ORIGINAL RESEARCH

Open Access

Hasimoto surfaces in Galilean space G₃

M. Elzawy^{1,2*}

*Correspondence: mervatelzawy@science.tanta. edu.eg; mrzawy@taibahu. edu.sa

¹ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt Full list of author information is available at the end of the article

Abstract

In this article Hasimoto surfaces in Galilean space G_3 will be considered, Gauss curvature (K) and Mean curvature (K) of Hasimoto surfaces K = K (K) will be investigated, some characterization of K-curves and K-curves of Hasimoto surfaces in Galilean space K will be introduced. Example of Hasimoto surfaces will be illustrated.

Keywords: Galilean geometry, Hasimoto surface, Smoke ring equation

Mathematics Subject Classification: 53A35, 53B25, 53C42

Introduction

The geometry of Galilean is one of the Non Euclidean geometry which is very important in special Relativity. For more about Galilean geometry one can read [1-4].

The Galilean geometry is the geometry that is transferred from Euclidean geometry to special relativity. A long time ago curves and surfaces in Euclidean space were studied. Recently, mathematicians have begun to introduce curves and surfaces in Galilean spaces G_3 and G_4 the reader can see the following references [5–11].

Hasimoto surfaces are obtained when the motions of local speed of the curve is proportional to the local curvature of the curve. Hasimoto surfaces is studied in Minkowski 3-space reader can see [12]. Generated surfaces via inextensible flows of curves in \mathbb{R}^3 are studied by Rawa and Samah [13]. Hasimoto surfaces were constructed by many mathematicians [3, 12, 14].

The position vector of the surface $\chi = \chi(s,t)$ is called Hasimoto surface if the relation $\chi_t = \chi_s \times \chi_{ss}$ hold.

In this article Hasimoto surfaces $\chi = \chi(s,t)$ in Galilean space G_3 will be introduced, Gauss curvature (K) and the Mean curvature (K) of Hasimoto surfaces will be obtained. Some conditions for the *s-parameter curves* and *t-parameter curves* of Hasimoto surfaces to be geodesic curves, or asymptotic lines in Galilean space G_3 will be given. Finally the necessary and sufficient conditions for the curves to be principal curves on the Hasimoto surfaces in G_3 will be introduced. Example of Hasimoto surfaces $\chi = \chi(s,t)$ in Galilean space G_3 will be illustrated.

Elzawy J Egypt Math Soc (2021) 29:5 Page 2 of 9

Preliminaries

Galilean space of dimension three (G_3) , is defined to be the space due to Cayley–Klein model, equipped with the metric of signature (0,0,+,+) which is called projective metric. The triple (ω, f, I) are called The absolute of Galilean geometry where ω is defined to be the ideal plane (sometimes called the absolute plane), f is a line in the absolute plane ω which is called the absolute line and I is defined to be the elliptic involution point $(0,0,x_2,x_3) \rightarrow (0,0,x_3,-x_2).$

If the plane contains f, it is called the Euclidean plane, if the plane does not contain f it is called isotropic plane, this means that planes x = constant are Euclidean planes, i.e. the plane ω is Euclidean plane. A vector $v = (v_1, v_2, v_3)$ is called non-isotropic vector if the first component v_1 is not equal to zero. All vectors $v = (1, v_2, v_3)$ are unit non-isotropic vectors. The vectors $v = (0, v_2, v_3)$ are isotropic vectors.

In Galilean space G_3 we have four types of lines [1]:

- 1. Lines, which do not cross the absolute line *f* is called proper non-isotropic lines.
- 2. The lines, which not belong to the ideal plane ω but intersect the absolute line f is called the proper isotropic lines.
- 3. All lines of the ideal plane ω except f are called proper non-isotropic lines.
- 4. The absolute line *f*.

Suppose that $\overrightarrow{u} = (u_1, u_2, u_3)$ and $\overrightarrow{v} = (v_1, v_2, v_3)$ are two vectors in Galilean space G_3 . Galilean scalar product in G_3 is

$$\langle \overrightarrow{u}, \overrightarrow{v} \rangle_{G3} = \begin{cases} u_1 v_1 & \text{if } u_1 \neq 0 \text{ or } v_1 \neq 0 \\ u_2 v_2 + u_3 v_3 & \text{if } u_1 = 0 \text{ and } v_1 = 0 \end{cases}$$

