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Introduction
The COVID-19 is a novel contagious respiratory infection belong to the Coronaviruses 
family that causes illness ranging from a common cold to severe illness in humans like 
the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome 
(SARS) in adults and children [1, 2]. COVID-19 started in the city of Wuhan, Hubei 
Province, China, in 2019 and has spread to all parts of the world, affecting more than 200 
countries and territories [3]. It is the third coronavirus species to infect human popu-
lations in the past two decades [4–6]. As of 25 February 2021, there have been global 
confirmed cases of over 113 million, and 2.5 million resulted in deaths [3]. Symptoms of 
the virus are fever, cough, shortness of breath, fatigue, body aches, headache, the loss of 
taste or smell, sore throat, congestion or runny nose, nausea or vomiting, and diarrhoea 
[7]. Close contact and respiratory droplets within approximately 6 feet (1.8 m) are the 
most common primary causes of transmission [8].

According to the World Health Organization (WHO), people who are infected but 
never developed any symptoms (asymptomatic people) and those who have not yet 
developed symptom but go on to develop symptoms later (pre-symptomatic people) can 
also infect others [9]. That is, latent infection is possible and people who contracted the 
virus can spend between 2 and 14 days before signs and symptoms manifest [7, 10, 11]. 
Although most of those infected get cured without treatment, there is currently some 
vaccine and antiviral therapy to prevent contacting the virus. In a mild case, usual flu 

Abstract 

In this paper, a latent infection susceptible–exposed–infectious–recovered model with 
demographic effects is used to understand the dynamics of the COVID-19 pandemics. 
We calculate the basic reproduction number ( R0 ) by solving the differential equations 
of the model and also using next-generation matrix method. We also prove the global 
stability of the model using the Lyapunov method. We showed that when the R0 < 1 or 
R0 ≤ 1 and R0 > 1 or R0 ≥ 1 the disease-free and endemic equilibria asymptotic stability 
exist theoretically. We provide numerical simulations to demonstrate the detrimental 
impact of the direct and latent infections for the COVID-19 pandemic.

Keywords: Mathematical modelling, COVID-19, Demographic effects, Asymptotic 
stability

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/.

ORIGINAL RESEARCH

Kamara et al. J Egypt Math Soc            (2021) 29:8  
https://doi.org/10.1186/s42787‑021‑00118‑7 Journal of the Egyptian

Mathematical Society

*Correspondence:   
zaak.hust167@gmail.com 
1 Department 
of Mathematics and Statistics, 
Fourah Bay College, 
University of Sierra Leone, 
Freetown, Sierra Leone
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-8254-1008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-021-00118-7&domain=pdf


Page 2 of 13Kamara et al. J Egypt Math Soc            (2021) 29:8 

treatments like antibiotic drugs are used, and in severe cases, supportive treatment like 
a breathing machine is given to protect vital functions of the organs. The virus infects all 
ages of humans, but the higher risk is more on adult individuals with severe illness relat-
ing to respiratory diseases, organ diseases, and blood diseases [7].

The basic reproduction number (R0) is a critical threshold quantity associated with 
viral transmissibility, and it has been used to understand the transmission of the COVID-
19. Epidemiological R0 is a value used to describe the contagiousness of the pathogen, 
and it is estimated using incidence data during the first phase of a disease outbreak. It 
describes the number of people on average that would be infected from a case intro-
duced into a population. The initial COVID-19 pandemic R0 , according to the WHO, 
was estimated to be between ranges of 1.4 and 2.5 [6]. That is, one infected person will 
infect an average of 2 persons in his/her lifetime. In the first phase of the epidemic, Zhao 
et al. [12] estimated the average R0 for COVID-19, from 3.3 to 5.5, and Read et al. [13] 
estimated to range between 3.6 and 4.0.

Stability analysis, which has a direct relationship with R0 , is also another way to under-
stand infectious disease. It is believed that when R0 is above unity, the disease will per-
sist, and the stability is endemic, and when R0 is less than unity, the disease will die out, 
and the stability is disease-free. The analysis is done by partitioning the state of individu-
als in the population into different compartments. For instance, since COVID-19 has an 
incubation period, the population can be divided into those who are capable of being 
affected by the virus, call the susceptible (S) compartment. When a visibly infected (I, 
i.e. a person confirmed to have the virus) individual is identified, from the S compart-
ment; the infectious person contact and contact–contact form an exposed (E) compart-
ment; and those overcoming the illness of the virus and get well form the recovered (R) 
compartment. The SEIR is interpreted using differential equations, where differential 
equation techniques and simple algebraic methods are used to study the dynamic of the 
disease. However, the R0 can also be calculated using the differential equations model at 
the state when the disease is free from the population (disease-free state).

