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Introduction
Closure operators are very useful tool in several areas of mathematical structures with 
direct applications, both mathematical (e.g, topology, logic) and extra-mathematical 
(e.g, data mining, knowledge representation). In fuzzy set theory [1, 2], several particu-
lar kinds such as general theory of closure operators which operate with fuzzy sets (so-
called fuzzy closure operators) are studied [3–6].

Ward et al. [7] introduced a complete residuated lattice which is an algebraic structure 
for many valued logic. Bělohlávek [8] investigated information systems, decision rules 
and developed the notion of fuzzy contexts using Galois connections with R ∈ LX×Y  on 
a complete residuated lattices. Höhle [9] introduced L-fuzzy topologies with algebraic 
structure L (cqm, quantales, MV-algebra). It has developed in many directions [10–12]. 
Recently, Bělohlávek [13, 14] outlined a general theory of fuzzy closure  operators by 
using the structure of the residuated lattice in place of the usual structure of truth value 
on [0, 1]. Fang and Yue [15] studied the relationship between L-fuzzy closure systems 
and L-fuzzy topological spaces from a category viewpoint for a complete residuated lat-
tice L (see also [16]). Ramadan [17] studied the relationship between L-fuzzy interior 
systems and L-fuzzy topological spaces over complete residuated lattices.

Proximity is an important concept in topology, and it can be considered either as axi-
omatizations of geometric notions, close to but quite independent of topology, or as 
convenient tools for an investigation of topological spaces. Hence, proximity has close 
relations with topology, uniformity and metric. With the development of topology, the 
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theory of proximity makes a massive progress. In the framework of L-topology, many 
authors generalized the crisp proximity to L-fuzzy setting. Katsaras [18, 19] introduced 
the concepts of fuzzy topogenous order and fuzzy topogenous structures in completely 
distributive lattice which are a unified approach to the three spaces: Chang’s fuzzy topol-
ogies [20], Katsaras’s fuzzy proximities [21] and Hutton’s fuzzy uniformities [22] (see 
also [23]) . Subsequently, Liu [24], Artico and Moresco [25] extended it into L-fuzzy set 
theory in view points of Lowen’s fuzzy topology [26]. As an extension of Katsaras’s defi-
nition, El-Dardery [27] introduced L-fuzzy topogenous order in view points of Sostak’s 
fuzzy topology [28], smooth fuzzy topology [29] and Kim’s L-fuzzy proximities [30] on 
strictly two-sided, commutative quantales. L-fuzzy topogenous structures and L-fuzzy 
proximities [23, 31–34] have been developed in a slightly different sense.

In this paper, we introduce the notions of L-fuzzy pre-proximities and L-fuzzy closure 
operators in complete residuated lattices. Moreover, we investigate the relations among 
the L-fuzzy pre-proximities, L-fuzzy closure operators and L-fuzzy co-topologies. We 
show that there is a Galois correspondence between the category of separated L-fuzzy 
closure spaces and that of separated L-fuzzy pre-proximity spaces. In Example 19, as an 
information system as an extension of Pawlak’s rough set [35, 36], L-fuzzy pre-proximi-
ties, L-fuzzy co-topologies and L-fuzzy closure operators are introduced. By using these 
concepts, we can apply them to information systems and decision makings [37].

Preliminaries

Definition 1 ([8–11, 38]) An algebra (L,∧,∨,⊙,→,⊥,⊤) is called a complete residu-
ated lattice if it satisfies the following conditions: 

 (C1) (L,≤,∨,∧,⊥,⊤) is a complete lattice with the greatest element ⊤ and the least 
element ⊥;

 (C2) (L,⊙,⊤) is a commutative monoid;
 (C3) x ⊙ y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume that (L,≤,⊙,∗ ) is a complete residuated lattice with an order 
reversing involution ∗ which is defined by

For α ∈ L and f ∈ LX , we denote (α → f ), (α ⊙ f ),αX ∈ LX as 
(α → f )(x) = α → f (x), (α ⊙ f )(x) = α ⊙ f (x), αX (x) = α, respectively

Some basic properties of the binary operation ⊙ and residuated operation → are col-
lected in the following lemma, and they can be found in many works, for instance [8–11, 
38].

Lemma 2 For each x, y, z, xi, yi,w ∈ L , we have the following properties.

x ⊕ y = (x∗ ⊙ y∗)∗, x∗ = x → ⊥.

⊤x(y) =

{

⊤, if y = x,
⊥, otherwise ,

⊤∗
x(y) =

{

⊥, if y = x,
⊤, otherwise .
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 (1) ⊤ → x = x , ⊥⊙ x = ⊥,

 (2) If y ≤ z , then x ⊙ y ≤ x ⊙ z , x ⊕ y ≤ x ⊕ z , x → y ≤ x → z and z → x ≤ y → x

,
 (3) x ≤ y iff  x → y = ⊤.
 (4) (

∧

i yi)
∗ =

∨

i y
∗
i  , (

∨

i yi)
∗ =

∧

i y
∗
i ,

 (5) x → (
∧

i yi) =
∧

i(x → yi),
 (6) (

∨

i xi) → y =
∧

i(xi → y),
 (7) x ⊙ (

∨

i yi) =
∨

i(x ⊙ yi),
 (8) (

∧

i xi)⊕ y =
∧

i(xi ⊕ y),
 (9) (x ⊙ y) → z = x → (y → z) = y → (x → z),
 (10) x ⊙ y = (x → y∗)∗ , x ⊕ y = x∗ → y and x → y = y∗ → x∗,
 (11) (x → y)⊙ (z → w) ≤ (x ⊙ z) → (y⊙ w),
 (12) x → y ≤ (x ⊙ z) → (y⊙ z) and (x → y)⊙ (y → z) ≤ x → z,
 (13) (x → y)⊙ (z → w) ≤ (x ⊕ z) → (y⊕ w),
 (14) x ⊙ (x → y) ≤ y and y ≤ x → (x ⊙ y),

 (15) (x ∨ y)⊙ (z ∨ w) ≤ (x ∨ z) ∨ (y⊙ w) ≤ (x ⊕ z) ∨ (y⊙ w),

 (16) 
∨

i∈Ŵ xi →
∨

i∈Ŵ yi ≥
∧

i∈Ŵ(xi → yi), 
∧

i∈Ŵ xi →
∧

i∈Ŵ yi ≥
∧

i∈Ŵ(xi → yi),
 (17) (x ⊙ y)⊙ (z ⊕ w) ≤ (x ⊙ z)⊕ (y⊙ w),

 (18) z → x ≤ (x → y) → (z → y) and y → z ≤ (x → y) → (x → z).

