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Introduction
In population biology, a small or sparse population for some species is difficult to study 
because many factors such as mating may be difficult to analyze. A small or sparse popu-
lation is one most important reasons for the extinction of the population and is known 
as the Allee effect. Allee effects are broadly defined as a decline in individual fitness at 
low population size or low density, which can result in critical population thresholds 
below which populations crash to extinction. There are many reasons by which an Allee 
effect can arise including

•	 an Allee effect begins with reproductive mechanisms, including fertilization effi-
ciency in broadcast spawners. For example, eggs of aquatic animals (such as fishes or 
oysters) that lay many small eggs;
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•	 pollen limitation and mate finding;
•	 sperm limitation, reproductive facilitation by conspecifics, and female choice;
•	 mechanisms related to survival: environmental conditioning and particularly preda-

tion such as flocking, coloniality, and group vigilance;
•	 finally, Allee effects are in social and cooperative species, where group size is impor-

tant for both reproduction and survival.

The American ecologist, Warder Clyde Allee [1], was the first researcher who presented 
experimental studies on Alle effects in 1931. Since then many researchers studied Allee 
effects in different frameworks. For two reasons, many of the early results on Allee 
effects were theoretical. First, demonstrating an Allee effect in the wild usually requires 
a long and complete data set of population dynamics; Second, population dynamicists 
were not interested in studying under-crowding, which was regarded as an interesting 
but anecdotal process. The studies during the early nineties (before the real start of the 
upsurge), most of the researchers were concerned about marine invertebrates, plants 
and insects [2–4]. Only very few studied about vertebrates, except for results on fisheries 
[5]. During this time, a few theoretical studies were also published [6, 7].

The Allee effect is an interesting and challenging topic in population dynamics and 
many researchers studied Allee effects in many different techniques, both theoreti-
cally and experimentally. After the dominance of experimental and theoretical stud-
ies on Allee effects, researchers now focusing their attention on two new directions: (i) 
theoretical studies via mathematical models of ever increasing details; and (ii) empiri-
cal studies with the unveiling of Allee effects in natural populations. Much progress has 
been made by researches under these new ideas. Researchers now have a better under-
standing of Allee effects and they can draw better distinctions. Note that individual fit-
ness is assumed higher at low densities because of lower intra-specific competition.

There are several kinds of Allee effects such as component Allee effect, demographic 
Allee effect, dormant Allee effect, etc. and there are different types of relationships 
between these Allee effects. A dormant Allee effect is a component Allee effect that 
either does not result in a demographic Allee effect or results in a weak Allee effect. If 
interacting with a strong Allee effect, causes the overall Allee threshold to be higher than 
the Allee threshold due to the strong Allee effect alone. Also, a strong Allee effect is a 
demographic Allee effect with an Allee threshold whereas a weak Allee effect is a demo-
graphic Allee effect without an Allee threshold. For details see Fig. 1.

A demographic Allee effect is weak if at low density the per capita population growth 
rate is lower than at higher densities, but remains positive (dotted curve on Fig. 1). On 
the contrary, it can become so low as to become negative below a certain value, called 
the Allee threshold (dashed curve on Fig. 1): it is then a strong Allee effect ( [8], chap-
ter  3). If a population subject to a strong Allee effect drops below that threshold, the 
population growth rate becomes negative and the population will get smaller at a hasten 
rate until it reaches zero or extinction. Very recently a group of ecologists experimented 
demographic and component Allee effect in group-level species and they found that at 
all levels, component Allee effect may generate a demographic Allee effect. A group-
level demographic Allee effect always implies at least one group or subgroup-level com-
ponent Allee effect [9].



Page 3 of 26Keya et al. J Egypt Math Soc            (2021) 29:4 	

Experimentally, it is easier to demonstrate that an Allee effect is strong than that an 
Allee effect is weak. With adequate time, we can easily trace the density for which the 
per capita population growth rate becomes negative. Estimates of the Allee threshold 
are usually approximate because low abundance will yield high observation error, fluc-
tuations due to demographic stochasticity, and a significant proportion of counts at zero 
[10]. Although having an impressive dataset, the study on the island fox could not iden-
tify the value of the Allee threshold even though the Allee effect was strong in some 
populations because these populations were already declining [11]. A strong Allee effect 
has also been shown in the gypsy moth (Lymantria dispar), an invasive pest spreading 
across eastern North America. Also see the recent studies for competition model with 
the Allee effect [12–15].

Despite the history of the Allee effect in mathematical biology, the Allee effect is 
broadly discussed in [16–21]. Variation of the Allee effect as well as growing function 
exhibits ecological phenomena more precisely, especially when a plant or, animal, or 
organism is about to extinct. In 2016, Rocha et al. discussed the bifurcation and extinc-
tion cases of species with a weak Allee effect, where the growth follows Richards’ growth 
law (details in [22]). Also see [23, 24] for fishery and genetic model with Allee effect and 
history within. Populations differ in the diffusion strategies as they employ as well as in 
their environmental intensities [25–27]. Further, the competition between populations 
also has influences on diffusion [28–30].

In this paper, our main goal is to evoke the importance of Allee effect in reaction-dif-
fusion equation and show how it effects populations in ecology. We study the impact 
of multiplicative Allee effect in classical diffusion when the sparsity is either positive or 
negative. We show that negative sparsity implies weak Allee effect and the population 
survives in some domain and diverges otherwise. Also, positive sparsity gives strong 
Allee effect and the population extinct without any condition. The stability conditions 
and the region of positive solution are presented. We present a number of numerical 
examples.

This paper is organized as follows. In “Mathematical model” section, we present 
mathematical models and the fundamental assumption on per capita growth function, 
f(t, x, u). Allee effects without diffusion are presented in “Allee effects without diffusion” 

Fig. 1  Classical negative density dependence (solid) compared to strong (dashed) and weak (dotted) Allee 
effects [8]
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section, where in “Logistic model with Allee effects and harvesting” section we have dis-
cussed the harvesting model without diffusion. Bifurcation point and steady state for the 
diffusion coefficient, d → 0 with and without harvesting are presented in this portion. 
In “Allee effects with diffusion” section we present main results of this paper. We pre-
sent the existence of positive solution and the region where the solution exists for model 
(11). In “Examples and applications”section, we present some numerical examples where 
we present bifurcation points and regions of positive solution for particular functions. 
Finally, in “conclusion” section we present the conclusion and some open problems for 
further research.

