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Introduction
The geometry of Galilean is one of the Non Euclidean geometry which is very important 
in special Relativity. For more about Galilean geometry one can read [1–4].

The Galilean geometry is the geometry that is transferred from Euclidean geometry 
to special relativity. A long time ago curves and surfaces in Euclidean space were stud-
ied. Recently, mathematicians have begun to introduce curves and surfaces in Galilean 
spaces G3 and G4 the reader can see the following references [5–11].

Hasimoto surfaces are obtained when the motions of local speed of the curve is pro-
portional to the local curvature of the curve. Hasimoto surfaces is studied in Minkowski 
3-space reader can see [12]. Generated surfaces via inextensible flows of curves in R3 are 
studied by Rawa and Samah [13]. Hasimoto surfaces were constructed by many math-
ematicians [3, 12, 14].

The position vector of the surface χ = χ(s, t) is called Hasimoto surface if the relation 
χt = χs × χss hold.

In this article Hasimoto surfaces χ = χ(s, t) in Galilean space G3 will be introduced, 
Gauss curvature (K) and the Mean curvature (H) of Hasimoto surfaces will be obtained. 
Some conditions for the s-parameter curves and t-parameter curves of Hasimoto sur-
faces to be geodesic curves, or asymptotic lines in Galilean space G3 will be given. Finally 
the necessary and sufficient conditions for the curves to be principal curves on the Hasi-
moto surfaces in G3 will be introduced. Example of Hasimoto surfaces χ = χ(s, t) in Gal-
ilean space G3 will be illustrated.
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Preliminaries
Galilean space of dimension three (G3) , is defined to be the space due to Cayley–Klein 
model, equipped with the metric of signature (0, 0,+,+) which is called projective met-
ric. The triple (ω, f , I) are called The absolute of Galilean geometry where ω is defined to 
be the ideal plane (sometimes called the absolute plane), f is a line in the absolute plane 
ω which is called the absolute line and I is defined to be the elliptic involution point 
(0, 0, x2, x3) → (0, 0, x3,−x2).

If the plane contains f, it is called the Euclidean plane, if the plane does not contain f 
it is called isotropic plane, this means that planes x = constant are Euclidean planes, i.e. 
the plane ω is Euclidean plane. A vector v = (v1, v2, v3) is called non-isotropic vector if 
the first component v1 is not equal to zero. All vectors v = (1, v2, v3) are unit non-iso-
tropic vectors. The vectors v = (0, v2, v3) are isotropic vectors.

In Galilean space G3 we have four types of lines [1]: 

1.	 Lines, which do not cross the absolute line f is called proper non-isotropic lines.
2.	 The lines, which not belong to the ideal plane ω but intersect the absolute line f is 

called the proper isotropic lines.
3.	 All lines of the ideal plane ω except f are called proper non-isotropic lines.
4.	 The absolute line f.

Suppose that −→u = (u1,u2,u3) and −→v = (v1, v2, v3) are two vectors in Galilean space G3 . 
Galilean scalar product in G3 is

The norm of the vector −→u = (u1,u2,u3) can be written as
∥

∥

−→u
∥

∥

G3
=

√

�−→u ,
−→u �G3

.

The vector product of −→u = (u1,u2,u3) and −→v = (v1, v2, v3) in Galilean space G3 is 
defined by

The curve r(s) = (s, y(s), z(s)) is called the admissible curve. The associated invariant tri-
hedron (Frenet invariant) T,N , and B for r(s) is given by the following equations.
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where T is the Tangent vector to r(s), N is the Normal vector to r(s), and B is the Binor-
mal of r(s).

Also k(s) is called the curvature function of the admissible curve r(s), and is denoted 
by the relation

and τ (s) is the torsion function of the admissible curve r(s) and is given by the following 
equation

The Frenet equations in Galilean space G3 for the a admissible curve r(s) can be written 
as

A Cn-surface M, n ≥ 1 , immersed in Galilean space r : U → M,U belongs to R2 , is 
denoted by χ(s, t) = (x(s, t), y(s, t), z(s, t)).