In this study, a deterministic four-compartment SEIR model is considered to inspect 
the stability analysis of the COVID-19 pandemic using differential equation techniques. 
That is, contrary from traditional SEIR model, where an individual in the E compartment 
is infected but not infectious, we consider E as another infection transition point but not 
visibly infectious [14, 15]. This is done by formulating four nonlinear differential equa-
tions and provides theoretical and numerical analysis of the model. Our results show 
that, theoretically, the disease-free and endemic equilibria of the model are locally and 
globally asymptotically stable and the direct and the rate of infection transmission from 
an individual after exposure to the virus are detrimental for the COVID-19 pandemic.

Methodology
Model framework

In this section, we describe an epidemic transmission SEIR model with demographic 
changes. The model is used in epidemiology to compute the amount of susceptible, 
exposed, visibly infected, recovered people in a population (N). Since the asympto-
matic and pre-symptomatic people can transmit the virus but their symptoms are not 
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visible, they are grouped into the E compartment and infection from E is referred to 
as latent infection. This model is used under the following assumptions:

• The population is constant but large.
• The only way a person can leave the susceptible state (S) is to become infected either 

from the exposed (E) or from visibly infected (I) state or die of natural causes.
• The only way a person can leave the E state is to show signs and symptoms of the ill-

ness or die of natural death.
• The only way a person can leave the I state is to recover from the disease or die from 

natural death or die as a result of the disease.
• A person who recovered (R) from the illness received permanent immunity.
• Age, sex, social status, and race do not affect the probability of being infected.
• The member of the population has the same contacts with one another equally.
• All births are into the susceptible state, and it is assumed that the birth and natural 

death rates are equal.

The transmission is measured at Sβ(I + κE)/N  , where β is the direct transmission 
rate, and κ is the proportional rate constant when an uninfected individual comes into 
contact with an individual from state E. We assume natural birth and death rate to 
be measured at an equal rate µ and induced death rate measured at δ . The rate for an 
individual to move from state E to state I is measured at rate σ , , and the rate of recov-
ery is measured at γ . Figure  1 represents the latent infection SEIR model, which is 
described using the system of nonlinear ordinary differential equations

where S(t) = S,E(t) = E, I(t) = I and R(t) = R denote the number of suscep-
tible, exposed, infectious, and remove individuals at time t , respectively, and 
N = S + E + I + R . System (1) is subjected to the initial condition

For simplicity system (1) is reduced to a proportional framework given as

(1)

dS(t)

dt
= µN − β

S(I + κE)

N
− µS,

dE(t)

dt
= β

S(I + κE)

N
− (µ+ σ)E,

dI(t)

dt
= σE − (µ+ γ + δ)I ,

dR(t)

dt
= γ I − µR,

(2)S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0, andR(0) ≥ 0

Fig. 1 The latent infection SEIR model flow diagram
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where s = S/N , e = E/N , i = I/N  , and r = r/N  . By considering the total population

therefore, system (3) can be reduced to

Positivity of the solution

Assume that system (4) has a global solution corresponding to non-negative initial 
conditions. Then, the following Lemma confirms that the solution is non-negative at 
all times.

Lemma 1 If s(0) ≥ 0, e(0) ≥ 0 and i(0) ≥ 0 then the solution s(t), e(t) and i(t) are all posi-
tive for all t ≥ 0.

Proof. We use the contradiction: we assuming there exists positive real t1, t2 and t3 for 
which one of the conditions hold:

1. s(t1) = 0, ds(t1)/dt < 0 , and for all 0 ≤ t ≤ t1 one has that e(t) ≥ 0 and i(t) ≥ 0;
2. e(t2) = 0, de(t2)/dt < 0 , and for all 0 ≤ t ≤ t2 one has that s(t) ≥ 0 and i(t) ≥ 0;
3. i(t3) = 0, di(t3)/dt < 0 , and for all 0 ≤ t ≤ t3 one has that s(t) ≥ 0 and e(t) ≥ 0.

