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Introduction
The theory of discrete dynamical system has many applications in applied sciences. 
Mathematical modeling of a physical, biological or ecological problem mostly leads to a 
nonlinear difference system. (See [1–10].)

In [4], Papachinopoulos et al. proposed a system of equation with exponents as

where a,  b,  c,  d and the initial conditions f−1, f0, g−1, g0 are positive real values. They 
studied the existence, boundedness and asymptotic behavior of the positive solutions of 
(1).

In [5], G.Papaschinopoulos and C.J.Schinas together modified the system as

and put forward conditions for the positive solutions to be asymptotic.
In [11], authors multiplied fn and gn with a and c, respectively, in (2) and formed a new 

system of difference equations

(1)fn+1 = a+ bfn−1e
−gn , gn+1 = c + dgn−1e

−fn , n = 0, 1, 2, . . . ,

(2)
fn+1 = a+ bgn−1e

−fn , gn+1 = c + dfn−1e
−gn ,

fn+1 = a+ bgn−1e
−gn , gn+1 = c + dfn−1e

−fn ,

fn+1 = afn + bgn−1e
−fn , gn+1 = cgn + dfn−1e

−gn , n = 0, 1, . . .

Abstract 

In this paper, we study the persistence, boundedness, convergence, invariance and 
global asymptotic behavior of the positive solutions of the second-order difference 

system 
xn+1 = α1 + ae−xn−1 + byne

−yn−1 ,

yn+1 = α2 + ce−yn−1 + dxne
−xn−1 n = 0, 1, 2, . . .

 where α1,α2, a, b, c, d are 

positive real numbers and the initial conditions x−1, x0, y−1, y0 are arbitrary nonnegative 
numbers.
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and described the existence of a unique positive equilibrium, the boundedness, persis-
tence and global attractivity of the positive solutions.

Parallelly in [12], the authors worked on the asymptotic behavior of the positive solu-
tions of a similar difference system

N.Psarros and G.Papaschinopoulos in [13] proposed a new first-order model 

and studied the asymptotic behavior of the positive solutions of the system.
Motivated by the above research articles, we propose a new second order difference 

system

where α1,α2, a, b, c, d are positive real numbers and the initial conditions x−1, x0, y−1, y0 
are arbitrary nonnegative numbers, and investigate the persistence, boundedness, con-
vergence, invariance, and global asymptotic behavior of the positive solutions of the 
system.

Methods
We use Theorem 1.16 of [14] to prove the lemma which we use to derive a condition for 
the existence, uniqueness of equilibrium solutions and the convergence of positive solu-
tions to the equilibrium solution. We also use Remark 1.3.1 of [15] to obtain conditions 
for global asymptotic stability of the unique equilibrium point.

Results and discussion
The following theorem proposes conditions for persistence and boundedness for the 
positive solution (xn, yn) of (3).

Theorem  1 Every positive solution (xn, yn) of (3) is bounded and persists whenever 
bde−α1−α2 < 1.

Proof
xn ≥ α1, yn ≥ α2 , n = 3, 4, . . . .

Hence, (xn, yn) of system (3) persists.

Also, (3) becomes

where A = α1 + ae−α1 + bα2e
−α2 + bce−α2−α2.

fn+1 = agn + bfn−1e
−gn , gn+1 = cfn + dgn−1e

−fn , n = 0, 1, . . . .

fn+1 = agn + bfne
−fn−gn , gn+1 = cfn + dgne

−fn−gn ,

(3)
xn+1 = α1 + ae−xn−1 + byne

−yn−1 ,

yn+1 = α2 + ce−yn−1 + dxne
−xn−1 n = 0, 1, 2, . . .

(4)
xn+1 ≤ α1 + ae−α1 + be−α2 [α2 + dxn−1e

−xn−2 + ce−yn−2 ].

≤ A+ bdxn−1e
−α1−α2
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Similarly,

where C = α2 + ce−α2 + dα1e
−α1 + ade−α1−α1.