Definition 3 [14, 16, 39] A map C : LX → LX is called an L-fuzzy closure operator on X 
if C satisfies the following conditions: 

 (C1) C(⊥X ) = ⊥X,
 (C2) C(f ) ≥ f  for all f ∈ LX,
 (C3) If f ≤ g , then C(f ) ≤ C(g)) for all f , g ∈ LX,
 (C4) C(f ⊕ g) ≤ C(f )⊕ C(g).

The pair (X , C) is called L-fuzzy closure space. An L-fuzzy closure space is called 

(T) topological if C(C(f )) = C(f ) ∀ f ∈ LX,
(U) stratified if C(α → f ) ≤ α → C(f ) for all f ∈ LX and α ∈ L,
(V) co-stratified if C(α ⊙ f ) ≤ α ⊙ C(f ) for all f ∈ LX and α ∈ L,
(W) strong if it is both stratified and co-stratified, i.e, C(α ⊙ f ) = α ⊙ C(f ) for all 

f ∈ LX and α ∈ L,
(X) separated if C(⊤∗

x) = ⊤∗
x for all x ∈ X,

(Y) generalized if C(f )(x) ≥
∨

x∈X f (x),
(Z) Alexandrov if C(

∨

i∈Ŵ fi) =
∨

i∈Ŵ C(fi).

Definition 4 Let (X , CX ) and (Y , CY ) be L-fuzzy closure spaces and 
ϕ : (X , CX ) → (Y , CY ) be a mapping. Then, DC(ϕ) defined by

DC(ϕ) =
∧

f ∈LY

∧

x∈X

(

CX (ϕ
←(f ))(x) → ϕ←(CY (f ))(x)

)
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is called the degree of LF-closure for ϕ . If DC(ϕ) = ⊤, then CX (ϕ←(f )) ≤ φ←(CY (f )) for 
each f ∈ LY , which is exactly the definition of LF-closure mappings between L-fuzzy 
closure spaces.

Remark 5
An L-fuzzy closure space (X , C) is stratified if and only if C(α ⊙ f ) ≥ α ⊙ C(f ).

Definition 6 [16, 17, 39] A mapping F : LX → L is called L-fuzzy co-topology on X if it 
satisfies the following conditions: 

 (T1) F(⊥X ) = F(⊤X ) = ⊤,
 (T2) F(f ⊕ g) ≥ F(f )⊙ F(g) forall f , g ∈ LX,
 (T3) F(

∧

i fi) ≥
∧

i F(fi) forall {fi}i∈Ŵ ⊆ LX.

The pair (X ,F) is called L-fuzzy co-topological space. An L-fuzzy co-topological space is 
said to be 

(A) stratified if F(α ⊙ f ) ≥ F(f ),
(B) co-stratified if F(α → f ) ≥ F(f ),
(C) strong if it is both stratified and co-stratified,
(D) separated if F(⊤x) = ⊤ for all x ∈ X,
(E) Alexandrov if F(

∨

i fi) ≥
∧

i F(fi) forall {fi}i∈Ŵ ⊆ LX.

Definition 7 Let (X ,FX ) and (Y ,FY ) be L-fuzzy co-topological spaces and 
ϕ : (X ,FX ) → (Y ,FY ) be a mapping. Then, DF (φ) defined by

is called the degree of LF-continuous for ϕ . If DF (ϕ) = ⊤, then FY (f ) ≤ FY (ϕ
←(f )) for 

each f ∈ LY , which is exactly the definition of LF-continuous mappings between L-fuzzy 
co-topological spaces.

Definition 8 [8, 36] Let X be a set. A map R : X × X → L is called an L-partial order if 
it satisfies the following conditions 

 (E1) reflexive if R(x, x) = ⊤ for all x ∈ X,
 (E2) transitive if R(x, y)⊙ R(y, z) ≤ R(x, z) for all x, y, z ∈ X,
 (E3) antisymmetric if R(x, y) = R(y, x) = ⊤ , then x = y.

DF (ϕ) =
∧

f ∈LY

(

FY (f ) → FX (ϕ
←(f ))

)
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The relationships between L‑fuzzy pre‑proximities and topological structures

Definition 9 A mapping δ : LX × LX → L is called an L-fuzzy pre-proximity on X if it 
satisfies the following axioms. 

 (P1) δ(⊤X ,⊥X ) = δ(⊥X ,⊤X ) = ⊥,
 (P2) δ(f , g) ≥

∨

x∈X (f ⊙ g)(x),
 (P3) If f1 ≤ f2, h1 ≤ h2 , then δ(f1, h1) ≤ δ(f2, h2) . The pair (X , δ) is called L-fuzzy pre-

proximity space. An L-fuzzy pre-proximity is called an (L,⊙,⊕)-fuzzy pre-prox-
imity if

 (P4) For every f1, f2, h1, h2 ∈ LX we have 

 An L-fuzzy pre-proximity is called an L-fuzzy quasi-proximity on X if it satisfies 
(P4) and

 (Q) δ(f , g) ≥
∧

h{δ(f , h)⊕ δ(h∗, g)}. An L-fuzzy quasi-proximity is called an L-fuzzy 
proximity on X if

 (P) δs = δ where δs(f , g) = δ(g , f ) . An L-fuzzy pre-proximity is called
 (St) stratified if δ(α ⊙ f ,α → g) ≤ δ(f , g) and δ(α → f ,α ⊙ g) ≤ δ(f , g),
 (SE) separated if δ(⊤x,⊤

∗
x) = δ(⊤∗

x ,⊤x) = ⊥ for each x ∈ X,
 (AL) Alexandrov if δ(

∨

i∈Ŵ fi, g) ≤
∨

i∈Ŵ δ(fi, g), δ(f ,
∨

i∈Ŵ gi) ≤
∨

i∈Ŵ δ(f , gi),
 (GL) generalized if δ(f , g) ≤

∨

x∈X f (x)⊙
∨

x∈X g(x).