Condition (I) contradicts if s(t) ≥ 0 , ds(t1)/dt = µ > 0 . Also, condition (II) contra-
dicts because e(t) ≥ 0 , de(t2)/dt = βsi ≥ 0 . Finally, condition (III) contradicts since 
for i(t) ≥ 0 , di(t3)/dt = σE ≥ 0. . Thus, the solutions of s(t), e(t)andi(t) remain posi-
tive for all t > 0.
Hence, the positively invariant for the system (4) is

�

(3)

ds(t)

dt
= µ− βs(i + κe)− µs,

de(t)

dt
= βs(i + κe)− (µ+ σ)e,

di(t)

dt
= σ e − (µ+ γ + δ)i,

dr(t)

dt
= γ i − µr,

s + e + i + r = 1 ⇒ r = 1− s − e − i,

(4)

ds(t)

dt
= µ− βs(i + κe)− µs,

de(t)

dt
= βs(i + κe)− (µ+ σ)e,

di(t)

dt
= σ e − (µ+ γ + δ)i.

(5)Ω =

{

s(t), e(t), i(t)ǫR3
+
, s(t)+ e(t)+ i(t) ≤ 1

}

.
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The equilibrium points and reproduction number calculations of the model

There are two equilibrium points for the system (4), i.e. the disease-free equilibrium 
(DFE), the state when the disease is absent, and the endemic equilibrium (EE), which 
is the state when the disease continues to persist in the population.

Let the DFE points of the model are denoted as  E0
=

(

s0, e0, i0
)

 and represent a sys-
tem (4) at E0 as

In terms of i0 , from the last equation of (6), we get

Adding the first two equations of (6) and substituting for e0 , we get

Because at the disease-free state no one has the infection then, i0 = e0 = 0 . We can see 
that E0

=
(

s0, e0, i0
)

= (1, 0, 0).

Also, the EE points are denoted asE∗
= (s∗, e∗, i∗) , where  s∗, e∗ and i∗ are calculated 

by letting s0 = s∗, e0 = e∗, i0 = i∗ , and then, the second equation of (6) becomes

Multiplying both sides of (7) by σ/(µ+ σ)(µ+ γ + δ) , we get

which implies that

Hence

also

(6)

µ− βs0
(

i0 + κe0
)

− µs0 = 0,

βs0
(

i0 + κe0
)

− (µ+ σ)e0 = 0,

σ e0 − (µ+ γ + δ)i0 = 0.

e0 =
(µ+ γ + δ)i0

σ
.

s0 = 1−
(µ+ σ)(µ+ γ + δ)i0

µσ
.

(7)
β

(

1+
κ(µ+ γ + δ)

σ

)

− β

(

(µ+ σ)(µ+ γ + δ)

µσ

)(

1+
κ(µ+ γ + δ)

σ

)

i∗

−
(µ+ σ)(µ+ γ + δ)

σ
= 0.

σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

−
β

µ

(

1+
κ(µ+ γ + δ)

σ

)

i∗ − 1 = 0,

β

µ

(

1+
κ(µ+ γ + δ)

σ

)

i∗ =
σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

− 1,

i∗ =
µ

β

(

σ

σ + κ(µ+ γ + δ)

)(

σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

− 1

)

,
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To understand the stability of the model, we need an expression to estimate the basic 
reproduction number ( R0).

However, from (6) lets0 = s, e0 = e, i0 = i , in terms of  i  the second equation of (6) 
becomes

By the factorising method, we get

either i = 0 or

Equating the highest i value from (9) to zero, we get

Since the threshold for R0 is unity, we then assume

Equation  (11) is justified using the next-generation matrix method defined in [16] as 
K = ρ(FV−1) , where ρ(FV−1)  is the spectral radius of the matrix FV−1 and the larg-
est eigenvalue of K  is the R0 . F  and V are the matrices associated with the DFE points 
defined as

e∗ =

(

(µ+ γ + δ)

σ

)

i∗,

s∗ = 1−
(µ+ σ)(µ+ γ + δ)i∗

µσ
.

(8)

βi

(

1+
κ(µ+ γ + δ)

σ

)(

1−
(µ+ σ)(µ+ γ + δ)i

µσ

)

−
(µ+ σ)(µ+ γ + δ)i

σ
= 0.