Now, consider the difference equations

where B = D = bde−α1−α2 < 1 . Therefore, an arbitrary solution (zn, vn) of (6) can be 
written as

where r1 , r2 rely on the initial conditions z−1 , z0 and s1 , s2 rely on the initial conditions 
v−1 , v0 . Hence, (zn, vn) is bounded.

Let us examine the solution (zn, vn) such that z−1 = x−1, z0 = x0, v−1 = y−1, v0 = y0.

Hence by induction, xn ≤ zn and yn ≤ vn, n = 0, 1, 2, . . ..

Therefore, we get (xn, yn) is bounded.  �

The following two theorems confirm the existence of invariant boxes of (3).

Theorem  2 Let bde−α1−α2 < 1 . Let (xn, yn) denote a positive solution of (3). Then 

[α1,
α1 + ae−α1 + bα2e

−α2 + bce−α2−α2

(1− bde−α1−α2)
] ×[α2,

α2 + ce−α2 + dα1e
−α1 + ade−α1−α1

(1− bde−α1−α2)
] is 

an invariant set for (3).

Proof

Let I1 = [α1,
α1 + ae−α1 + bα2e

−α2 + bce−α2−α2

(1− bde−α1−α2)
] and 

I2 = [α2,
α2 + ce−α2 + dα1e

−α1 + ade−α1−α1

(1− bde−α1−α2)
].

Let x−1, x0 ∈ I1 and y−1, y0 ∈ I2.

Then

(5)yn+1 ≤ C + bdyn−1e
−α1−α2

(6)
zn+1 = A+ Bzn−1.

vn+1 = C + Dvn−1,

(7)zn = r1B
n/2 + r2(−1)nBn/2 +

A

1− B
, n = 0, 1, 2, . . .

(8)vn = s1B
n/2 + s2(−1)nBn/2 +

C

1− B
, n = 0, 1, 2, . . .

x1 ≤ α1 + ae−α1 + be−α2y0

≤ α1 + ae−α1 + be−α2

[

α2 + ce−α2 + dα1e
−α1 + ade−α1−α1

1− bde−α1−α2

]

.
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Hence, we get x1 ≤
α1 + ae−α1 + bα2e

−α2 + bce−α2−α2

1− bde−α1−α2
. , i.e., x1 ∈ I1 . Similarly, we get 

y1 ∈ I2.

Hence, the proof follows by applying the method of induction.  �

Theorem 3 Let bde−α1−α2 < 1 . Consider the intervals

and

where ǫ is an arbitrary positive number. If (xn, yn) is any arbitrary solution of (3), then 
there exists an N ∈ N such that xn ∈ I3 and yn ∈ I4, n ≥ N .

Proof
Let (xn, yn) denote an arbitrary solution of (3).

Then by Theorem 1, lim supn→∞ xn = M < ∞ and lim supn→∞ yn = L < ∞.

Hence from Theorem 1, xn+1 ≤ A+ bdxn−1e
−α1−α2 and yn+1 ≤ C + bdyn−1e

−α1−α2

Hence M ≤
A

1− bde−α1−α2
 , and L ≤

C

1− bde−α1−α2
.

Hence, there exists an N ∈ N such that the theorem holds.  �

Now we prove a lemma which is an alteration of Theorem 1.16 of [14].

Lemma 4 Let [a,  b] and [c,  d] denote intervals of real numbers. Let 
f : [a, b] × [c, d] × [c, d] → [a, b] and g : [a, b] × [a, b] × [c, d] → [c, d] be continuous 
functions. Consider the difference system

such that the initial values x−1, x0 ∈ [a, b] and y−1, y0 ∈ [c, d] . (or xn0 , xn0+1 ∈ [a, b], 
yn0 , yn0+1 ∈ [c, d], n0 ∈ N ). Suppose the following are true.