Definition 10 Let (X , δX ) and (Y , δY ) be L-fuzzy pre-proximity spaces and 
ϕ : (X , δX ) → (Y , δY ) be a mapping. Then, Dδ(ϕ) defined by

is called the degree of LF-proximity for ϕ . If Dδ(ϕ) = ⊤, then δX (ϕ←(f ),ϕ←(g)) ≤ δY (f , g) 
for each f , g ∈ LY , which is exactly the definition of LF-proximity mappings between 
L-fuzzy pre-proximity spaces.

Lemma 11 Let (X , δ) be an L-fuzzy pre-proximity space. Then,

Proof
(1) Let δ(α ⊙ f , g) ≥ α ⊙ δ(f , g) . Then, α ⊙ δ(α → f , g) ≤ δ(α ⊙ (α → f ), g) ≤ δ(f , g) . 
Thus, δ(α → f , g) ≤ α → δ(f , g).

Let δ(α → f , g) ≤ α → δ(f , g) . Then, δ(f , g) ≤ δ(α → α ⊙ f , g) ≤ α → δ(α ⊙ f , g) . 
Thus, α ⊙ δ(f , g) ≤ δ(α ⊙ f , g).

δ(f1 ⊙ f2, h1 ⊕ h2) ≤ δ(f1, h1)⊕ δ(f2, h2),

δ(f1 ⊕ f2, h1 ⊙ h2) ≤ δ(f1, h1)⊕ δ(f2, h2).

Dδ(ϕ) =
∧

f ,g∈LY

(

δX (ϕ
←(f ),ϕ←(g)) → δY (f , g)

)

δ(α ⊙ f , g) ≥ α ⊙ δ(f , g) iff δ(α → f , g) ≤ α → δ(f , g).
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From the following theorem, we obtain the L-fuzzy closure operator induced by an 
L-fuzzy pre-proximity.

Theorem 12 Let δ be an L-fuzzy pre-proximity on X. Define Cδ : LX → LX as follows:

Then,

(1) (X , Cδ) is an L-fuzzy closure space,
(2) If δ is stratified, then Cδ is stratified,
(3) If δ is separated, then Cδ is separated.

Proof
(1)(C1) Since δ(⊤X ,⊥X ) = ⊥,

(C2) Since g ≤ f ∗ , then g → δ(g , g∗) ≥ f ∗ → ⊥ = f .

(C3) If f ≤ h , then

(C4) Since

then we have (a → b)⊕ (c → d) = (a⊙ c) → (b⊕ d) . From Lemma 2, we obtain

Hence, Cδ is an L-fuzzy closure operator on X. 

(2)

(3) By (C2) and

Cδ(f )(x) =
∧

g∈LX

{g(x) → δ(g , g∗) | f ≤ g∗}.

Cδ(⊥X )(x) =
∧

g∈LX {g(x) → δ(g , g∗) | ⊥X ≤ g∗}

≤ (⊤X (x) → δ(⊤X ,⊥X )) = ⊥X (x).

Cδ(h)(x) =
∧

g∈LX {(g(x) → δ(g , g∗)) | h ≤ g∗}

≥
∧

g∈LX {(g(x) → δ(g , g∗)) | f ≤ g∗} = Cδ(f )(x).

((a → b)⊕ (c → d))∗ = (a → b)∗ ⊙ (c → d)∗

= (a⊙ b∗)⊙ (c ⊙ d∗) = (a⊙ c)⊙ (b∗ ⊙ d∗),

Cδ(f )(x)⊕ Cδ(h)(x) =
∧

g∈LX {(g(x) → δ(g , g∗)) | f ≤ g∗}

⊕
∧

k∈LX {(k(x) → δ(k , k∗)) | h ≤ k∗}
=

∧

g ,k∈LX {(g(x)⊙ k(x)) → (δ(g , g∗)⊕ δ(k , k∗)) | f ≤ g∗ , h ≤ k∗}

≥
∧

g ,k∈LX {(g ⊙ k)(x)) → δ(g ⊙ k , g∗ ⊕ k∗)) | f ⊕ h ≤ g∗ ⊕ k∗}

≥ Cδ(f ⊕ h)(x).

α → Cδ(f ) = α →
∧

g∈LX {(g(x) → δ(g , g∗)) | f ≤ g∗}

=
∧

g∈LX {((α ⊙ g(x)) → δ(g , g∗)) | f ≤ g∗}

≥
∧

g∈LX {(α ⊙ g(x)) → δ((α ⊙ g ,α → g∗)) | α → f ≤ α → g∗}

≥ Cδ(α → f ).
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we have Cδ(⊤∗
x) = ⊤∗

x .

Example 13
Let X be a set and R ∈ LX×X be an L-fuzzy pre-order. Define δ : LX × LX → L as

(P1) and (P3) are easily proved.

(P2) For all f , g ∈ LX,

(P4) For all f1, f2, h1, h2 ∈ LX , by Lemma 2 (17),

Hence, δ is an L-fuzzy pre-proximity on X. Since

δ is stratified. Moreover, δ is Alexandrov and generalized. By Theorem 12, we obtain a 
stratified L-fuzzy closure operator Cδ : LX → LX as

(1) Let R = ⊤X×X be given. Then, δ1(f , g) =
∨

x,y∈X f (x)⊙ g(y).

Hence, δ1 is an L-fuzzy pre-proximity on X. Moreover, δ1 is stratified, Alexandrov and 
generalized. Since δ1(⊤x,⊤

∗
x) = ⊤ , δ1 is not separated.

By Theorem 12, we obtain a stratified L-fuzzy closure operator Cδ1 : LX → LX as

(2) Let R = △X×X be given, where

Cδ(⊤
∗
x)(x) =

∧

g∈LX

{g(x) → δ(g , g∗) | ⊤∗
x ≤ g∗} ≤ ⊤x(x) → δ(⊤x,⊤

∗
x) = ⊤∗

x ,

δ(f , g) =
∨

x,y∈X

R(x, y)⊙ f (x)⊙ g(y).