The norm of the vector $\overrightarrow{u} = (u_1, u_2, u_3)$ can be written as

$$\|\overrightarrow{u}\|_{G_3} = \sqrt{\langle \overrightarrow{u}, \overrightarrow{u} \rangle_{G_3}}.$$

The vector product of $\overrightarrow{u} = (u_1, u_2, u_3)$ and $\overrightarrow{v} = (v_1, v_2, v_3)$ in Galilean space G_3 is defined by

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{cases} \begin{vmatrix} 0 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} & \text{if } x_1 \neq 0 \text{ or } y_1 \neq 0. \\ e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} & \text{if } x_1 = 0 \text{ and } y_1 = 0.$$

The curve r(s) = (s, y(s), z(s)) is called the admissible curve. The associated invariant trihedron (Frenet invariant) T, N, and B for r(s) is given by the following equations.

$$\mathbf{T} = (1, y', z')$$

$$\mathbf{N} = \frac{1}{k} (0, y'', z'')$$

$$\mathbf{B} = \frac{1}{k} (0, -z'', y'')$$

Elzawy *J Egypt Math Soc* (2021) 29:5 Page 3 of 9

where **T** is the Tangent vector to r(s), **N** is the Normal vector to r(s), and **B** is the Binormal of r(s).

Also k(s) is called the *curvature function* of the admissible curve r(s), and is denoted by the relation

$$k(s) = \sqrt{y''^2 + z''^2}$$

and $\tau(s)$ is the *torsion function* of the admissible curve r(s) and is given by the following equation

$$\tau(s) = \frac{1}{k^2} \det \left(r'(s), r''(s), r'''(s) \right).$$

The Frenet equations in Galilean space G_3 for the a admissible curve r(s) can be written as

$$\begin{bmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{bmatrix} = \begin{bmatrix} 0 & k & 0 \\ 0 & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}$$
(1)

A C^n -surface M, $n \ge 1$, immersed in Galilean space $r: U \to M$, U belongs to R^2 , is denoted by $\chi(s,t) = (\chi(s,t), \chi(s,t), \chi(s,t))$.

First fundamental form for the surface $\chi(s,t)$ is denoted by I and is given by the following equation.

$$I = (g_1 ds + g_2 dt)^2 + \epsilon (h_{11} ds^2 + 2h_{12} ds dt + h_{22} dt^2)$$

where the symbols $g_i = x_i$ is the derivatives of the first coordinates function x(s, t) with respect to s and t, and $h_{ij} = \tilde{r}_i.\tilde{r}_j$ the Euclidean inner product of the projection \tilde{r}_k onto yz-plane. Furthermore,

$$\epsilon = \begin{cases} 0, & \textit{if ds} : \textit{dt is non-isotropic} \\ 1, & \textit{if ds} : \textit{dt is isotropic} \end{cases}$$

Gauss curvature *K* is denoted by

$$K = \frac{L_{11}L_{22} - L_{12}^2}{W^2} \tag{2}$$

Mean curvature H is given by

$$H = \frac{g_2^2 L_{11} - 2g_1 g_2 L_{12} + g_1^2 L_{22}}{2W^2} \tag{3}$$

where

$$W = \sqrt{(x_t z_s - x_s z_t)^2 + (x_s y_t - x_t y_s)^2}$$

and

Elzawy *J Egypt Math Soc* (2021) 29:5 Page 4 of 9

$$L_{ij} = \frac{x_s r_{ij} - x_{ij} r_s}{x_s} . N, x_s = g_1 \neq 0,$$
(4)

The vector $N = \frac{1}{W}(0, x_t z_s - x_s z_t, x_s y_t - x_t y_s)$ is the normal vector to the surface $\chi(s, t)$.

$$S = \frac{1}{W} (0, x_t y_s - x_s y_t, x_t z_s - x_s z_t)$$

is called a side tangential vector which is tangent plane to surface M.

Main results

In this section we will introduce Frenet equations of curves in both directions s, and t parameters. For Hasimoto surface $\chi(s,t)$, we will obtain Gauss Curvature (K), Mean Curvature (H), and we will prove that Hasimoto surfaces are Weingarten surfaces. Also we obtain the necessary and sufficient conditions for the t-curves of Hasimoto surface $\chi(s,t)$ to be geodesic curves, or to be asymtotic curves. Also, we give conditions of the parameter curves to be lines of curvature. Finally, we give characterization for the s-parameter curves to be principal direction for Hasimoto surface $\chi(s,t)$. At the end of this section example of Hasimoto surface in Galilean space G_3 is introduced.