First fundamental form for the surface χ(s, t) is denoted by I and is given by the fol-
lowing equation.

where the symbols gi = xi is the derivatives of the first coordinates function x(s, t) with 
respect to s and t, and hij = r̃i.r̃j the Euclidean inner product of the projection r̃k onto 
yz-plane . Furthermore,

Gauss curvature K is denoted by

Mean curvature H is given by

where

and
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2
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1, if ds : dt is isotropic
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W 2
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The vector N = 1
W (0, xtzs − xszt , xsyt − xtys) is the normal vector to the surface χ(s, t).

is called a side tangential vector which is tangent plane to surface M.

Main results
In this section we will introduce Frenet equations of curves in both directions s, and 
t parameters. For Hasimoto surface χ(s, t) , we will obtain Gauss Curvature (K), Mean 
Curvature (H), and we will prove that Hasimoto surfaces are Weingarten surfaces. Also 
we obtain the necessary and sufficient conditions for the t-curves of Hasimoto surface 
χ(s, t) to be geodesic curves, or to be asymtotic curves. Also, we give conditions of 
the parameter curves to be lines of curvature. Finally, we give characterization for the 
s-parameter curves to be principal direction for Hasimoto surface χ(s, t) . At the end of 
this section example of Hasimoto surface in Galilean space G3 is introduced.

Theorem 1  Let χ = χ(s, t) be Hasimoto surface in Galilean space G3 where χ = χ(s, t) 
is admissible curve with unit speed for all t. The Frenet equations T′

,N
′ and B′ with 

respect to the parameter s is given by the following equations

The Frenet Equations T·,N· and B· with respect to the parameter t, is obtained by the fol-
lowing equations

where k  = 0 is the curvature and τ is the torsion for the curve χ = χ(s, t) ∀t.

Proof
Frenet equations T′

,N
′  and B′ with respect to s is given directly from Frenet equation 

in Galilean space G3 (1). Suppose that we have the differentiable functions α,β , γ and η 
where

Our aim is to find α,β , γ and η functions interms of the curvature and torsion functions 
for the s-curve χ = χ(s, t) for all t.
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Using the conditions Tts = Tst and Nts = Nst we obtain

i.e.

From the condition χst = χts we get the the following equations

substituting from Eqs. (8, 9) we give the system in (6). �

In the following theorem we will prove that Gaussian curvature K for Hasimoto sur-

face equal to zero and the mean curvature H is equal to 
−(x2t + 2τxsxt + τ 2x2s )

2k
.

Theorem 2  Let χ = χ(s, t) = (x(s, t), y(s, t), z(s, t)) be a Hasimoto surface in Galilean 
space G3 where s-curves of the Hasimoto surfaces χ(s, t) is curves with unit norm of the 
speed for all t, then the Gauss curvature K of χ(s, t) will be given form the relation

and the Mean curvature H of χ(s, t) will be obtained from the relation

k is the curvature function of s-curves of χ(s, t) for all t and τ (s) is the torsion func-
tion of s-curves of χ(s, t) for all t.

Proof

Suppose that χ(s, t) = (x(s, t), y(s, t), z(s, t)) is a parametrization of the surface χ(s, t) 
where the parameters s, t ∈ R , and x(s, t), y(s, t), z(s, t) ∈ C3 . The normal of the surface is 
given by N = −N

since χs = T we obtain χst = −kτN from the property of Hasimoto surfaces rt = kB, we 
have rts = ksB− kτN therefore ks = 0 . By using the statement (4) of the second funda-
mental form we give

hence, Gauss curvature K of Hasimoto surfaces χ(s, t) identically zero.

Mean curvature H of Hasimoto surface is given by

(8)(αs − γ τ)N+ (ατ + γs)B = (kβ)T+ (kt)N+kηB

(9)β = 0,αs = γ τ + kt , γs = kη − ατ

(10)γ = 0, η = −τ 2

(11)
K = 0

(12)H =
−
(

x2t + 2τxsxt + τ 2x2s
)

2k

Lij =

(

−k kτ

kτ −kτ 2

)
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�

Since Gauss Curvature of Hasimoto surfaces in Galilean space G3 equal zero the fol-
lowing corollary is true.

Corollary 1  Hasimoto surface χ(s, t) is a Weingarten surface in G3.

Proof
The identically Jacobi equation

�(H ,K ) = KtHs −HtKs = 0

Therefore, Hasimoto surface χ(s, t) is Weingarten surface. �

The curve r(s) is a geodesic curve if and only if it has geodesic curvature equal to zero 
(kg = 0) , the curve is called asymptotic is its normal curvature kn = 0

In the following theorems we give some properties for the s-curves and t-curves of 
Hasimoto surface χ(s, t) to be geodesic curves and asymptotic curves in G3.