1. If f(x, y, z) is nonincreasing in x, f(x, y, z) is nondecreasing in y and f(x, y, z) is nonin-
creasing in z.

2. If g(x, y, z) is nondecreasing in x, g(x, y, z) is nonincreasing in y and g(x, y, z) is nonin-
creasing in z.

I3 =

[

α1,
α1 + ae−α1 + bα2e

−α2 + bce−α2−α2 + ǫ

1− bde−α1−α2

]

I4 =

[

α2,
α2 + ce−α2 + dα1e

−α1 + ade−α1−α1 + ǫ

1− bde−α1−α2

]

(9)
xn+1 = f (xn−1, yn, yn−1),

yn+1 = g(xn, xn−1, yn−1), n = 0, 1, 2, . . .
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3. If (m1,M1,m2,M2) ∈ [a, b]2 × [c, d]2 satisfies the systems m1 = f (M1,m2,M2), 
M1 = f (m1,M2,m2) and m2 = g(m1,M1,M2),M2 = g(M1,m1,m2) then M1 = m1 
and M2 = m2,

then there exists a unique equilibrium solution (x̄, ȳ) of (9) with x̄ ∈ [a, b] , ȳ ∈ [c, d] . 
Also every solution of (9) converges to (x̄, ȳ).

Proof
Set m−1

1 = a,m0
1 = a,m−1

2 = c,m0
2 = c.

For each i ≥ 0 , let mi+1
1 = f (Mi−1

1 ,mi
2,M

i−1
2 ),Mi+1

1 = f (mi−1
1 ,Mi

2,m
i−1
2 ) and

Hence m1
1 = f (M−1

1 ,m0
2,M

−1
2 ) ≤ f (m−1

1 ,M0
2 ,m

−1
2 ) = M1

1 , and

Therefore,

Also m0
1 = a ≤ xn ≤ b = M0

1 , n ≥ 0 and m0
2 = c ≤ yn ≤ d = M0

2 , n ≥ 0.

For all n ≥ 0 , we have

Hence m1
1 ≤ xn ≤ M1

1 , n ≥ 1 and m1
2 ≤ yn ≤ M1

2 , n ≥ 1.

We then obtain by induction that for i ≥ 0 , the following are true. 

1. a = m−1
1 ≤ m0

1 ≤ m1
1 . . . ≤ mi−1

1 ≤ mi
1 ≤ Mi

1 . . . ≤ M1
1 ≤ M0

1 ≤ M−1
1 = b.

2. c = m−1
2 ≤ m0

2 ≤ m1
2 . . . ≤ mi−1

2 ≤ mi
2 ≤ Mi

2 . . . ≤ M1
2 ≤ M0

2 ≤ M−1
2 = d.

3. mi
1 ≤ xn ≤ Mi

1, n ≥ 1 and mi
2 ≤ yn ≤ Mi

2, n ≥ 1.

Set m1 = limi→∞mi
1,m2 = limi→∞mi

2 and M1 = limi→∞Mi
1,M2 = limi→∞Mi

2.
Since f and g are continuous, we get m1 = f (M1,m2,M2),M1 = f (m1,M2,m2) and 
m2 = g(m1,M1,M2),M2 = g(M1,m1,m2).

Hence M1 = m1 = x̄ and M2 = m2 = ȳ , from which we get the proof.  �

The following theorem proposes conditions for the convergence of the equilibrium 
solution of (3).

M−1
1 = b,M0

1 = b,M−1
2 = d,M0

2 = d.

mi+1
2 = g(Mi

1,m
i−1
1 ,mi−1

2 ),Mi+1
2 = g(mi

1,M
i−1
1 ,Mi−1

2 ).

m1
2 = g(m0

1,M
−1
1 ,M−1

2 ) ≤ g(M0
1 ,m

−1
1 ,m−1

2 ) = M1
2 .