Theorem 1 Let $\chi = \chi(s,t)$ be Hasimoto surface in Galilean space G_3 where $\chi = \chi(s,t)$ is admissible curve with unit speed for all t. The Frenet equations \mathbf{T}', \mathbf{N}' and \mathbf{B}' with respect to the parameter s is given by the following equations

$$\begin{bmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{bmatrix} = \begin{bmatrix} 0 & k & 0 \\ 0 & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}$$
 (5)

The Frenet Equations T, N and B with respect to the parameter t, is obtained by the following equations

$$\begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 & -\tau k & 0 \\ 0 & 0 & -\tau^2 \\ 0 & \tau^2 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}$$
 (6)

where $k \neq 0$ is the curvature and τ is the torsion for the curve $\chi = \chi(s,t) \, \forall t$.

Proof

Frenet equations \mathbf{T}', \mathbf{N}' and \mathbf{B}' with respect to s is given directly from Frenet equation in Galilean space G_3 (1). Suppose that we have the differentiable functions α, β, γ and η where

$$\begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 & \alpha & \gamma \\ \beta & 0 & \eta \\ -\gamma & -\eta & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}$$
 (7)

Our aim is to find α , β , γ and η functions in terms of the curvature and torsion functions for the *s-curve* $\chi = \chi(s,t)$ for all t.

Elzawy *J Egypt Math Soc* (2021) 29:5 Page 5 of 9

Using the conditions $\mathbf{T}_{ts} = \mathbf{T}_{st}$ and $\mathbf{N}_{ts} = \mathbf{N}_{st}$ we obtain

$$(\alpha_s - \gamma \tau)\mathbf{N} + (\alpha \tau + \gamma_s)\mathbf{B} = (k\beta)\mathbf{T} + (k_t)\mathbf{N} + k\eta \mathbf{B}$$
(8)

i.e.

$$\beta = 0, \alpha_s = \gamma \tau + k_t, \gamma_s = k\eta - \alpha \tau \tag{9}$$

From the condition $\chi_{st} = \chi_{ts}$ we get the following equations

$$\gamma = 0, \eta = -\tau^2 \tag{10}$$

substituting from Eqs. (8, 9) we give the system in (6). \square

In the following theorem we will prove that Gaussian curvature K for Hasimoto surface equal to zero and the mean curvature H is equal to $\frac{-(x_t^2 + 2\tau x_s x_t + \tau^2 x_s^2)}{2k}$.

Theorem 2 Let $\chi = \chi(s,t) = (x(s,t),y(s,t),z(s,t))$ be a Hasimoto surface in Galilean space G_3 where s-curves of the Hasimoto surfaces $\chi(s,t)$ is curves with unit norm of the speed for all t, then the Gauss curvature K of $\chi(s,t)$ will be given form the relation

$$K = 0 (11)$$

and the Mean curvature H of $\chi(s,t)$ will be obtained from the relation

$$H = \frac{-\left(x_t^2 + 2\tau x_s x_t + \tau^2 x_s^2\right)}{2k} \tag{12}$$

k is the curvature function of *s-curves* of $\chi(s,t)$ for all *t* and $\tau(s)$ is the torsion function of *s-curves* of $\chi(s,t)$ for all *t*.

Proof

Suppose that $\chi(s,t) = (x(s,t),y(s,t),z(s,t))$ is a parametrization of the surface $\chi(s,t)$ where the parameters $s,t \in R$, and $x(s,t),y(s,t),z(s,t) \in C^3$. The normal of the surface is given by $N = -\mathbf{N}$

since $\chi_s = \mathbf{T}$ we obtain $\chi_{st} = -k\tau \mathbf{N}$ from the property of Hasimoto surfaces $r_t = k\mathbf{B}$, we have $r_{ts} = k_s \mathbf{B} - k\tau \mathbf{N}$ therefore $k_s = 0$. By using the statement (4) of the second fundamental form we give

$$L_{ij} = \begin{pmatrix} -k & k\tau \\ k\tau & -k\tau^2 \end{pmatrix}$$

hence, Gauss curvature K of Hasimoto surfaces $\chi(s,t)$ identically zero.