Theorem 3  Let χ(s, t) be a Hasimoto surface in G3 . Then the following statements are 
satisfied

1.	 The s-curves of χ(s, t) are geodesic curves.
2.	 The t-curves of χ(s, t) are geodesic curves,⇐⇒ the curvature of the t-curves of χ(s, t) 

equal to zero for all s (kt = 0).

Proof
1. For the s-curves of the Hasimoto χ(s, t) for all t, the geodesic curvature is obtain from 
the following relation

kg = S · χss = (N × T) · (kN) = 0 , which proof the statement 1.

2. The geodesic curvature for the t-curves of the Hasimoto surfaceχ(s, t) for all s is 
kg = S · χtt = (−n× T) · (ktB+ kτ 2N) =kt . �

Theorem 4  Suppose that χ(s, t) is Hasimoto surface in Galilean space G3 . Then the fol-
lowing statement are satisfied. 

H =
g22L11 − 2g1g2L12 + g21L22

2W 2
=

−kx2t − 2kτxsxt − kτ 2x2s
2k2

=
−
(

x2t + 2τxsxt + τ 2x2s
)

2k
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1.	 s-curves are asymptotic ⇐⇒ if k = 0 (which means that s-curves not asymptotic 
curves).

2.	 t-curves are asymptotic curves of Hasimoto surface χ(s, t) ⇐⇒ τ = 0.

Proof
1. Let χ(s, t) be Hasimoto surface in Galilean space G3 . Since normal curvature 
kn = N · χss = −N · kN = −k , then s-curves are asymptotic curves ⇔ k = 0 (imposble).

2. For t-curves we have χtt = ktB+kτ 2N, kn = −N · (ktB+kτ 2N) = −kτ 2 i.e. t-curves 
are asymptotic curves of Hasimoto surface ⇐⇒ kτ 2 = 0 but k  = 0 therefore τ 2 = 0 this 
means that τ must equal zero. �

Corollary 2  s-curves and t-curves of Hasimoto surface χ = χ(s, t) in G3 are said to be 
lines of curvature if and only if kτ = 0.

Proof
F = M= 0 ⇔ kτ = 0 . �

Corollary 3  If s-curves and t-curves of Hasimoto surfaces χ(s, t) in G3 are asymptotic 
curves then s-curves and t-curves are lines of curvatures.

Proof
From Theorem 4 above t-curves are asymptotic curves of Hasimoto surfaces ⇔ τ = 0 . This 
implies kτ = 0 which means that t-curves are lines of curvatures. �

Principal direction are tangent directions of a curve r(s) on a surface if the normal field 
of the surface satisfy det(α·,N ,N ·) = 0 this condition essential for principal directions 
in Euclidean space [15].

Theorem 5  Let, χ(s, t) be Hasimoto surfaces in G3 , then

1.	 s-curves of Hasimoto surface χ(s, t) are principal direction for all t if and only if τ = 0.
2.	 t-curves of Hasimoto surface χ(s, t) are principal direction.

Proof
1. For s-parameter curves det(χs,N ,Ns) = det(T,−N,−Ns) = τ det(T,N,B).

Hence, det(χs,N ,Ns) = 0 ⇐⇒ τ = 0.

2. For t-parameter curves det(χt ,N ,Nt) = det(kB,−B, τ 2B) = 0 . �
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Example 1
Consider Hasimoto surface (Fig. 1) χ(s, t) where

χ(s, t) = (s + 10,− cos(s + t), sin(s + t)) , −0.5 ≤ s, t ≤ 0.5 , then
The tangent vector for the curve is
T = (1 , sin(s + t) , cos(s + t))

The normal vector for the curve is
N = (0 , cos(s + t) , − sin(s + t))

The binormal vector for the curve is
B = (0 , sin(s + t) , cos(s + t))

the curvature function k = 1 , the torsion function τ = −1

Mean curvature for χ(s, t) is H = −1

Abbreviations
G3: Galilean space of dimension three; k(s): Curvature function; τ (s): Torsion function; K: Gauss curvature; H: Mean 
curvature; N: The normal of the surface; kg : The geodesic curvature.

Fig. 1  Hasimoto surface χ(s, t) = (s+ 10,− cos(s+ t), sin(s+ t))
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