δ(f , g) =
∨

x,y∈X R(x, y)⊙ f (x)⊙ g(y)

≥
∨

x∈X R(x, x)⊙ f (x)⊙ g(x) =
∨

x∈X f (x)⊙ g(x).

δ(f1, h1)⊕ δ(f2, h2) = (
∨

x,y∈X R(x, y)⊙ f1(x)⊙ h1(y))⊕

(
∨

z,w∈X R(z,w)⊙ f2(z)⊙ h2(w))
≥

∨

x,y,z,w∈X (R(x, y)⊙ R(z,w)⊙ f1(x)⊙ f2(z))⊙

(h1(y)⊕ h2(w))
≥

∨

x,y,w∈X (R(x, y)⊙ R(y,w)⊙ f1(x)⊙ f2(x))⊙

(h1(w)⊕ h2(w))
=

∨

x,w∈X (
∨

y∈X (R(x, y)⊙ R(y,w))

⊙ (f1(x)⊙ f2(x))⊙ (h1(w)⊕ h2(w))
=

∨

x,w∈X (R(x,w)⊙ f1(x)⊙ f2(x))⊙ ( h1(w)⊕ h2(w))
= δ(f1 ⊙ f2, h1 ⊕ h2).

δ(α ⊙ f ,α → g) =
∨

x,y∈X (R(x, y)⊙ (α ⊙ f )(x)⊙ (α → g)(y))

≤
∨

x,y∈X (R(x, y)⊙ f (x)⊙ g(y)) = δ(f , g),

Cδ(f )(x) =
∧

f≤g∗(g(x) →
∨

x,y∈X (R(x, y)⊙ g(x)⊙ g∗(y))).

Cδ1(f ) =
∧

f≤g∗(g(x) → (
∨

x,y∈X g(x)⊙ g∗(y))).
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Then, δ2(f , g) =
∨

x∈X f (x)⊙ g(x). Hence, δ2 is an L-fuzzy pre-proximity on X. Moreover,

(Q) For all f , g ∈ LX,

Hence, δ2 is an L-fuzzy proximity on X. Since δ2(⊤x,⊤
∗
x) = ⊥ , δ2 is separated. Hence, 

δ2 is separated, stratified, Alexandrov and generalized. By Theorem  12, we obtain a 
strong, separated, generalized and Alexandrov L-fuzzy closure operator Cδ2 : LX → LX 
as follows:

From the following theorem, we obtain the L-fuzzy pre-proximity induced by an L-fuzzy 
closure operator.

Theorem 14 Let (X , C) be an L-fuzzy closure space. Define a mapping δC : LX × LX → L 
by

Then, we have the following properties.

(1) δC is an L-fuzzy pre-proximity,
(2) If C is stratified, then so is δC and δC(f ,α ⊙ g) ≥ α ⊙ δC(f , g),
(3) δC(f , g) ≤

∨

h∈LX (δC(f , h)⊙ δC(h
∗, g)),the equality holds if C is topological,

(4) If C is topological, then δC is an L-fuzzy quasi-proximity on X,
(5) C ≤ CδC , the equality holds if C is topological,
(6) If C is separated, then δC is separated,
(7) δCδ ≤ δ,
(8) If C is generalized (resp. Alexandrov), then δC is generalized (resp. Alexandrov).

Proof
(1) (P1) Since C(⊥X ) = ⊥X and C(⊤X ) = ⊤X , we have

(P2) Since C(f ) ≥ f  , we have

△X×X (x, y) =

{

⊤, if y = x,
⊥, otherwise .

∧

h∈LX (δ2(f , h)⊕ δ2(h
∗, g))

=
∧

h∈LX (
∨

x∈X (f (x)⊙ h(x))⊕
∨

x∈X (h
∗(x)⊙ g(x))) (Put h = g)

≤
∨

x∈X (f (x)⊙ g(x))⊕
∨

x∈X (g
∗(x)⊙ g(x))

=
∨

x∈X (f (x)⊙ g(x))⊕⊥ = δ2(f , g).

Cδ2(f ) =
∧

f≤g∗

(g(x) → (
∨

x∈X

g(x)⊙ g∗(x))) =
∧

f≤g∗

(g(x) → ⊥) = f .

δC(f , g) =
∨

x∈X

f (x)⊙ C(g)(x) ∀ f , g ∈ LX .

δC(⊤X ,⊥X ) =
∨

x∈X (⊤X (x)⊙ C(⊥X )(x)) = ⊥,
δC(⊥X ,⊤X ) =

∨

x∈X (⊥X (x)⊙ C(⊤X )(x)) = ⊥.
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(P3) If f ≤ f1 and g ≤ g1 , then C(g) ≤ C(g1) . Thus,

(P4)

Hence, δC is an L-fuzzy pre-proximity on X.

(2) If C is a stratified, we have

(3)

Hence, δC(f , g) ≤
∧

h∈LX (δC(f , h)⊕ δC(h
∗, g)).

If C is topological, then

(4) By (3), it is trivial.

(5) From Lemma 2, we have,

δC(f , g) =
∨

x∈X

f (x)⊙ C(g)(x) ≥
∨

x∈X

f (x)⊙ g(x).

δC(f , g) =
∨

x∈X

f (x)⊙ C(g)(x) ≤
∨

x∈X

f1(x)⊙ C(g1)(x) = δC(f1, g1).

δC(f1, g1)⊕ δC(f2, g2) =
∨

x∈X (f1(x)⊙ C(g1)(x))⊕ (
∨

x∈X f2(x)⊙ C(g2)(x))
≥

∨

x∈X (f1(x)⊙ C(g1)(x))⊕ (f2(x)⊙ C(g2)(x))
(by Lemma 2(13))
≥

∨

x∈X (f1(x)⊙ f2(x))⊙ (C(g1)(x)⊕ C(g2)(x))
≥

∨

x∈X (f1(x)⊙ f2(x))⊙ C(g1 ⊕ g2)(x) = δC(f1 ⊕ f2, g1 ⊕ g2).