Mathematical model
Describing the Allee effect in a mathematical model is more challenging. We will use 
the form (1) for the logistic equation in cases where the coefficients are constant, but we 
want to consider the situations when the intrinsic growth rate r changes sign (concern-
ing time, or in spatial models for space).

The assumptions that increase population density lead to decreases in the birth rate and 
increase the death rate may not always be valid.

Allee (1931) observed that many animals engage in social behavior such as cooperative 
hunting or group defense that can cause their birth rate to increase or their death rate to 
decrease with population density [1]. Also, the rate of predation may decrease with prey 
density in some cases, as discussed by Ludwig in [31] (see recent studies on predation 
under the Allee effect in [42] and references therein). In the presence of such effects, 
which are typically known as Allee effects, the model (1) will take a more general pattern

where f(t, x, u) may be increasing for some values of u and decreasing for others. A sim-
ple case of a model with an Allee effect is

where, r > 0 and 0 < M < K  . The model (3) implies that the density of u will decrease if 
0 < u < M or u > K  but increase if M < u < K  . Introducing diffusion in this model is 
more challenging and effective in spatial heterogeneity.

To demonstrate the model with diffusion and the Allee effect, it is essential to intro-
duce the following short description. Mathematically the growth rate per capita function 
f(t, x, u) will not have maximum value at u = 0 . If f(t, x, u) is negative when u is small, 
we define such a growth pattern has a strong Allee effect or mandatory extinction. If 
f(t, x, u) is decreasing but still positive for the very low density of u, then this growth 
has a weak Allee effect or extinction-survival situation. Considering diffusion in ecology 
model has open a new era.

(1)
du

dt
= ru

(

1−
u

K

)

.

(2)
du

dt
= uf (t, x,u),

(3)
du

dt
= ru(K − u)(u−M),



Page 5 of 26Keya et al. J Egypt Math Soc            (2021) 29:4 	

Let us now consider the general reaction-diffusion mathematical model with homo-
geneous Neumann boundary conditions

Here d is the diffusion rate. The habitat � is a bounded region in Rn with ∂� ∈ C2+β , 
β > 0 and n is the outward normal vector. The functions u(t, x) represent the population 
density of the species and it’s migration rate is positive, d > 0 . We assume that all the 
functions are in the class of C1+β(�) , β > 0 for any x ∈ �.

The similar type model (4) was studied by Shi and Shivaji in [16] for weak Allee 
effects with global bifurcation analysis. They considered the following functions as a 
reaction term:

where the Allee effect is due to a type-II functional response.
It is important to note that the function f(t, x, u) in (4) will be negative or positive 

such that the Allee effect will be seen depending on the choice of species mating dif-
ficulty or, low growth rate or high death rate as well as competition, etc. There are 
several kinds of growth function with the Allee Effect has been discovered since 1931. 
There are numerous example of f(t, x, u) with Allee effects, for examples:

In 1988, Leah Edelstein-Keshet use a quadratic polynomial of the form [32]

The negative quadratic Eq. (5) describes the per capita growth rate under the Allee 
effect. Here the function r(x) is the intrinsic growth rate of species and bounded. Also 
a, b > 0 , and depending on the choice of a there could be unconditional stability; extinc-
tion-stability situation; and unavoidable extinction which we defined as no Allee effect 
(similar to logistic growth); weak Allee effect; and strong Allee effect. We will now define 
an important function for further studies.

Definition 1  A sparse function is a function f : � → R such that f (�) << |�| , where 
|�| is the magnitude of a set (i.e., the number of elements in the set). The function f is 
also in the class of C1+α(�), 0 < α < 1.

Biologically sparse means thinly scattered (species are set or planted here and there 
or, not being dense or close together), and any species of the population having this 
property is known as a sparse population. This idea leads to a sparsity function, which 
gives biological meaning to a mathematical expression.

The next two growth function with Allee effects are a variation of (5) and are 
obtained by modifying the Verhulst logistic model

(4)











∂u

∂t
= d�u+ u(t, x)f (t, x,u), t > 0, x ∈ �,

∇u · n = 0, t > 0, x ∈ ∂�,
u(0, x) = u0(x), x ∈ �.

f (t, x,u) = r(x)

(

1−
u(t, x)

K (x)

)

−
A

1+ Bu(t, x)
, or f (t, x,u) = m(x)u(t, x)− b(x)u2(t, x),

(5)f (t, x,u) = r(x)− b(u(t, x)− a)2.
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The function (6) was broadly discussed in [33, 34]. Here M(x) is a sparse function, 
defined as M(x) < K (x) , with K(x) being the carrying capacity. And by choice of differ-
ent M(x), different type of Allee effects occurs. Similarly (7) was discussed in [35].

Another choice of f(t,  x,  u) shown in (8), which is more appealing choice for Allee 
effect than the previous Eqs. (6) and (7) and is broadly discussed in [36, 37].

Here M(x) has the same interpretation as Eq. (6) and (7). Also by choice of constant C, 
(8) is a captivating choice, since the dynamics approaches logistic growth for large u. 
Model (8) has already been used with C ≡ 0 in competition, predation and meta-pop-
ulation models ([36, 38] and references therein). Therefore, considering model (8) with 
C > 0 yields a more flexible model with variable extinction rates.

The problem (8) with C = sup
�

[

r(x)
K (x)

]

 and re-parameterization gives

Now choosing b = − K (x)M(x)

1+ 1
C u(t,x)

 , c = 1
C and a = K (x)+M(x) , we get the following 

equation

In 1996, Takeuchi proposed and discussed this form (9) of Allee effect with a, b,C > 0.
The per capita growth function (10) proposed by Jacobs in 1984 combines features of 

the heuristic approach with biological reasoning; (see [40])

where α,β ,ω, γ > 0 . The function defined in (10) treats the Allee effect and negative 
density dependence separately and may combine them in a wide range of biologically 

(6)f (t, x,u) =r(x)

(

1−
u(t, x)

K (x)

)(

u(t, x)−M(x)

K (x)

)

.