Mean curvature *H* of Hasimoto surface is given by

Elzawy *J Egypt Math Soc* (2021) 29:5 Page 6 of 9

$$H = \frac{g_2^2 L_{11} - 2g_1 g_2 L_{12} + g_1^2 L_{22}}{2W^2} = \frac{-kx_t^2 - 2k\tau x_s x_t - k\tau^2 x_s^2}{2k^2}$$
$$= \frac{-(x_t^2 + 2\tau x_s x_t + \tau^2 x_s^2)}{2k}$$

Since Gauss Curvature of Hasimoto surfaces in Galilean space G_3 equal zero the following corollary is true.

Corollary 1 *Hasimoto surface* $\chi(s,t)$ *is a Weingarten surface in* G_3 .

Proof

The identically Jacobi equation

$$\Phi(H,K) = K_t H_s - H_t K_s = 0$$

Therefore, Hasimoto surface $\chi(s,t)$ is Weingarten surface. \square

The curve r(s) is a geodesic curve if and only if it has geodesic curvature equal to zero $(k_g = 0)$, the curve is called asymptotic is its normal curvature $k_n = 0$

In the following theorems we give some properties for the *s-curves* and *t-curves* of Hasimoto surface $\chi(s,t)$ to be geodesic curves and asymptotic curves in G_3 .

Theorem 3 Let $\chi(s,t)$ be a Hasimoto surface in G_3 . Then the following statements are satisfied

- 1. The *s-curves* of $\chi(s,t)$ are geodesic curves.
- 2. The *t-curves* of $\chi(s,t)$ are geodesic curves, \iff the curvature of the *t-curves* of $\chi(s,t)$ equal to zero for all $s(k_t=0)$.

Proof

1. For the s-curves of the Hasimoto $\chi(s,t)$ for all t, the geodesic curvature is obtain from the following relation

$$k_g = S \cdot \chi_{ss} = (N \times \mathbf{T}) \cdot (k\mathbf{N}) = \mathbf{0}$$
, which proof the statement 1.

2. The geodesic curvature for the *t-curves* of the Hasimoto surface $\chi(s,t)$ for all s is $k_g = S \cdot \chi_{tt} = (-n \times \mathbf{T}) \cdot (k_t \mathbf{B} + k\tau^2 \mathbf{N}) = k_t$. \square

Theorem 4 Suppose that $\chi(s,t)$ is Hasimoto surface in Galilean space G_3 . Then the following statement are satisfied.

Elzawy J Egypt Math Soc (2021) 29:5 Page 7 of 9

1. s-curves are asymptotic \iff if k = 0 (which means that s-curves not asymptotic curves).

2. *t-curves are asymptotic curves of Hasimoto surface* $\chi(s,t) \iff \tau = 0$.

Proof

- 1. Let $\chi(s,t)$ be Hasimoto surface in Galilean space G_3 . Since normal curvature $k_n = N \cdot \chi_{ss} = -\mathbf{N} \cdot k\mathbf{N} = -k$, then s-curves are asymptotic curves $\Leftrightarrow k = 0$ (imposble).
- 2. For *t-curves* we have $\chi_{tt} = k_t \mathbf{B} + k\tau^2 \mathbf{N}$, $k_n = -\mathbf{N} \cdot (k_t \mathbf{B} + k\tau^2 \mathbf{N}) = -k\tau^2$ i.e. *t-curves* are asymptotic curves of Hasimoto surface $\iff k\tau^2 = 0$ but $k \neq 0$ therefore $\tau^2 = 0$ this means that τ must equal zero. \square

Corollary 2 s-curves and t-curves of Hasimoto surface $\chi = \chi(s,t)$ in G_3 are said to be lines of curvature if and only if $k\tau = 0$.

Proof

$$F = M = \mathbf{0} \Leftrightarrow k\tau = 0.$$

Corollary 3 If s-curves and t-curves of Hasimoto surfaces $\chi(s,t)$ in G_3 are asymptotic curves then s-curves and t-curves are lines of curvatures.

Proof

From Theorem 4 above t-curves are asymptotic curves of Hasimoto surfaces $\Leftrightarrow \tau = 0$. This implies $k\tau = 0$ which means that t-curves are lines of curvatures. \Box

Principal direction are tangent directions of a curve r(s) on a surface if the normal field of the surface satisfy $det(\alpha^{\cdot}, N, N^{\cdot}) = 0$ this condition essential for principal directions in Euclidean space [15].

Theorem 5 Let, $\chi(s,t)$ be Hasimoto surfaces in G_3 , then

- 1. s-curves of Hasimoto surface $\chi(s,t)$ are principal direction for all t if and only if $\tau=0$.
- 2. t-curves of Hasimoto surface $\chi(s,t)$ are principal direction.