δC(α ⊙ f ,α → g) =
∨

x∈X (α ⊙ f )(x)⊙ C(α → g)(x)
≤

∨

x∈X α ⊙ f (x)⊙ (α → C(g)(x))
≤

∨

x∈X f (x)⊙ C(g)(x) = δC(f , g),

δC(f ,α ⊙ g) =
∨

x∈X f (x)⊙ C(α ⊙ g)(x)
≥

∨

x∈X f (x)⊙ α ⊙ C(g)(x)
= α ⊙ (

∨

x∈X f (x)⊙ C(g)(x)) = α ⊙ δC(f , g).

δ∗
C
(f , h)⊙ δ∗

C
(h∗, g)

=

(

∨

x∈X f (x)⊙ C(h)(x)
)∗

⊙

(

∨

x∈X h∗(x)⊙ C(g)(x)
)∗

=
∧

x∈X (f (x) → C∗(h)(x))⊙
∧

x∈X (h
∗(x) → C∗(g)(x))

(Since C∗(h) ≤ h∗)
≤

∧

x∈X (f (x) → h∗(x))⊙
∧

x∈X (h
∗(x) → C∗(g)(x))

≤
∧

x∈X (f (x) → C∗(g)(x)) = δ∗
C
(f , g).

∨

h∈LX (δ
∗
C
(f , h)⊙ δ∗

C
(h∗, g))

=
∨

h∈LX (
∧

x∈X (f (x) → C∗(h)(x)))⊙ (
∧

x∈X (h
∗(x) → C∗(g)(x)))

(put C(g) = h)
≥

∧

x∈X (f (x) → C∗(C(g))(x))⊙ (
∧

x∈X (C
∗(g)(x) → C(g∗)(x))

=
∧

x∈X (f (x) → C∗(g)(x)) = δ∗
C
(f , g).
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If C is topological, then

(6) δ∗
Cδ
(⊤x,⊤

∗
x) =

∧

x∈X (Cδ(⊤
∗
x)(x) → ⊤∗

x(x)) = ⊤.

(7)

(8) It is easily proved from definitions.

Corollary 15 Let (X , C) be an L-fuzzy closure space. Define a mapping 
δs
C
: LX × LX → L by

Then, we have the following properties.

(1) δs
C
 is an L-fuzzy pre-proximity,

(2) If C is stratified, then δs is a stratified,
(3) δs

C
(f , g) ≤

∨

h∈LX (δ
s
C
(f , h)⊙ δs

C
(h∗, g)) , the equality holds if C is topological,

(4) If C is topological, then δs
C
 is a L-fuzzy quasi-proximity on X,

(5) C ≤ Cδs
C
 , the equality holds if C is topological,

(6) If C is separated, then δs
C
 is separated,

(7) δs
Cδ

≤ δs,
(8) If C is generalized (resp. Alexandrov), then δs

C
 is generalized (resp. Alexandrov).

The relationships between L‑fuzzy pre‑proximities and L‑fuzzy co‑topologies

Theorem 16 Let   δ  be an Alexandrov L-fuzzy pre-proximity on X. Define a mapping 
Fδ : L

X → L by Fδ(f ) = δ∗(f ∗, f ) . Then,

CδC (f )(x) =
∧

g∈LX {
∧

x∈X (g(x) → δC(g , g
∗)) | f ≤ g∗}

=
∧

g∈LX {
∧

x∈X (g(x) → (
∨

x∈X g(x)⊙ C(g∗)(x))) | f ≤ g∗}

= {
(
∨

g∈LX g(x)⊙
∧

x∈X (C(g
∗)(x) → g∗(x))

)∗
| f ≤ g∗}

≥ {
(
∨

g∈LX (
∧

x∈X (C(f )(x) → g∗(x))⊙ g(x))
)∗

| C(f ) ≤ C(g∗)}

=

(

∨

g∈LX (
∧

x∈X (g(x) → C∗(f )(x))⊙ g(x))
)∗

≥ C(f )(x).

CδC (f )(x) =
∧

g∈LX {g(x) → δC(g , g
∗) | f ≤ g∗}

= {

(

∨

g∈LX g(x)⊙
∧

x∈X (C(g
∗)(x) → g∗(x))

)∗

| f ≤ g∗}

(Put g∗ = C(f ))

≤

(

C∗(f )(x)⊙
∧

x∈X (C(C(f )(x)) → C(f )(x))
)∗

= C(f )(x).

δCδ (f , g) =
∨

x∈X f (x)⊙ Cδ(g)(x)

=
∨

x∈X f (x)⊙
(

∨

h≤g∗ δ
∗(h, h∗)⊙ h(x)

)∗

≤
∨

x∈X f (x)⊙
(

∨

h≤g∗(
∧

x∈X (h(x) → h(x))⊙ h(x))
)∗

≤
∨

x∈X f (x)⊙ g(x) ≤ δ(f , g).

δs
C
(f , g) =

∨

x∈X

g(x)⊙ C(f )(x) ∀ f , g ∈ LX .
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(1) Fδ is an L-fuzzy co-topology on X,
(2) If δ is stratified, then Fδ is strong,
(3) If δ is separated, then Fδ is separated.

Proof
(1) (T1) Fδ(⊥X ) = δ∗(⊥∗

X ,⊥X ) = ⊤, Fδ(⊤X ) = δ∗(⊤∗
X ,⊤X ) = ⊤.

(T2) Fδ(f ⊕ g) = δ∗(f ∗ ⊙ g∗, f ⊕ g) ≥ δ∗(f ∗, f )⊙ δ∗(g∗, g) = Fδ(f )⊙ Fδ(g).

(T3) Fδ(
∧

i∈Ŵ fi) = δ∗(
∨

i∈Ŵ f ∗i ,
∧

i∈Ŵ fi) ≥
∧

i∈Ŵ δ∗(f ∗i , fi) =
∧

i∈Ŵ Fδ(fi).

(2) Fδ(α ⊙ f ) = δ∗(α → f ∗,α ⊙ f ) ≥ δ∗(f ∗, f ) = Fδ(f ),

(3) It is easy.

Theorem 17 Let (X , C) be an L-fuzzy closure space. Define the mapping FCδ
: LX → L 

by

Then,

(1) FCδ
 is an L-fuzzy co-topology on X with FCδ

≥ Fδ,
(2) If C is Alexandrov (resp. strong, separated), then FδC is Alexandrov (resp. strong, sep-

arated).