(7)f (t, x,u) =r(x)

(

1−
u(t, x)

K (x)

)(

u(t, x)

M(x)
− 1

)

.

(8)f (t, x,u) = r(x)

(

1−
u(t, x)

K (x)

)(

1−
M(x)+ C

u(t, x)+ C

)

.

f (t, x,u) = r(x)

(

1−
u(t, x)

K (x)

)(

1−
M(x)+ C

u(t, x)+ C

)

= r(x)
K (x)− u(t, x)

K (x)
· u(t, x)+ C −M(x)− C

u(t, x)+ C

=
r(x)

K (x)
·
(K (x)− u(t, x))(u(t, x)−M(x))

u(t, x)+ C

= C ·
u(t, x)(K (x)+M(x)− u(t, x))− K (x)M(x)

u(t, x)+ C

= −K (x)M(x)

1+ 1
C u(t, x)

+ u(t, x)
(K (x)+M(x)− u(t, x))

1+ 1
C u(t, x)

.

(9)f (t, x,u) = b+ u(t, x)
a− u(t, x)

1+ cu(t, x)
.

(10)f (t, x,u) = r0 + αβ
uω

uω + β
− cuγ ,
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plausible relationships. On the other hand, the model is quite complicated, and conse-
quently, much work has not been studied.

Since each functions (5)–(10) are biologically meaningfull and generalized, see [41] 
for more details, here we mainly consider the function (7) with our diffusion model 
(4). Using Eq. (7) is more appropriate to this paper since the main concept of this 
paper is to show both strong and weak Allee effect in a heterogeneous environment 
with and without diffusion. The sparsity function here gives the demographic Allee 
effect and made extinction of species within a short period in the presence of diffu-
sion. The following sections will cover the analytic discussions and numerical approx-
imations for further possibilities of this kind of Allee effect. By considering suitable 
sparse function and parameters the function of the other could give similar results 
and also broadly discussed and established in the references provided. Numerically 
we also consider the cases where functions (6) and (8) appears.

Let us now consider the following mathematical model of (4) with f(t,  x,  u) as 
defined in (7). Then we get the following regular (classical) diffusion model with Allee 
effect:

For spatial positive functions M(x) and K(x), it is assumed that 0 < M(x) < K (x) for 
any x ∈ � . Here, M(x) is the sparsity function and r(x) > 0 is the intrinsic growth rate. 
Because of the choice of sparsity function, a species could have an Allee effect or not. 
Therefore, the maximum population density is K(x) and is known as the environment 
carrying capacity. Throughout the paper, we have assume that the growth rate per capita 
(7) [as well as (5)–(10)] satisfies: 

	(h1)	 For any u ≥ 0 , f (t, ·,u) ∈ C1+β(�) for β ∈ (0, 1) , and for any x ∈ � , 
f (t, x, ·) ∈ C1(R+);

	 (h2)	 For any x ∈ � , there exists u2(x) ≥ 0 such that f (t, x,u) ≤ 0 for u(t, x) > u2(x) , 
and u2(x) ≤ K (x) for all x ∈ � ; and

	(h3)	 For any x ∈ � , there exists u1(x) ≥ 0 such that f (t, x, ·) is increasing in 
[0,u1(x)] , f (t, x, ·) is decreasing in [u1(x),∞) , and there exists N > 0 such that 
N ≥ f (t, x,u1) for all x ∈ �.

From the assumptions, the function u2(x) indicates the crowding effects of the popu-
lation at x, which may vary by location but it has a uniform upper bound, K(x). The 
function u1(x) is where f(t, x, u) attains the maximum value. Here we still allow logis-
tic growth in cases where u1(x) = 0 . The constant N is the uniform upper bound of the 
growth rate per capita.

The function f(t, x, u) could be logistic or having Allee effect based on the following 
assumptions (see also Fig. 2):

•	 Logistic type when f (t, x, 0) > 0 , u1(x) = 0 and f (t, x, ·) is decreasing in [0,u2(x)] 
(Fig. 2a).

(11)











∂u

∂t
= d�u(t, x)+ r(x)u(t, x)

�

1−
u(t, x)

K (x)

��

u(t, x)

M(x)
− 1

�

, t > 0, x ∈ �,

∇u · n = 0, t > 0, x ∈ ∂�,
u(0, x) = u0(x), x ∈ �.



Page 8 of 26Keya et al. J Egypt Math Soc            (2021) 29:4 

•	 Weak Allee effect type when there exists xs > 0 such that f (t, x, 0) ≥ 0 for x > xs 
and f (t, x, 0) ≤ 0 for x < xs in a non-empty open domain �s ⊂ � . Also u1(x) > 0 , 
f (t, x, ·) is increasing in [0,u1(x)] , and f (t, x, ·) is decreasing in [u1(x),u2(x)] 
(Fig. 2b).

•	 Strong Allee effect type when f (t, x, 0) < 0 , u1(x) > 0 , f (t, x,u1) > 0 , f (t, x, ·) is 
increasing in [0,u1(x)] , f (t, x, ·) is decreasing in [u1(x),u2(x)] (Fig. 2c).

Throughout the paper, we will consider f(t, x, u) as defined in (7), which satisfies (h1)–
(h3). To estimate the long-time dynamics of the species whether they will persist or 
become extinct; steady state solution and eigenvalue-eigenfunction method are used to 
determine the dynamical behavior.