(9)

i

(

β

(

1+
κ(µ+ γ + δ)

σ

)(

1−
(µ+ σ)(µ+ γ + δ)i

µσ

)

−
(µ+ σ)(µ+ γ + δ)

σ

)

= 0,

β

(

1+
κ(µ+ γ + δ)

σ

)

− β

(

(µ+ σ)(µ+ γ + δ)

µσ

)(

1+
κ(µ+ γ + δ)

σ

)

i

−
(µ+ σ)(µ+ γ + δ)

σ
= 0,

i =

(

µσ 2

(µ+ σ)(µ+ γ + δ)(σ + κ(µ+ γ + δ))

)[(

1+
κ(µ+ γ + δ)

σ

)

−
(µ+ σ)(µ+ γ + δ)

βσ

]

,

(10)
σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

= 1.

(11)R0 =
σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

.
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The largest eigenvalues of K is as (11) given as

Hence

Stability analysis of the disease‑free equilibrium points

Theorem 1 If R0 < 1 and κβ < (µ+ σ)+ (2µ+ γ + δ + σ) , then the DFE is locally 
asymptotically stable in Ω.

Proof The Jacobian matrix of system (3) associated with DFE is given as

with characteristic polynomial

where ⋋ is an eigenvalue. It is easy to see that for Theorem 1 to satisfy

and

The proof of Theorem 1 is complete.

Theorem 2 If R0 ≤ 1 , the DFE is globally asymptotically stable in Ω.

Proof To prove the global asymptotic stability (GAS) of the DFE, we construct the fol-
lowing Lyapunov function V :Ω → R , where V (s, e, i) = i(t) . Then, the time derivative of 
V  is given as

F =

(

κβ β

0 0

)

andV =

(

µ+ σ 0

−σ µ+ δ + γ

)

,

K =

(

κβ β

0 0

)

(

1
µ+σ

0
σ

(µ+σ)(µ+γ+δ)
1

(µ+γ+δ)

)

K =

(

β
µ+σ

(

κ +
σ

(µ+γ+δ)

)

β
(µ+γ+δ)

0 0

)

R0 =
σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

.

s∗ =
1

R0

, e∗ =
µ(R0 − 1)

R0(µ+ σ)
, i∗ =

µσ(R0 − 1)

R0(µ+ σ)(µ+ γ + δ)
.

(12)J(1,0,0) =





−µ −κβ −β

0 κβ − (µ+ σ) β

0 σ −(µ+ γ + δ)



,

P(⋋) = (µ+⋋)

[

⋋
2
+ ((µ+ σ)− κβ + (µ+ γ + δ))⋋+((µ+ σ)− κβ)(µ+ γ + δ)− σβ

]

,

(µ+ σ)− κβ + (µ+ γ + δ) > 0 ⇒ κβ < (µ+ σ)+ (2µ+ γ + δ + σ),

((µ+ σ)− κβ)(µ+ γ + δ)− σβ > 0 ⇒ R0 =
β

(µ+ σ)

(

σ

(µ+ γ + δ)
+ κ

)

< 1.
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since at the equilibrium points di0/dt = de0/dt = 0 . Therefore

Substituting s0 and e0 into (13), we get

By the factorisation method

Substituting R0 , we get

Thus, dV/dt ≤ 0 for R0 ≤ 1 . Furthermore, if R0 < 1 then dV/dt = 0 ⇐⇒ i0 = 0 and 
if R0 = 1 then dV/dt = 0 . Hence, by Lasalle invariance principle [17], the DFE point is 
GAS.

Stability analysis of the endemic equilibrium

Theorem 3 If R0 > 1 , the endemic equilibrium is locally asymptotically stable.

Proof To prove the LAS of the endemic equilibrium, we consider the Jacobian matrix 
associated with E∗ , that is

Substituting for s∗, e∗ and i∗ , we get

if � is an eigenvalue, then

dV

dt
=

di0

dt
=

de0

dt
,

(13)
dV

dt
= βs0

(

i0 + κe0
)

− (µ+ σ)e0.

(14)

dV

dt
= β

(

1+
κ(µ+ γ + δ)

σ

)

i0 − β

(

(µ+ σ)(µ+ γ + δ)

µσ

)(

1+
κ(µ+ γ + δ)

σ

)

(

i0
)2

−
(µ+ σ)(µ+ γ + δ)i0

σ
,

dV

dt
=

(µ+ σ)(µ+ γ + δ)i0

σ

[

σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

)

−
(µ+ σ)(µ+ γ + δ)

µσ

(

σβ

(µ+ σ)(µ+ γ + δ)

(

1+
κ(µ+ γ + δ)

σ

))

i0 − 1

]

.