Proof
(1) (T1) FCδ

(⊤X ) =
∧

x∈X (Cδ(⊤X )(x) → ⊤X (x)) = ⊤,

(T2)

(T3) By Lemma 2(16), we have

Fδ(α → f ) = δ∗(α ⊙ f ∗,α → f ) ≥ δ∗(f ∗, f ) = Fδ(f ).

FCδ
(f ) =

∧

x∈X

(Cδ(f )(x) → f (x)).

FCδ
(⊥X ) =

∧

x∈X

(Cδ(⊥X )(x) → ⊥X (x)) = ⊤.

FCδ
(f ⊕ g) =

∧

x∈X (Cδ(f ⊕ g)(x) → (f ⊕ g)(x))
≥

∧

x∈X ((Cδ(f )(x)⊕ Cδ(g)(x)) → (f (x)⊕ g(x))) (by Lemma 2(13))
≥

∧

x∈X (Cδ(f )(x) → f (x))⊙
∧

x∈X (Cδ(g)(x) → g(x))
= FCδ

(f )⊙ FCδ
(g).

FCδ
(
∧

i∈Ŵ fi) =
∧

x∈X (Cδ(
∧

i∈Ŵ fi)(x) → (
∧

i∈Ŵ fi)(x))
≥

∧

x∈X (
∧

i∈Ŵ Cδ(fi)(x) →
∧

i∈Ŵ fi(x))
≥

∧

i∈Ŵ(
∧

x∈X (Cδ(fi)(x) → fi(x))) =
∧

i∈Ŵ FCδ
(fi).
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Hence, FCδ
 is an L-fuzzy co-topology on X.

Moreover,

(2)

Hence, FCδ
 is an Alexandrov L-fuzzy co-topology on X. By Lemma 2(14)(18), we have

Other cases are easily proved.

Theorem  18 Let (X , δ) be an L-fuzzy pre-proximity space. Then, the mapping 
F

(1)
δ : LX → L defined by F (1)

δ (f ) =
∧

x∈X (δ(f ,⊤x) → f (x)) is an L-fuzzy co-topology on 
X. Moreover, if δ is Alexandrov and δ(α ⊙ f , g) ≥ α ⊙ δ(f , g) , then F (1)

δ (f ∗) ≥ Fδ(f ).

Proof
(1) (T1) F (1)

δ (⊥X ) =
∧

x∈X (δ(⊥X ,⊤x) → ⊥X (x)) = ⊤,

(T2)

(T3)

Moreover, if δ is Alexandrov, then

FCδ
(f ) =

∧

x∈X (Cδ(f )(x) → f (x))

=
(
∨

x∈X Cδ(f )(x)⊙ f ∗(x)
)∗

≥
(
∨

x∈X f (x)⊙ f ∗(x)
)∗

≥ δ∗(f ∗, f ) = Fδ(f ).

FCδ
(
∨

i∈Ŵ fi) =
∧

x∈X (Cδ(
∨

i∈Ŵ fi)(x) →
∨

i∈Ŵ fi(x))
=

∧

x∈X (
∨

i∈Ŵ Cδ(fi)(x) →
∨

i∈Ŵ fi(x)))
≥

∧

i∈Ŵ(
∧

x∈X (Cδ(fi)(x) → fi(x))) =
∧

i∈Ŵ FCδ
(fi).

FCδ
(α ⊙ f ) =

∧

x∈X (Cδ(α ⊙ f )(x) → (α ⊙ f (x)))
≥

∧

x∈X ((α ⊙ Cδ(f )(x)) → (α ⊙ f (x)))
≥

∧

x∈X (f (x) → Cδ(f )(x)) = FCδ
(f ),

FCδ
(α → f ) =

∧

x∈X (Cδ(α → f )(x) → (α → f (x)))
≥

∧

x∈X ((α → Cδ(f )(x)) → (α → f (x)))
≥

∧

x∈X (Cδ(f )(x) → f (x)) = FCδ
(f ).

F
(1)
δ (⊤x) =

∧

x∈X

(δ(⊤X ,⊤x) → ⊤X (x)) = ⊤.

F
(1)
δ (f ⊕ g) =

∧

x∈X (δ(f ⊕ g ,⊤x) → (f ⊕ g)(x))
≥

∧

x∈X ((δ(f ,⊤x)⊕ δ(g ,⊤x)) → (f (x)⊕ g(x)))
≥

∧

x∈X (δ(f ,⊤x) → f (x))⊙
∧

x∈X (δ(g ,⊤x) → g(x))

≥ F
(1)
δ (f )⊙ F

(1)
δ (g).

F
(1)
δ (

∧

i∈Ŵ fi) =
∧

x∈X (δ(
∧

i∈Ŵ fi,⊤x) →
∧

i∈Ŵ fi(x))
=

∧

i∈Ŵ

∧

x∈X (δ(
∧

i∈Ŵ fi,⊤x) → fi(x))

≥
∧

i∈Ŵ

∧

x∈X (δ(fi,⊤x) → fi(x)) =
∧

i∈Ŵ F
(1)
δ (fi).
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Hence, F (1)
δ  is Alexandrov L-fuzzy co-topology on X.

If δ(α ⊙ f , g) ≥ α ⊙ δ(f , g) , then

Example 19
Let X = {hi | i = {1, ..., 3}} with hi  =  house and Y = {e, b,w, c, i} with e  =  expen-
sive, b  =  beautiful, w=wooden, c  =  creative, i  =  in the green surroundings. Let 
([0, 1],⊙,→,∗ , 0, 1) be a complete residuated lattice as

Let I ∈ [0, 1]X×Y  be a fuzzy information as follows:

Define [0, 1]-fuzzy pre-orders RY
X , R

{b,w}
X ∈ [0, 1]X×X by

(1) For each R ∈ {RY
X ,R

{b,w}
X } , by Example 13, we obtain a stratified, Alexandrov and gen-

eralized [0, 1]-fuzzy pre-proximity δR : [0, 1]X × [0, 1]X → [0, 1] as

By Theorem 12, we obtain a stratified [0, 1]-fuzzy closure operator CδR : [0, 1]X → [0, 1]X 
as

By Theorem 16, we obtain a strong [0, 1]-fuzzy co-topology FδR : [0, 1]X → [0, 1] as

F
(1)
δ (

∨

i∈Ŵ fi) =
∧

x∈X (δ(
∨

i∈Ŵ fi,⊤x) →
∨

i∈Ŵ fi(x))
=

∧

x∈X (
∨

i∈Ŵ δ(fi,⊤x) →
∨

i∈Ŵ fi(x))

≥
∧

i∈Ŵ

∧

x∈X (δ(fi,⊤x) → fi(x)) =
∧

i∈Ŵ F
(1)
δ (fi).