Allee effects without diffusion
Logistic model with Allee effects

Consider the case when diffusion is ignorable; that is d → 0 (for historical interest, see 
[42]), then the species birth (or death) is only dependent on growth rate (or death rate). 
If we allow Allee effects in this type of model, we get the following reduction model of 
(11) with d = 0:

(12)







du

dt
= ru(t)

�

1−
u(t)

K

��

u(t)

M
− 1

�

, t > 0,

u(0) = u0,

u

uf
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Fig. 2  The graphs on top row are growth rate uf(t, x, u), and the ones on lower row are growth rate per 
capita f(t, x, u), where a logistic for M → 0 ; b weak Allee effect for M = 1.1+ cos(πx) ; c strong Allee effect 
for M = −(1.1+ cos(πx)) ; with K(x) = 2.0+ cos(πx) , d = 1.0 , r(x) = 1.2 over � = [0, 1] . In all figure f(t, x, u) 
follows (7)
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where M < K  . The parametric values, r, is defined as the intrinsic growth rate, K is the 
carrying capacity, and M is the Allee threshold.

Let g(u) = ru(t)

(

1− u(t)

K

)(

u(t)

M
− 1

)

 . To find the stationary solutions, u∗ of (12), 

directly we set du
∗

dt
= 0 such that

Also we get

Since parameters r and K, except M, are strictly positive, and M is the Allee threshold 
(positive or negative threshold) and M < K  , then depending on the choice of M, we 
have the following two cases:

Case 1 When 0 < M < K  (weak Allee effect):
Using u∗ = {0, M, K } in (13), we get,

Therefore, u∗ = {0, K } are stable solution of (12) and u∗ = M is the unstable state of (12) 
when the species are facing weak Allee effects.

Case 2 When M < 0 < K  (strong Allee effect):
Putting u∗ = {0, M, K } in (13), where M = −|M| , we get that the equilibrium 0 

does not change its stability. But when, M = −|M|,

Therefore, u∗ = 0 is the only stable solution of (12) and u∗ = M, K  are unstable state of 
(12), when the species are facing strong Allee effects.

For a single species population in ecology, the biological significance of these sta-
ble-unstable strategies is that either the species repelled or converge to the carry-
ing capacity. The present study employs that the stable situation is either u = 0 or 
u(t) = K  , i.e., the population will die out or survive, respectively, and the maximum 
population density is K. A bifurcation point or threshold level can be found in an 
unstable solution, u(t) = M.

For the sake of diversity and to cover the wide range of studies, in the following sec-
tion, we introduce the harvesting term in absence of diffusion.

∴ ru∗
(

1−
u∗

K

)(

u∗

M
− 1

)

= 0

⇒ u∗ = {0, M, K }.

(13)
dg

du
= r

{(

1−
u

K

)( u

M
− 1

)

+
u

M

(

1−
u

K

)

−
u

K

( u

M
− 1

)}

.

dg

du
(0) =− r < 0;

dg

du
(M) =r

(

1−
M

K

)

> 0; and

dg

du
(K ) =− r

(

K

M
− 1

)

< 0.

dg

du
(M) =

dg

du
(−|M|) = r

(

1+
|M|
K

)

> 0; and

dg

du
(K ) =r

(

1+
K

|M|

)

> 0.
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Logistic model with Allee effects and harvesting

If harvesting is involved then the model can be formulated in the following way from 
(12):

Here the harvesting function H is constant, H ≥ 0 and H < r , and in case of Allee 
effects, M < K  . Let us define the following function

and

Now letting du
dt

= 0 , we get

Therefore, the three equilibrium states of (14) are

The equilibrium states u2 and u3 exist as long as

Let us define D :=
√

r2(K −M)2 − 4rKMH  which modify u2 and u3 in the following 
mathematical structures

Now from Eq. (15), we get

(14)







du

dt
= ru(t)

�

1−
u(t)

K

��

u(t)

M
− 1

�

−Hu(t), t > 0,

u(0) = u0 .

g∗(u) = u(t)

[

r

(

1−
u(t)

K

)(

u(t)

M
− 1

)

−H

]

,

(15)
dg∗

du
= r

{(

1− u

K

)( u

M
− 1

)

+ u

M

(

1− u

K

)

− u

K

( u

M
− 1

)}

−H .

u
[

r
(

1−
u

K

)( u

M
− 1

)

−H
]

= 0

⇒ ru2 − r(K +M)u+ KM(r +H) = 0; and u = 0

⇒ u =
r(K +M)±

√

r2(K −M)2 − 4rKMH

2r
; and u = 0.

u1 = 0,

u2 =
1

2r

[

r(K +M)+
√

r2(K −M)2 − 4rKMH
]

, and

u3 =
1

2r

[

r(K +M)−
√

r2(K −M)2 − 4rKMH
]

.

r2(K −M)2 − 4rKMH > 0.

u2 =
1

2

[

(K +M)+
D

r

]

,

u3 =
1

2

[

(K +M)−
D

r

]

.

dg∗

du
(u1 = 0) = −(r +H) < 0, since r > 0, H ≥ 0.
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Thus we conclude that u1 = 0 is a stable solution either there is a strong Allee effect or 
weak Allee effect. The rest two equilibria states are u2 and u3 , and in terms of H and M, 
the following two situations arise:

When 0 < M < K  , i.e., weak Allee effect, then we get the following three cases in 
terms of H:

Case I When H >
r(K −M)2

4KM
 , that is if D2 < 0 then u2,u3 ∈ C \ R hence their stability 

is irrelevant and we have no conclusion.

Case II If H =
r(K −M)2

4KM
 then D = 0 and the system (14) has one identical solu-

tion, u2 = u3 = K +M
2

 and from (15) it is seen that

Therefore, in this situation, the system has a unique positive equilibrium, which is 
semi-unstable.

Case III If H <
r(K −M)2

4KM
 then D > 0 and the problem (14) has two distinct solu-

tions u2 and u3 , where

Since D > 0 , u2 is always positive. We recall (15) and get the simplified form as follows:

such that

Using u2 = 1
2

[

(K +M)+ D
r

]

 , we get

It is noted that dg
∗

du

(

K +M
2

)

= r

[

(K +M)2

4KM
− 1

]

−H = 0 when H = r(K −M)2

4KM
 . 