M−1
1 ≥M0

1 ≥ M1
1 ≥ m1

1 ≥ m0
1 ≥ m−1

1 and

M−1
2 ≥M0

2 ≥ M1
2 ≥ m1

2 ≥ m0
2 ≥ m−1

2 .

m1
1 = f (M−1

1 ,m0
2,M

−1
2 ) ≤ f (xn−1, yn, yn−1) ≤ f (m−1

1 ,M0
2 ,m

−1
1 ) = M1

1 .

m1
2 = g(m0

1,M
−1
1 ,M−1

2 ) ≤ g(xn, xn−1, yn−1) ≤ g(M0
1 ,m

−1
1 ,M0

2) = M1
2 .
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Theorem 5 Suppose

and

Then (3) has a unique positive equilibrium E(x̄, ȳ) . Also, every solution of (3) converges to 
E(x̄, ȳ).

Proof
Let f : R+ × R

+ × R
+ → R

+, g : R+ × R
+ × R

+ → R
+ be continuous functions such 

that f (x, y, z) = α1 + ae−x + bye−z , g(x, y, z) = α2 + ce−z + dxe−y.

Let M1,m1,M2,m2 be positive real numbers satisfying

and

Therefore, M1 −m1 = a[e−m1 − e−M1 ] + b[M2e
−m2 −m2e

−M2 ].

Also, there exists a ζ , m2 ≤ ζ ≤ M2 satisfying

From (13) and (14), we get

Now, a[e−m1 − e−M1 ] = ae−m1−M1 [eM1 − em1 ].

Also there exists a � , m1 ≤ � ≤ M1 satisfying

Since M1,m1 ≥ α1 and � ≤ M1,

Thus, from (15) and (17) we get,

(10)bde−α1−α2 < 1, ce−α2 < 1, ae−α1 < 1

(11)

bde−α1−α2

[1− bde−α1−α2 ]2

[1− bde−α1−α2 + α2 + ce−α2 + dα1e
−α1 + ade−α1−α1 ]

[1− ae−α1 ]

×
[1− bde−α1−α2 + α1 + ae−α1 + bα2e

−α2 + bce−α2−α2 ]

[1− ce−α2 ]
< 1.

m1 = α1 + ae−M1 + bm2e
−M2 ,M1 = α1 + ae−m1 + bM2e

−m2

(12)m2 = α2 + ce−M2 + dm1e
−M1 ,M2 = α2 + ce−m2 + dM1e

−m1 .

(13)M1 −m1 = a[e−m1 − e−M1 ] + be−m2−M2 [M2e
M2 −m2e

m2 ].

(14)M2e
M2 −m2e

m2 = (1+ ζ )eζ (M2 −m2).

(15)M1 −m1 = a[e−m1 − e−M1 ] + be−m2−M2+ζ (1+ ζ )[M2 −m2].

(16)a[e−m1 − e−M1 ] = ae−m1−M1+�[M1 −m1].

(17)a[e−m1 − e−M1 ] ≤ ae−α1 [M1 −m1].
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Since M2,m2 ≥ α2 and ζ ≤ M2 , (18) becomes

, i.e.,

Also, (12) can be written as

Since ζ ≤ M2 we get,

Therefore, (20) becomes

Similarly, we get

From (24) and (25), we get

Therefore from (11) and (26), we get M1 = m1 and M2 = m2.

Therefore by applying Lemma 4, the result is obtained.  �

In the next theorem, we derive conditions for the global asymptotic stability of the 
equilibrium solution of (3).

Theorem 6 Assume (10) and (11) holds.

(18)M1 −m1 ≤ ae−α1 [M1 −m1] + be−m2−M2+ζ (1+ ζ )[M2 −m2].

(19)M1 −m1 ≤ ae−α1 [M1 −m1] + be−α2(1+ ζ )[M2 −m2].

(20)[1− ae−α1 ][M1 −m1] ≤ be−α2(1+ ζ )[M2 −m2].

(21)M2 = α2 + ce−m2 + d[α1 + ae−m1 + bM2e
−m2 ]e−m1 .

(22)M2 ≤
α2 + ce−α2 + dα1e

−α1 + ade−α1−α1

1− bde−α1−α2
.