Fδ(f ) = δ∗(f ∗, f ) = δ∗(f ∗,
∨

x∈X f (x)⊙⊤x)

≤
∧

x∈X (f (x) → δ∗(f ∗,⊤x))

=
∧

x∈X (δ(f
∗,⊤x) → f ∗(x)) = F

(1)
δ (f ∗).

x ⊙ y = max{0, x + y− 1}, x → y = min{1− x + y, 1}, x∗ = 1− x.

I e b w c i
h1 0.7 0.6 0.5 0.9 0.2
h2 0.6 0.8 0.4 0.3 0.5
h3 0.4 0.9 0.8 0.6 0.6

RY
X (hi, hj) =

�

y∈Y (I(hi, y) → I(hj , y)),

R
{b,w}
X (hi, hj) =

�

y∈{b,w}(R(hi, y) → R(hj , y)),

RY
X =





1 0.4 0.7
0.7 1 0.8
0.6 0.6 1



,R
{b,w}
X =





1 0.9 1
0.8 1 1
0.7 0.6 1



.

δR(f , g) =
∨

hi ,hj∈X
RY
X (hi, hj)⊙ f (hi)⊙ g(hj).

CδR(f )(hi) =
∧

g∈LX ((S(f , g
∗)⊙ g(hi)) → δR(g , g

∗))

=
∧

g∈LX

(

(S(f , g∗)⊙ g(hi))

→
(
∨

hj ,hk∈X
RY
X (hj , hk)⊙ g(hj)⊙ g∗(hk)

)

)

.
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Since 

by Theorem 18, we obtain [0, 1]-fuzzy co-topology F (1)
δR

: [0, 1]X → [0, 1] as

(2) For each R ∈ {RY
X ,R

{b,w}
X } , we obtain a strong, generalized, topological and Alexan-

drov [0, 1]-fuzzy closure operator CR : [0, 1]X → [0, 1]X as

By Theorem 14, we obtain a generalized, topological and Alexandrov [0, 1]-fuzzy quasi-
proximity δCR as

By Theorem 16, we obtain [0, 1]-fuzzy co-topologies FδCR
 and F (1)

δCR
 as follows:

Also we have 

Galois correspondences

Theorem 20 Let ϕ : X → Y  be a mapping. Then

(1) Dδ(ϕ) ≤ DCδ
(ϕ),

(2) Dδ(ϕ) = DFδ
(ϕ),

(3) Dδ(ϕ) ≤ D
Fδ

(1) (ϕ).

Proof
(1) By Lemma 2(18), we have

FδR(f ) = δ∗R(f
∗, f ) = (

∨

hi ,hj∈X
RY
X (hi, hj)⊙ f ∗(hi)⊙ f (hj))

∗

=
∧

hi ,hj∈X
(RY

X (hi, hj)⊙ f (hj) → f (hi)).

δR(f ,⊤hj ) =
∨

hi ,hj∈X
RY
X (hi, hj)⊙ f (hi)⊙⊤hj (hj) =

∨

hi∈X
R(hi, hj)⊙ f (hi),

F
(1)
δR

(f ) =
∧

hj∈X
(δR(f ,⊤hj ) → f (hj))

=
∧

hj∈X

(

(
∨

hi∈X
R(hi, hj)⊙ f (hi)) → f (hj)

)

=
∧

hi ,hj∈X
((R(hi, hj)⊙ f (hi)) → f (hj)).

CR(f )(hj) =
∨

hi∈X
R(hi, hj)⊙ f (hi).

δCR(f , g) =
∨

hi∈X
f (hi)⊙ CR(g)(hi)

=
∨

hi∈X
f (hi)⊙ (

∨

hj∈X
R(hj , hi)⊙ g(hj))

=
∨

hi ,hj∈X
R(hj , hi)⊙ f (hi)⊙ g(hj).

FδCR
(f ) = δ∗CR

(f ∗, f ) = (
∨

hi ,hj∈X
R(hi, hj)⊙ f ∗(hi)⊙ f (hj))

∗

=
∧

hi ,hj∈X
(RY

X (hi, hj)⊙ f (hj) → f (hi)).

F
(1)
δCR

(f ) =
∧

hj∈X
(δR(f ,⊤hj ) → f (hj))

=
∧

hj∈X
((
∨

hi∈X
R(hi, hj)⊙ f (hi)) → f (hj))

=
∧

hi ,hj∈X
((R(hi, hj)⊙ f (hi)) → f (hj)).
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(2)

(3)

Theorem 21 Let ϕ : X → Y  be a mapping. Then,

(1) DC(ϕ) ≤ DδC (ϕ),
(2) DCδ

(ϕ) ≤ DFδ
(ϕ).

Proof
(1) From Lemma 2(18), we have

(2) From Lemma 2(18), we have

DCδ
(ϕ) =

∧

f ∈LY
∧

x∈X

(

CδX (ϕ
←(f ))(x) → ϕ←(CδY (f ))(x)

)

=
∧

f ∈LY
∧

x∈X

(

∧

h∈LX {h(x) → δX (h, h
∗) | ϕ←(f ) ≤ h∗}

→
∧

g∈LY {g(y) → δY (g , g
∗) | f ≤ g∗}

)

≥
∧

f ∈LY
∧

x∈X

(

∧

h∈LX {h(x) → δX (h, h
∗) | ϕ←(f ) ≤ h∗}

→
∧

g∈LY {g(ϕ(x)) → δY (g , g
∗) | ϕ←(f ) ≤ ϕ←(g∗)}

)

≥
∧

f ∈LY
∧

x∈X

(

(ϕ←(g)(x) → δX (ϕ
←(g),ϕ←(g∗))) → (ϕ←(g)(x) → δY (g , g

∗))

)

≥
∧

f ,g∈LY

(

δX (ϕ
←(g),ϕ←(g∗)) → δY (g , g

∗)

)

= Dδ(ϕ).