Hence there exits at least one set of positive parameters, r, K , M, and H with M < K  
such that we assume H = r(K −M)2

4KM
− ǫ, ǫ > 0 for H <

r(K −M)2

4KM
 , where ǫ is small 

enough. Using the value of H, it is found that D = 2
√
rǫKM > 0 . Substituting H and D 

in (16) yields

H <
r(K −M)2

4KM
, H =

r(K −M)2

4KM
, and H >

r(K −M)2

4KM
.

dg∗

du

(

K +M

2

)

= 0.

u2 =
1

2

[

(K +M)+
D

r

]

and u3 =
1

2

[

(K +M)−
D

r

]

.

dg∗

du
= r

[

−
3

KM
u2 +

2(K +M)

KM
u− 1

]

−H ,

dg∗

du
(u2) = r

[

−
3

KM
u22 +

2(K +M)

KM
u2 − 1

]

−H .

(16)
dg∗

du
(u2) = r

[

(K +M)2

4KM
− 1

]

−H −
[

K +M

2KM
D +

3

4rKM
D2

]

.
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In case of equilibrium point u3 , it is seen that u3 is positive only for r(K +M) > D . Then 
using the fact that, dg

∗

du

(

K +M
2

)

= 0 and H <
r(K −M)2

4KM
 and from the above con-

structive manner, we found that dg
∗

du
(u3) > 0.

All the results from case III are summarized as follows: 

1.	 For D > 0 , it is obvious that u2 > 0 . Using the fact that 
dg∗

du

(

K +M

2

)

= 0 and 

H <
r(K −M)2

4KM
 , we have 

dg∗

du
(u2) < 0.

2.	 When r(K +M) > D then u3 > 0 , and we have 
dg∗

du
(u3) > 0. If r(K +M) < D , the 

solution u3 is strictly negative and the solution is not acceptable.

The stable and convergent solutions are presented in Fig. 3 both for weak and strong 
Allee effects. For large time, t, the solution u(t) → u2 when M is positive (Fig.  3a). 
Similarly, in case of strong Allee effect, the solution u(t) is converging to u1 = 0 
(Fig. 3b).

In conclusion, for weak Allee effect, we have two stable equilibria u1 = {0, u2} , and 
one unstable equilibrium state u3 . Hence the solution of the model (14) is decreasing 
for 0 < u(t) < u3 , and increasing for u3 < u(t) < u2.

In case of strong Allee effects, that is when M < 0 < K  , we put −|M| instead of M, 
then we get the following equilibria

dg∗

du
(u2) = −r + ǫ −

[

K +M

2KM
2
√
rǫKM +

3

4rKM
4rǫKM

]

= −r + ǫ −
K +M

KM

√
rǫKM − 3ǫ

= −r − 2ǫ −
(K +M)

√
rǫKM

KM
< 0.
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Fig. 3  Numerical solutions of (14) for r = 0.8147, K = 1, u0 = 0.5 with a 0 < M = 0.30 < K , H = 0.2661 , 
and a M = −0.9058 < 0 < K , H = 0.1270
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Where D∗ :=
√

r2(K + |M|)2 + 4rK |M|H  . Here we also get three cases in terms of H:

Since D∗ is not valid for this H <
−r(K + |M|)2

4K |M|
 , so there is no equilibrium point, that is 

u2,u3 ∈ C \ R.
On contrary, the value − r(K + |M|)2

4K |M|  is strictly negative since r, K  and |M| are strictly 

positive. Hence H is negative for either, H =
−r(K + |M|)2

4K |M|
 or, H >

−r(K + |M|)2

4K |M|
 , which 

is a contradiction of our earliest assumption that harvesting can not be negative. Consider-
ing this cases, we can conclude that there is no condition of D∗ found, such that a positive 
equilibrium exists when the harvest is positive.

Therefore, if we allow harvesting in a strong Allee effect, the resulting behavior is diverg-
ing, and does not exist a stable point except possibly, u1 = 0.

Let us now introduce the diffusion term in our considered model for further study.

Allee effects with diffusion
In the dynamical behavior of (11) without an Allee effect, the results are well established. 
When the species has logistic growth, there is a critical value d1 > 0 such that 0 < d < d1 , 
i.e. for slow diffusion, there is a unique positive steady state u∗(x) , which is the asymp-
totic limit for any non-negative initial distribution except u0 ≡ 0 , thus the persistence of 
the population is achieved. If d > d1 , the diffusion is fast and the only non-negative steady 
state solution is u∗ = 0 , thus the extinction is inevitable; the readers can check the literature 
( [16], Section 1) for more details about the inevitable extinction. If u(x) is any stationary 
solution of (11), consider the following eigenvalue problem to analyze the linear stability of 
the system,

where fu is the derivative of f with respect to u, and

The function φ(x) is the eigenfunction and σ is the corresponding eigenvalue. Here the 
constant d1 = 1/σ1(f ,�) , and σ1(f ,�) is the principle eigenvalue of the linearized sys-
tem of

u1 =0,

u2 =
1

2

[

(K − |M|)+
D∗

r

]

, and

u3 =
1

2

[

(K − |M|)−
D∗

r

]

.

H <
−r(K + |M|)2

4K |M|
, H =

−r(K + |M|)2

4K |M|
, and H >

−r(K + |M|)2

4K |M|
.

�φ + σ r(x)φ[f + ufu] = 0, x ∈ �, ∇φ = 0, x ∈ ∂�,

f (t, x,u) = r(x)

(

1− u∗(x)

K (x)

)(

u∗(x)

M(x)
− 1

)

.

(17)�φ + σ r(x)φ

(

1−
u∗(x)

K (x)

)(

u∗(x)

M(x)
− 1

)

= 0, x ∈ �, ∇φ = 0, x ∈ ∂�.
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Bifurcation analysis

Let σ = d−1 and u∗(x) be the stationary solution of (11) then

When a stable solution of (18) is viewing as an equilibrium solution to (11) can be deter-
mined by the eigenvalue problem:

Hence the principle eigenvalue is defined by

Thus the bifurcation point for positive solutions is defined by

Here f (t, x,u∗) follows assumptions (h1)–(h3) and σ1 ≡ σ1(f ,�) is a bifurcation point, 
where nontrivial solution of (18) bifurcate from trivial solution. The classical type of 
bifurcation diagram at σ1 is shown in Fig. 4. The more details about this type of bifurca-
tion can be found in ([16], Section 2).