Proof

1. For s-parameter curves $det(\chi_s, N, N_s) = det(T, -N, -N_s) = \tau det(T, N, B)$.

Hence, $\det(\chi_s, N, N_s) = 0 \Longleftrightarrow \tau = 0$.

2. For t-parameter curves $\det(\chi_t, N, N_t) = \det(k\mathbf{B}, -\mathbf{B}, \tau^2\mathbf{B}) = 0$.

Elzawy *J Egypt Math Soc* (2021) 29:5 Page 8 of 9

Example 1

Consider Hasimoto surface (Fig. 1) $\chi(s,t)$ where

$$\chi(s,t) = (s+10, -\cos(s+t), \sin(s+t)), -0.5 \le s, t \le 0.5$$
, then

The tangent vector for the curve is

 $\mathbf{T} = (1, \sin(s+t), \cos(s+t))$

The normal vector for the curve is

 $\mathbf{N} = (0, \cos(s+t), -\sin(s+t))$

The binormal vector for the curve is

 $\mathbf{B} = (0, \sin(s+t), \cos(s+t))$

the curvature function k = 1, the torsion function $\tau = -1$

Mean curvature for $\chi(s, t)$ is H = -1

Abbreviations

 G_3 : Galilean space of dimension three; k(s): Curvature function; $\tau(s)$: Torsion function; K: Gauss curvature; H: Mean curvature; N: The normal of the surface; K_g : The geodesic curvature.

Elzawy *J Egypt Math Soc* (2021) 29:5 Page 9 of 9

Acknowledgements

The author would like to thank the referees for their helpful suggestions.

Authors' contributions

The author collected the data, performed the calculation, and was a major contributor in writing the manuscript. The author read and approved the final manuscript.

Fundina

The author is the research funded

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Competing interests

The author declare that she has no competing interests.

Author details

¹ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt. ² Mathematics Department, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia.

Received: 5 June 2020 Accepted: 22 January 2021

Published online: 10 February 2021

References

- 1. Dede, M., Ekici, C.: On parallel ruled surfaces in Galilean space. Kragujev. J. Math. 40(1), 47–59 (2016)
- 2. Elzawy, M., Mosa, S.: Smarandache curves in the Galilean 4-Space G_a. J. Egypt. Math. Soc. 25, 53–56 (2017)
- 3. Aydin, M.E., Mihai, A., Ogrenmis, A.O., Ergut, M.: Geometry of the solutions of localized induction equation in the pseudo-Galilean space. Adv. Math. Phys. **2015**, Article ID 905978
- 4. Mosa, S., Elzawy, M.: Helicoidal surfaces in Galilean space with density. Front. Phys. 8, 1-6 (2020)
- Ogrenmis, A., Ergut, M., Bekatas, M.: On the helices in the Galilean space G₃. Iran. J. Sci. Technol. Trans. Print. A Islamic Repub. Iran 31(A2), 177–181 (2007)
- 6. Yoon, D.W.: Some classification of translation surfaces in Galilean 3-space. Int. J. Math. Anal. 6(28), 1355–1361 (2012)
- Yoon, D.W., Lee, J.W., Lee, C.W.: Osculating curves in the Galilean 4-space. Int. J. Pure Appl. Math. 100(4), 497–506 (2015)
- 8. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, New York (1979)
- 9. Dede, M.: Tubuler surfaces in Galilean space. Math. Commun. **18**, 209–217 (2013)
- 10. Elzawy, M., Mosa, S.: Razzaboni surfaces in the Galilean space G^3 . FJMS **108**(1), 13–26 (2018)
- 11. Dede, M., Ekici, C., Coken, A.: On the parallel surfaces in Galilean space. Hacet. J. Math. Stat. 42(6), 605–615 (2013)
- Erdogdu, M., Ozdemir, M.: Geometry of Hasimoto surfaces in Minkowski 3-space. Math. Phys. Anal. Geom. 17, 169–181 (2014)
- Hussien, R.H., Mohamed, S.G.: Generated surfaces via inextensible flows of curves in R³. J. Appl. Math. 2016, Article ID 6178961
- 14. Abdel-all, N.H., Hussien, R.A., Youssef, T.: Hasimoto surfaces. Life Sci. J. 9(3), 556–560 (2012)
- Sipus, Z.M., Divjak, B.: Surfaces of constant curvature in the pseduo-Galilean space. Int. J. Math. Math. Sci. 2012, Article ID 375264

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com