DFδ
(ϕ) =

∧

f ∈LY

(

FδY (f ) → FδX (ϕ
←(f ))

)

=
∧

f ∈LY

(

δ∗Y (f
∗, f ) → δ∗X (ϕ

←(f ∗),ϕ←(f ))
)

=
∧

f ∈LY

(

δX (ϕ
←(f ∗),ϕ←(f )) → δY (f

∗, f ))
)

= Dδ(ϕ).

D
F

(1)
δ

(ϕ) =
∧

f ∈LY

(

F
(1)
δY

(f ) → F
(1)
δX

(ϕ←(f ))
)

=
∧

f ∈LY

(

∧

y∈Y (δY (f ,⊤y) → f (y))

→
∧

x∈X (δX (ϕ
←(f ),ϕ←(⊤ϕ(x)) → ϕ←(f )(x))

)

≥
∧

f ∈LY

(

∧

x∈X (δY (f ,⊤ϕ(x)) → f (ϕ(x)))

→
∧

x∈X (δX (ϕ
←(f ),ϕ←(⊤ϕ(x)) → f (ϕ(x))

)

≥
∧

f ∈LY
∧

x∈X

(

δX (ϕ
←(f ),ϕ←(⊤ϕ(x)) → δY (f ,⊤ϕ(x))

)

=
∧

f ∈LY

(

δX (ϕ
←(f ),ϕ←(⊤ϕ(x)) → δY (f ,⊤ϕ(x))

)

= Dδ(ϕ).

DδC (ϕ) =
∧

f ,g∈LY

(

δCX (ϕ
←(f ),φ←(g)) → δCY (f , g)

)

=
∧

f ,g∈LY

(

∨

x∈X ϕ←(f )(x)⊙ CX (ϕ
←(g))(x) →

∨

y∈Y f (y)⊙ CY (g)(y)
)

≥
∧

f ,g∈LY

(

∨

x∈X f (ϕ(x))⊙ CX (ϕ
←(g))(x) →

∨

x∈X f (ϕ(x))⊙ CY (g)(ϕ(x))
)

. ≥
∧

g∈LY
∧

x∈X

(

CX (ϕ
←(g))(x) → ϕ←(CY (g))(x)

)

= DC(ϕ).
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Definition 22 [40] Suppose that F : D → C, G : C → D are concrete functors. 
The pair (F,  G) is called a Galois correspondence between C and D if for each Y ∈ C, 
idY : F ◦ G(Y ) → Y  is a C-morphism, and for each X ∈ D , idX : X → G ◦ F(X) is a D
-morphism.

If (F, G) is a Galois correspondence, then it is easy to check that F is a left adjoint of G, or 
equivalently that G is a right adjoint of F.

The category of separated L-fuzzy pre-proximity spaces with LF-proximity mappings as 
morphisms is denoted by SPROX.

The category of separated LF-fuzzy closure spaces with LF-closure mappings as mor-
phisms is denoted by SFC.

From Theorems 12 and 20, we obtain a concrete functor � : SPROX → SFC defined as

From Theorems 14 and 21, we obtain a concrete functor Ŵ : SFC → SPROX defined as

Theorem 23 Ŵ : SFC → SPROX is a left adjoint of � : SPROX → SFC , i.e, (�,Ŵ) is a 
Galois correspondence.

Proof
By Theorem  14(5), if CX is a separated L-fuzzy closure opera-
tor on a set X, then �(Ŵ(CX )) = CδCX

≥ CX . Hence, the identity map 
idX : (X , CX ) → (X , CδCX ) = (X ,�(Ŵ(CX ))) is an LF-closure map. Moreover, if 
δY  is a separated L-fuzzy pre-proximity on a set Y, by Theorem  14(7),  we have   
Ŵ(�(δY )) = δCδY

≤ δY  . Hence, the identity map idY : (Y ,Ŵ(�(δY ))) → (Y , δY ) is an LF-
proximity map. Therefore, (�,Ŵ) is a Galois correspondence.

DFCδ
(ϕ) =

∧

f ∈LY

(

FCδY
(f ) → FCδX

(ϕ←(f ))
)

=
∧

f ∈LY

(

∧

y∈Y (CδY (f )(y) → f (y))

→
∧

x∈X (CδX (ϕ
←(f ))(x) → ϕ←(f )(x))

)

≥
∧

f ∈LY

(

∧

x∈X (CδY (f )(ϕ(x)) → f (ϕ(x)))

→
∧

x∈X (CδX (ϕ
←(f ))(x) → ϕ←(f )(x))

)

=
∧

f ∈LY

(

∧

x∈X (ϕ
←(CδY (f ))(x) → ϕ←(f )(x))

→
∧

x∈X (CδX (ϕ
←(f ))(x) → ϕ←(f )(x))

)

≥
∧

f ∈LY
∧

x∈X

(

CδX (ϕ
←(f ))(x) → ϕ←(CδY (f ))(x)

)

= DCδ
(ϕ).

�(X , δ) = (X , Cδ),�(φ) = φ.

Ŵ(X , C) = (X , δC),Ŵ(φ) = φ.
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Conclusion.
In this paper, L-fuzzy pre-proximities and L-fuzzy closure operators in complete 

residuated lattice are investigated. From a given L-fuzzy pre-proximity δ , we can obtain 
an L-fuzzy closure operator Cδ (see Theorem 12). Conversely, for given L-fuzzy closure 
space C , we obtain L-fuzzy pre-proximity δC (see Theorem 14) and L-fuzzy co-topologies 
Fδ and FCδ

 (Theorems  16,  17,  18). It is also shown that there is a Galois correspond-
ence between the category of (separated) L-fuzzy closure spaces and that of (separated) 
L-fuzzy pre-proximity spaces (Theorem 21). We give Example 19 as a viewpoint of the 
topological structure for fuzzy information and fuzzy rough sets in a complete residu-
ated lattice.

In the future, the concepts of L-fuzzy pre-proximity spaces, information systems and 
decision rules with a view point of applications to multi-attribute decision-making will 
be investigated in residuated lattices.
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