SF �1 8.0257 7.0030 4.8888 24.7306 22.8481 19.1978

�2 22.8135 31.2448 39.1257 43.2468 48.6099 54.4463

analysing with ADM. Although, it is a universal behaviour of plate to be affected by
characteristic of elastic foundation, comparing Table 2 to Table 1 indicates that properly
chosen value of foundation stiffness allows for both foundation stiffness and plate stiffness
effect to be comparable.
It is clearly shown in all cases that increasing the foundation stiffness results into higher

value of natural frequencies. Moreover, it is also observed that the effect of the difference
in natural frequencies is more significant for higher mode of the vibrating rectangular
plate. Figure 7 shows the graphical relationship of increasing foundation stiffness on the
natural frequency. The graph depicts the linear relationship between stiffness increment
and natural frequency.

Variation of aspect ratio on natural frequency

Considering the effect of change in the aspect ratio, recall that uniform thickness thin
plate is the model. It is clearly seen that the reduction in the value of the aspect ratio
(negative value) yields the same result as the positive variation of the aspect ratio increase
in aspect ratio either in all cases results into increase in natural frequency of plate (Fig. 8).
This phenomenon is a result of uniform thickness assumption in the model. The variation
reduction in thickness has no effect.

Submerging of plate in fluid

Determining the effect of water in contact with plate involves incorporation of fluid
pressure parameters into the model as stated earlier in the assumptions and using

Fig. 7 Variation of foundation parameter on SS-edge and SC edge condition
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Fig. 8 Variation of aspect ratio on SS and SC edge condition

the parameters stated for the simulation. In order to illustrate the validity of the pro-
posed analytical solutions, the numerical computation of the isotropic rectangular plate
submerged in water is done and compared with those available from previous studies as
shown in Table 3. The following parameters are adopted for the simulation according to
[9].
A = 0.20165m, B = 0.65m, h = 0.963mm. Reservoir dimension 1.3m×0.55m×0.8m.
Water has a noticeable effect on the characteristic behaviour of plate in contact with

fluid. Table 4 depicts the natural frequency of plate when submerged and immersed in
fluid. The fluid under consideration here is water; it is globally known that natural fre-
quency becomes lower when the vibrating plate is in contact with fluid. The behaviour
is referred to as added virtual mass effect. The behaviour is the result of the transfer of
vibration by plate in contact with water in motion thereby increasing the kinetic energy
of the total system. It is found that the presence of water has most significant effect on the
fundamental mode regardless of the boundary condition of the rectangular plate.

Conclusion
In this study, the investigation of dynamic response of isotropic rectangular plates rest-
ing onWinkler and Pasternak foundations is presented. The coupled governing nonlinear
partial differential equation is transformed to nonlinear ordinary differential equation
using the Galerkin method of separation. The coupled nonlinear ordinary differential
equations have been solved using the Adomian decomposition method. Moments and
stress are determined. The accuracies of the obtained analytical solutions were ascer-
tained with the numerical and analytical methods reported in the literature, and the
results are confirmed to be in good agreement. The obtained analytical solutions were
used to examine the effects of foundation parameter, aspect ratio and presence of fluid in
contact with plate. From the parametric studies, the following observations were estab-
lished. Increases in the elastic foundation parameter increases the natural frequency.
Increases in aspect ratio increases the natural frequency. Submerging the plate in fluid

Table 3 Validation of solution for fluid-plate interaction

Natural frequencies of simply supported plate submerged in fluid

Mode Haddara and Cao [35] Present Percentage error

1 28.72 22.118 22

2 117.725 108.993 7

3 154.51 156.596 1.35
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lowers the natural frequency. ‘The major benefit of ADM is the ease of application to
various types of differential and integral equations, linear or nonlinear, homogeneous or
inhomogeneous, with constant coefficients or with variable coefficients; likewise, it is
capable of greatly reducing the size of computational work while still maintaining high
accuracy of the numerical solution.’ [36].

Abbreviations
d
dx : First-order differential operator with respect to x; ν : Poisson’s ratio of isotropic plate; ρ : Mass density; ?: Dimensionless
natural frequency; D: Flexural rigidity of isotropic plate; h: Plate thickness; q, b: Dimension of the plate; w: Transverse
deflection; x, y: Rectangular space Cartesian coordinate along the length of thin plate
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