Existence of a positive stationary solution

Consider the steady state of (11), if u∗(x) being the positive solution then we get

which implies

(18)











�u∗(x)+ σ r(x)u∗(x)

�

1−
u∗(x)

K (x)

��

u∗(x)

M(x)
− 1

�

= 0, x ∈ �,

∇u∗ · n = 0, x ∈ ∂�,
u(0, x) = u0(x), x ∈ �.

�φ + σ r(x)φ

(

1−
u∗(x)

K (x)

)(

u∗(x)

M(x)
− 1

)

= 0

⇒ −
∫

�

|∇φ|2 dx + σ

∫

�

r(x)φ2

(

1− u∗(x)

K (x)

)(

u∗(x)

M(x)
− 1

)

dx = 0

⇒ σ =

∫

�

|∇φ|2 dx

∫

�

r(x)φ2

(

1− u∗(x)
K (x)

)(

u∗(x)
M(x)

− 1

)

dx

.

σ1 = sup
u∈H1

0 (�)

∫

�

|∇u∗|2 dx

∫

�

r(x)u∗2(x)

(

1− u∗(x)
K (x)

)(

u∗(x)
M(x)

− 1

)

dx

.

(19)d1 =
1

σ1(f ,�)
= sup

u∈H1
0 (�)







�

�

f (t, x,u∗)u∗2(x) dx :
�

�

|∇u∗|2 dx = 1







.

0 = d�u∗(x)+ r(x)u∗(x)

(

1−
u∗(x)

K (x)

)(

u∗(x)

M(x)
− 1

)

, x ∈ �,

(20)











−�u∗ =
1

d
ru∗

�

1−
u∗

K

��

u∗

M
− 1

�

, x ∈ �,

∇u∗ · n = 0, x ∈ ∂�,
u∗(0, x) = u0(x), x ∈ �.
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Now the following situations occur for a steady-state solution.

Theorem 1  Let σ1 ≥ r1
(K1 −M1)

2

4K1M1
 . Then (20) has no positive solution.

Proof
Let σ1 be the principle eigenvalue of the operator −� with Neumann boundary conditions 
and φ > 0 in � be a corresponding eigenvector. Assume that u be a positive solution of 
(20) then by the Green’s identity, we have

Fig. 4  Classical bifurcation diagram from left to right showing for logistic; strong Allee effect and weak Allee 
effect, respectively. Here σ = d

−1 , where d is the diffusion constant
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Since f(t, x, u) follows assumption (h1)–(h3), let f̃ (u) = r1

(

1− u

K1

)(

u

M1
− 1

)

 , where 

r1, K1 are maximum value of the functions r(x), K (x) and M1 is the minimum value of 
M(x), respectively in the domain � . Then

For critical value we know 
∂ f̃ (u)

∂u
≡ 0 , which gives u = K1 +M1

2
.

Since 
∂2 f̃ (u)

∂u2
= −

2r1

K1M1
< 0 , the function f̃ (u) has a maximum value when 

u =
K1 +M1

2
 . Thus

and u(t, x)f (t, x,u) ≤ u(t, x)f̃ (t, x,u) for u(t, x) ≥ 0 . Thus Eq. (21) implies

But if σ1 ≥ r1
(K1 −M1)

2

4K1M1
 then

which is a contradiction of (22). Hence (20) has no positive solution for 

σ1 ≥ r1
(K1 −M1)

2

4K1M1
 . � �

(21)

∫

�

(u�φ − φ�u) dx = 0

⇒
∫

�

[

1

d
r(x)u(t, x)

(

1− u(t, x)

K (x)

)(

u(t, x)

M(x)
− 1

)

φ − σ1φu

]

dx = 0

⇒
∫

�

φu(t, x)

[

1

d
r(x)

(

1− u(t, x)

K (x)

)(

u(t, x)

M(x)
− 1

)

− σ1

]

dx = 0.

∂ f̃ (u)

∂u
= r1

[

K1 +M1

K1M1
−

2

K1M1
u

]

.

f̃0 := sup
�

f̃ (u)

= r1

(

1− K1 +M1

2K1

)(

K1 +M1

2M1
− 1

)

= r1
K1 −M1

2
·
K1 −M1

2

= r1
(K1 −M1)

2

4K1M1
,

(22)

0 =
∫

�

(u�φ − φ�u) dx ≤
∫

�

φu

[

1

d
f̃ (t, x,u)− σ1

]

dx

∴

∫

�

φu

[

1

d
f̃ (t, x,u)− σ1

]

dx ≥ 0.

∫

�

φu

[

1

d
f̃ (t, x,u)− σ1

]

dx <

∫

�

φu

(

1

d
f̃0 − σ1

)

dx ≤ 0,
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Theorem  2  There exists positive constants M0, r1 , K̃0 and µ ∈ (0, 1] such that for 
K0 > K̃0 , (20) has a positive solution and the positive solution occurs in the region 
[

K0

2
µ2,

K0

2

]

.

Proof
At first we will prove an existence result for (20). Let σ be the principal eigenvalue of the 
operator −� with Neumann boundary conditions and φ > 0 is the corresponding eigen-
function such that ||φ||∞ = 1 . Hence there exists δ > 0, µ ∈ (0, 1] and m > 0 such that

where �δ :=
{

x ∈ � | d(x, ∂�) < δ
}

 . From (20), we have the reaction function as 
defined in a simplest form such that

where K0 ≤ K1 , M0 ≤ M1 and K1,M1 and r1 are the maximum value of 
K (x),M(x) and r(x) , respectively as defined in Theorem 1.