(15)
dV

dt
=

(µ+ σ)(µ+ γ + δ)i0

σ

[

R0 −
(µ+ σ)(µ+ γ + δ)R0

µσ
i0 − 1

]

.

(16)JE∗ =





−µ− β(i∗ + κe∗) −κβs∗ −βs∗

β(i∗ + κe∗) κβs∗ − (µ+ σ) βs∗

0 σ −(µ+ γ + δ)



,

(17)JE∗ =







µR0 −
κβ
R0

−
β
R0

µ(R0 − 1)
κβ
R0

− (µ+ σ)
β
R0

0 σ −(µ+ γ + δ)






,



Page 9 of 13Kamara et al. J Egypt Math Soc            (2021) 29:8  

where I is a three-dimensional identity matrix which by matrix simplification method 
we then get

where

From R0 , we get

hence

using (18) we get

and

Since a > 0, b > 0, c > 0, and ab− c > 0 , according to the Routh–Hurwitz criterion, the 
endemic equilibrium of system (4) is LAS.

Theorem 4 The endemic equilibrium point is globally asymptotically stable on Ω.

Proof We construct the following Lyapunov function V1 : Ω+ → R , where 
Ω+ = {s(t), e(t), i(t) ∈ Ω/s(t) > 0, e(t) > 0, i(t) > 0} given by

JE∗ − �I =







µR0 − � −
κβ
R0

−
β
R0

µ(R0 − 1)
κβ
R0

− (µ+ σ)− �
β
R0

0 σ −(µ+ γ + δ)− �






,

P(�) = �
3
+ a�2 + b�+ c,

a = µR0 + (µ+ γ + δ)+ (µ+ σ)

(

1−
κβ

(µ+ σ)R0

)

.

(18)
σβ

(µ+ γ + δ)(µ+ σ)R0

= 1−
κβ

(µ+ σ)R0

,

a = µR0 + (µ+ γ + δ)+
σβ

(µ+ γ + δ)R0

> 0,

b = µR0(µ+ γ + δ)+ µR0(µ+ σ)+ (µ+ γ + δ)(µ+ σ)− µκβ −
κβ(µ+ γ + δ)

R0

−
κβ

R0

,

b = µR0(µ+ γ + δ)+ µR0(µ+ σ)

(

1−
κβ

(µ+ σ)R0

)

,

b = µR0(µ+ γ + δ)+
µβ

(µ+ γ + δ)
> 0.

c =
µκβ(R0 − 1)

R0

− µκβ(µ+ γ + δ)+ µ(µ+ σ)(µ+ γ + δ)R0 − µκβ ,

c =
µκβ(R0 − 1)

R0

> 0,

ab−c =
µκβ

R0

(

β

(µ+ γ + δ)
+ 1

)

+µβ

(

µR0

(µ+ γ + δ)
+ 1

)

+µR0(µ+ γ + δ)(µR0 + µ+ γ + δ).

(19)V1(X , t) =
1

2

(

X2
1 + X2

2 + X2
3

)

,
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X1 = s − s∗,X2 = e − e∗ , andX3 = i − i∗,L1 . We can see that V1(X , t) > 0 and 
V1(0, 0, 0) = (0, 0, 0) for all (X1,X2,X3) in the region, that makes V1 positive definite. We 
need to verify that dV1/dt ≤ 0 (negative definite). The time derivative of V1 is

where dX1/dt = ds/dt, dX2/dt = d(e)/dt and dX3/dt = d(i)/dt. Hence,

From

Therefore,

Hence

If we assumes = s∗, e = e∗ , andi = i∗ , we get

which conclude the proof of Theorem 4.

Results and discussion
In this section, we illustrate the DFE and EE theorems numerically using the integration 
technique in R-software. The model parameter values are obtained from COVID-19 lit-
erature [3, 15–17], and we focus our analysis in a small settlement approximately 1000 
population. As of 10 June 2020, the global case fatality rate was estimated as the ratio of 
total deaths and total confirmed cases (δ = 408, 025/7, 145, 539 = 0.057) [3], the incu-
bation period has a mean average of 5.2 days and the recovery period is 5.8 days [18], 

dV1

dt
= X1

dX1

dt
+ X2

dX2

dt
+ X3

dX3

dt
,

dV1

dt
= X1(µ− βs(i + κe)− µs)+X2(βs(i + κe)− (µ+ σ)e)+X3(σ e − (µ+ γ + δ)i).