(23)ζ ≤
α2 + ce−α2 + dα1e

−α1 + ade−α1−α1

1− bde−α1−α2
.

(24)

[1− ae−α1 ][M1 −m1]

≤ be−α2

[

1− bde−α1−α2 + α2 + ce−α2 + dα1e
−α1 + ade−α1−α1 ]

1− bde−α1−α2

]

[M2 −m2].

(25)

[1− ce−α2 ][M2 −m2]

≤ de−α1

[

1− bde−α1−α2 + α1 + ae−α1 + bα2e
−α2 + bce−α2−α2 ]

1− bde−α1−α2

]

[M1 −m1].

(26)

[M1 −m1]

≤
bde−α1−α2

[1− (bde−α1−α2)]2

[1− bde−α1−α2 + α2 + ce−α2 + dα1e
−α1 + ade−α1−α1 ]

[1− ae−α1 ]

×
[1− bde−α1−α2 + α1 + ae−α1 + bα2e

−α2 + bce−α2−α2 ]

[1− ce−α2 ]
[M1 −m1].
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1. Let (a+ ac + c) < 1 . If (1+ x̄)(1+ ȳ) <
1− (a+ ac + c)

bd
 , then the unique equilib-

rium E(x̄, ȳ) is globally asymptotically stable.
2. If (a+ c + ac + bd)+ bd[ A

1−B + C
1−B + AC

(1−B)2
] < 1 , where A, B and C are defined as 

in (4) and (5), then the unique equilibrium E(x̄, ȳ) is globally asymptotically stable.

Proof
First we show that E(x̄, ȳ) is locally asymptotically stable in both the cases. The Jacobian 
JF(x̄, ȳ) about the equilibrium point E(x̄, ȳ) is given by

Hence the characteristic equation of the Jacobian JF(x̄, ȳ) about the equilibrium point 
E(x̄, ȳ) is given by

Then

is satisfied whenever

 

1. From (27), we get 

 Hence, by (28) and Remark 1.3.1 of [15], we get the result.
2. Since E(x̄, ȳ) is the equilibrium point of (3), we get 

, i.e., 

 Similarly 









0 − ae−x̄ be−ȳ − bȳe−ȳ

1 0 0 0

de−x̄ − dx̄e−x̄ 0 − ce−ȳ

0 0 1 0









.

− �
4 + �

2(−ce−ȳ + bde−x̄e−ȳ − ae−x̄)

+ �(−bdȳe−x̄e−ȳ − bdx̄e−x̄e−ȳ)+ bdx̄ȳe−x̄e−ȳ − ace−x̄e−ȳ = 0.

| − ce−ȳ| + |bde−x̄e−ȳ| + |ae−x̄|

+ |bdȳe−x̄e−ȳ| + |bdx̄e−x̄e−ȳ| + |bdx̄ȳe−x̄e−ȳ| + |ace−x̄e−ȳ| < 1

(27)|c| + |bd| + |a| + |bdȳ| + |bdx̄| + |bdx̄ȳ| + |ac| < 1.

(28)(1+ x̄)(1+ ȳ) <
1− (a+ ac + c)

bd
.

x̄ ≤ α1 + ae−α1 + be−α2 [α2 + dx̄e−α1 + ce−α2 ].

(29)x̄ ≤
A

(1− bde−α1−α2)
.
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 Substituting (29), (30) in (27), we get 

 Hence by Remark 1.3.1 of [15], we get the result.
Therefore by using Theorem 5, we obtain the conditions for global asymptotic stability. �

Conclusions
In this paper, we analyzed the persistence, boundedness, convergence, invariance and 
global asymptotic behavior of the positive solutions of a second-order difference system. 
Here we expressed all the conditions in terms of the parameters occurring in the system. 
We also obtained two conditions for the occurrence of global stability where in the first 
one the condition was given in terms of the equilibrium point and in the second one the 
condition was given in terms of parameters of the system.
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