It is easily observed that the zeros of g are 0, M0 and K0 where K0 > M0 and hence

Let u∗ be the first positive zero of 
∂g

∂u
 in which

But g is convex on 
(

0,
K0 +M0

3

)

 and hence

If we recall the second set of Fig. 2, which describes the behavior of u and u∗ (Fig. 5). We 
first claim that

Thus 
�

K0
→ 0 as K0 tends to infinity. Hence there exists K (1)

0  such that for every 

K0 > K
(1)
0  , we have

(23)|∇φ|2 − σφ2 ≥ m for x ∈ �δ ,

(24)∇ · φ ≥ µ for x ∈ ∂�δ ,

g(u) = r1u

(

1−
u

K0

)(

u

M0
− 1

)

,

g(u) := −
r1

K0M0
u(u− K0)(u−M0).

u∗ =
1

3

[

(K0 +M0)−
√

K 2
0 +M2

0 − K0M0

]

<
K0 +M0

3
.

� := − inf
u∈[0,K0]

g(u) <
r1

3

[

(K0 +M0)−
√

K 2
0 +M2

0 − K0M0

]

= r1u
∗.

�

K0
<

1

K0

[

r1

3

{

(K0 +M0)−
√

K 2
0 +M2

0 − K0M0

}]

=
r1M0

(K0 +M0)+
√

K 2
0 +M2

0 − K0M0

.
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Next, we also claim that 
K0

M0
→ ∞ as K0 → ∞ . Hence there exists K (2)

0  such that for 

every K0 > K
(2)
0  , we have

and Kµ := inf
u∈

[

K0
2 µ2,

K0
2

]

g(u) > 0 . Finally

which tends to infinity as K0 → ∞ . Thus there exists K (3)
0 > K

(2)
0  such that for every 

K0 > K
(3)
0  , we have

Define K̃0 := max
{

K
(1)
0 ,K

(3)
0

}

 and for some M0 > 0, r1 > 0 and K0 > K̃0 , (20) has a 

positive solution. At this stage, we will use the upper and lower solution method to show 

the existence of a positive integral which lies in the interval 
[

K0

2
µ2,

K0

2

]

 ; µ ∈ (0, 1].

First, we prove that ψ =
K0

2
φ2 is a sub-solution of (20). For x ∈ �δ,

(25)m >
�

K0
.

(26)
[

K0

2
µ2,

K0

2

]

⊂ (M0,K0),

Kµ

K0
=

1

K0

[

min

{

g

(

K0

2
µ2

)

, g

(

K0

2

)}]

=
1

K0

[

min

{

−
r1µ

2

4M0
K0(µ

2 − 2)

(

K0µ
2

2
−M0

)

,
r1

4M0
K0

(

K0

2
−M0

)

}]

= min

{

− r1µ
2

4M0
(µ2 − 2)

(

K0µ
2

2
−M0

)

,
r1

4M0

(

K0

2
−M0

)

}

,

(27)σ <
Kµ

K0
.

u

uf

0.0 0.2 0.4 0.6 0.8 1.0

-0.4
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Fig. 5  Growth rate function uf(t, x, u) with weak Allee effect for M = 1.1+ cos(πx) , K(x) = 2.0+ cos(πx) , 
d = 1.0 and r(x) = 1.2 over the domain � = [0, 1]
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Also for the boundary:

Hence ψ =
K0

2
φ2 is a sub solution of (20). We also note that φ = K0 is a super solution 

for (20) since K(x) is the carrying capacity of the environment, therefore the solution 
would not exceed it. However, if the solution exceeds the carrying capacity for some-
times, the solution will not be stable, and within a short period, it will again converge to 

K(x). Thus there exists a positive solution of (20) in 
[

K0

2
µ2,

K0

2

]

 .�  �

Examples and applications
To learn the importance of application of Allee effects in biological invasions, we can 
consider two situations: In one case, consider a species, which is in red list, that is the 
population density is very low, so there is not enough mating and the environment is not 
favorable, so ultimately in a short time, the species will go extinct. But if we can improve 
the sparse function by giving their favorable sparse (in this case, the sparse function will 
be very low), then the species could survive.

In other cases, if a species is invaded by another species (e.g., bacteria or virus), 
then the sparse function for invader species will play an important role to immune the 
invaded species. In this situation, we have to higher the parametric value of sparse func-
tion so the invader species could not find favorable space to spread in invaded species. 
Consequently, the invader species will go extinct and the invaded body will be immune.

Considering all types of similar cases and form the numerical assumptions, the follow-
ing numerical behaviors are simulated.

Example 1

Consider the carrying capacity K = 2.5 with an initial density of any species u0 = 0.5 and 
intrinsic growth rate of the species, r = 1.0 . Then the numerical behavior of solutions of 
(12) shows that if the species has a strong Allee effect and the sparse function M is nega-
tive, then the solution will always be repelled to zero, which is following in Fig. 6a.

−�ψ = K0(σφ
2 − |∇φ|2)

≤ −K0m; using (23)

≤ −�; using (25)

≤ inf
u∈[0,K0]

g(u)

≤ r1u

(

1−
u

K0

)(

u

M0
− 1

)

.

−�ψ = K0(σφ
2 − |∇φ|2)

≤ K0σ

≤ Kµ = inf
u∈

[

K0
2 µ2,

K0
2

]

g(u); using (27)

≤ r1u

(

1−
u

K0

)(

u

M0
− 1

)

.
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If the species are following a weak Allee effect and the sparse function M is positive but 
M < K  , then we see that for any M ∈ (0,u0) , the solution of (12) converges to its maxi-
mum yields, towards carrying capacity. But if u0 < M < K  , then the solution is repelling 
and converging to zero. For M = u0 , there exists a constant solution. See Fig. 6b which 
follows our assumption (h1)–(h3) and the stable conditions of (12).

Example 2
When diffusion is ignorable, that is in the model (12) we have two stable solutions, one is 
repelling and the other one is asymptotically stable. In numerical behavior, we see simi-
lar results where either the species is extinct or survives. In numerical behavior at first 
we vary initial density, and see that the solution, u(t) of (12) for K = 2.5 , r = 1.0 and 
M = 1.15 either tends to zero or, converge to K. So the solutions of (12) are locally stable. 
Also there is a constant solution if u0 ≡ M as seen in Fig. 7a.