µ− βs∗
(

i∗ + κe∗
)

− µs∗ = 0,

βs∗
(

i∗ + κe∗
)

− (µ+ σ)e∗ = 0,

σ e∗ − (µ+ γ + δ)i∗ = 0,

s∗ =
µ

{µ+ β(i∗ + κe∗)}
, e∗ =

βs∗(i∗ + κe∗)

(µ+ σ)
, i∗ =

σ e∗

(µ+ γ + δ)
,

X1 = s −
µ

{µ+ β(i∗ + κe∗)}
,X2 = e −

βs∗(i∗ + κe∗)

(µ+ σ)
, and X3 = i −

σe∗

(µ+ γ + δ)
,

dV1

dt
=

(

s −
µ

{µ+ β(i∗ + κe∗)}

)

[µ− βs(i + κe)− µs]+

(

i −
σ e∗

(µ+ γ + δ)

)

[σ e − (µ+ γ + δ)i]

+

(

e −
βs∗(i∗ + κe∗)

(µ+ σ)

)

[βs(i + κe)− (µ+ σ)e],

dV1

dt
= −

{

µ+ β
(

i∗ + κe∗
)}

(

s∗ −
µ

{µ+ β(i∗ + κe∗)}

)2

− (µ+ σ)

(

e∗ −
βs∗(i∗ + κe∗)

(µ+ σ)

)2

− (µ+ γ + δ)

(

i∗ −
σ e∗

(µ+ γ + δ)

)2

≤ 0,
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i.e. (σ = 1/5.2 = 0.192, γ = 1/5.8 = 0.172) . The birth and death rate is assumed to be 
(µ = 0.05) , the proportion of latent infection rate ( κ) = 0.5 [19] and β = 0.533 as in [20].

Firstly, we investigate the DFE by assuming β = 0.0533 ; we observe that when 
R0 = 0.163 in Fig. 2a, Theorems 1 and 3 are satisfied for the DFE to be asymptotically 
stable. It is observed that when states E and I are decreasing, the susceptible population 
approaches unity with increasing time. Also, in Fig. 2b, we observe that when β = 0.533 , 
and R0 = 1.63 , Theorems 2 and 4 for the EE of the model to be asymptotically stable are 
satisfied. It is observed that increasing the I proportion the S proportion declines until at 
a certain point in time when the I proportion started to decrease and the S proportion 
then increases. The decrease in the trajectories in the case of the E state is the result of 
the increase in asymptomatic individual to the visibly infectious state and natural death, 
whereas for the I state is the results of the increase in the recovered individual and those 
who might have died of natural or virus death.

From a mathematical point of view, it is easy to see that the EE tends to DFE which is 
dependent on the decreasing rate of κ and β . We investigate the effect of the direct and 
latent infection rate numerically by keeping the EE parameter values constant and regu-
lating the degree of κ and β . That is, the positive effect for the direct and latent infection 

Fig. 2 The latent infection SEIR model asymptotic stability analyses

Fig. 3 The latent infection SEIR model effects, where κ = 0.3 (a) and κ = 0.1 (b)
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parameters is noticeable when the magnitude of κ and β decreases, and their output is 
similar to that of Fig. 2a. It is observed in Fig. 3 that as κ  decreases the endemic trajec-
tory patterns are similar to the DFE curves in Fig. 2a.

Also, we observe that when β is lower in magnitude, lesser susceptible individuals 
become infected as the curve tends to increase in proportion. In Figs. 3 and 4, it is easy 
to see that direct and latent infection transmissions can enhance the persistence of the 
COVID-19 pandemic.

Conclusion
In this paper, we formulate a latent infection SEIR model to investigate the stability anal-
ysis of the COVID-19 pandemic with demographic effects. We use differential equation 
techniques and simple algebraic procedures to describe the dynamics of the model theo-
retically. We showed that the model has two equilibrium states, which are disease-free 
and endemic equilibrium. The stability analyses show that the two equilibria states are 
locally and globally asymptotically stable theoretically, which are confirmed numeri-
cally using epidemiological data of COVID-19 pandemic. From our study, we observe 
that when κ and β decrease, the infected population also decreases. The biological impli-
cation of this is that the direct and latent infections are detrimental to the COVID-19 
pandemic. Therefore, isolating exposed and visibly infected individual is an important 
strategy in controlling the COVID-19 pandemic.
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