In Fig. 7b, we exhibit that if sparse function M is having lower significance and the ini-
tial population is in a better position then the species will exist and will converge to K. 
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Contrariwise if the sparse function is more significant in the domain and initial densities 
are very low, then the species will die out in a short time. In Fig. 7b we vary sparse func-
tion as M = {0.6, 0.9, 1.2, 1.8} with u0 = 0.9 , K = 2 and growth rate is same as above. 
Here we also see one stable solution and one repelled solution.

Example 3
Consider the Allee effect model with harvesting as in (14). Here we see that for a small 
harvesting rate and sparse function, positive and lower than initial density gives stability 
at its utmost point. And on the contrary situation, the solutions converge to zero.

Again we consider various harvesting rates; lower or higher than initial density for 
strong Allee effects, that is the sparse function is being negative. In this case, zero is the 
only converging solution. The following Fig. 8 is showing the significance of harvesting 
functions while we choose K = 4.0 , u0 = 1.0 , r = 1.0 and for M = 0.6 (Fig. 8a) and for 
M = −0.6 (Fig. 8b). This is also a case of local stability and both figure shows the condi-
tions of Allee effects as described for model (14).

Example 4
Assume now that diffusion is not ignorable, consider in (11), K (x) = 2.5+ cos(πx) and 
M(x) = 1.2+ cos(πx) with migration rate d = 0.1 , growth rate r = 1.0 and initial den-
sity u0 = 0.5 . Then the model (11) has positive solution in the domain � = (0, 1) , which is 
shown in Fig. 9.
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H = 0.1, 0.3, 0.7, and 1.0 ; where a M = 0.6 (weak Allee effect), and b M = −0.6 (strong Allee effect)
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Example 5

While considering diffusion is not zero and not close to zero if we choose some particu-
lar function then we see that there exists one d∗ for which, when d ≥ d∗ there exist no 
positive solution, positive solutions occur only on 0 < d < d∗ . Particularly in (11) let 
K (x) = 2.5+ cos(πx) , M(x) = 1.2+ cos(πx) , r(x) = 1.0 and u0 = 0.5 . Then numeri-
cally we get a bifurcation point d∗ = 0.154.

Any value greater than this d∗ is always tending to zero, and the species extinct after a 
short time. The following Fig. 10 is showing the dynamical behavior of d∗ , that is when 
diffusion or migration is very slow, the species will persist. This numerical behavior is 
analytically proven in Theorem 1.
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Example 6
For model (11), let the distribution functions are K (x) = 2.5+ cos(πx) , 
M(x) = 1.2+ cos(πx) , growth rate is r(x) = 1.0 on the domain � = (0, 1) and initially 
crowding density is u0 = 0.5.

Then the positive solutions of (11) lies on the region [0, K0
2 ] ⊂

[

K0
2 µ2, K0

2

]

 ; µ ∈ (0, 1] , 
which is analytically asserted in Theorem 2. In numerical assertion, from Fig. 11 when 
d = 0.05 (Fig.  11a), region of positive solution is [0.4, 0.9] ⊂ [0, K0

2 ] ; when d = 0.1 
(Fig. 11b), region of positive solution is [0.4, 1.2] ⊂ [0, K0

2 ] and when d = 0.154 (Fig. 11c), 
region of positive solution is [0, 0.4] ⊂ [0, K0

2 ] . Here d = 0.154 = d∗ is a bifurcation point 
as described in Fig. 10.

Example 7

Considering diffusion model (4) with growth rate function with Allee effect as in (6), 
then the behavior of solution diverges for certain d > d∗ . If we increase the initial value 
then d∗ changes for the same sparse function and carrying capacity. For an initial 
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value d∗ is not unique and each cases solution exists for 0 < d ≤ d∗ . In (4) with (6), let 
K (x) = 2.6+ cos(πx) , M(x) = 1.1+ cos(πx) , r(x) = 1.0 . Then numerically we get a 
bifurcation point d∗ = 0.021 for u0 = 0.5 , see Fig. 12a. For u0 = 0.9 , we get bifurcation 
point d∗ = 0.038 as in Fig. 12b. The numerical illustrations also indicate that there is an 
impact of initial density when the Allee effect occurs. The simulating result ensures the 
theoretical outcome as shown in Theorem 1.

Conclusion
In this paper, we studied a generalized reaction-diffusion model for single species hav-
ing an Allee effect, where the species has carrying capacity, K, growth rate function, r 
and sparse function, M, 0 < M < K  . For this generalized model, we discussed various 
Allee effects, and regarding these Allee effects, we discussed different types of growth 
function and their behavior. While considering a particular growth with the Allee effect 
(either strong or, weak, or both), we first considered diffusion is ignorable and found the 
bifurcation point and stable steady state when d → 0 . We also find a stable state involv-
ing harvesting. When d  ≡ 0 and not close to zero, we have found a bifurcation point d∗ 
for which the steady states changes to unsteady. For some particular function, we see 
that there exists one d∗ for which when d ≥ d∗ there exists no positive solution, positive 
solutions occur only on 0 < d ≤ d∗ . For any greater value of d∗ , the solution tends to 
zero and the species is in extinction at a short time. The Fig. 10 is showing the dynami-
cal behavior of d∗ as shown analytically in Theorem 1. The existence of a solution (might 
have multiple solutions) is proved and the region of the positive solution is also found. 
Some numerical examples were presented to justify the analytic study in a non-empty 
open domain.

Finally, let us outline some open problems and topics for research and discussion 

1.	 Consider (11) with the Dirichlet and the Robin boundary conditions.
2.	 For variable periodic parameters, does a positive periodic solution depend on the dif-

fusion coefficient?
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3.	 Originally some of the models described in terms of ordinary differential equa-
tions incorporate some kind of delay, for example, the Nicholson’s blowflies equa-
tion. Extend the results of the present paper to delay models, explore the influence of 
delays and compare results with classical and directed diffusion strategies.

4.	 It is known that, for example, for the logistic growth with a periodic carrying capac-
ity, the average of the positive periodic solution over the time cycle is less than the 
average resource function. Is this true for the periodic model with the directed diffu-
sion?

5.	 Consider the modified model of (11) as 

 where P(x) is the resource distribution function of species u(t, x), and other func-
tions have the same interpretation as noted for (11).
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