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Introduction
Typhoid fever is an infection that is caused by a bacterium called Salmonella Typhi. The 
bacteria enter the body system through the consumption of contaminated food or water. 
Typhoid fever is characterized by prolonged fever, headache, nausea, loss of appetite, 
constipation, and diarrhea. When these symptoms are severe, typhoid fever may lead 
to death. Each year it is estimated that an average of 16 million cases and an average of 
145000 typhoid-related deaths are recorded worldwide [1]

Typhoid fever can be treated with antibiotics. According to [1], the disease can be 
prevented through vaccination with the following vaccines recommended: an injecta-
ble typhoid conjugate vaccine (TCV); an injectable polysaccharide vaccine based on the 
purified Vi antigen and it is for children aged 2 years and above; an oral live attenuated 
Ty2Ia vaccine in capsules and it is suitable for children aged over 6 years. Among the 
above 3 vaccines, (TCV) is mostly preferred since it can be used for all ages including 
infants to adults and it has an improved immunological property.

In Kenya, typhoid is a public health burden for children aged below 15 years. They are 
at a higher risk of contracting the disease, because they are prone to playing with rain-
water. The global burden of diseases shows that in 2016, Kenya had 97,767 typhoid cases 
of which 62% belonged to children aged less than 15 years and 1075 typhoid cases deaths 
with 66% among children aged less than 15 years [2].
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According to CDC [3], typhoid fever cases are high in Kenyan slums, such as Kibera in 
the outskirts of Nairobi, because it is overpopulated and has inadequate sanitation facili-
ties for containing and disposing of human wastes.

Several mathematical models have been formulated to describe the dynamics of the 
spread of typhoid fever. For instance, Nthiiri et al. [4] formulated a model that aimed at 
studying the dynamics of typhoid fever using protection as a control strategy and from 
the numerical simulation results, they found out that increasing the protection would 
significantly reduce the disease prevalence in a population.

Stephen and Nyerere [5] came up with a model for accessing the impact of educational 
campaigns in controlling the transmission of typhoid in the community. From the analy-
sis of the model, they established that creating awareness was a possible way of curbing 
transmission by more than 40%.

Many scholars have developed mathematical models that aim at studying the dynam-
ics of typhoid fevers while incorporating a combination of control strategies, such as 
vaccination, treatment, and screening [6]. In this study, we investigate the impact of 
treatment alone in controlling typhoid fever. The paper is organized as follows: in this 
section, we have provided background information of typhoid fever and given a brief 
discussion on previous works on the disease and other findings on a general impact of 
control strategies on epidemics; in “Methods” section, we have formulated and described 
the mathematical model. In “Analysis of the model” section, we presented the model’s 
basic properties, and determined its equilibrium points, the basic reproduction num-
ber R0 , and the existence and uniqueness of the disease positive endemic equilibrium. 
We have also established the sufficient conditions for the local and global stabilities of 
the disease-free and the disease-endemic equilibria and proved that they are both glob-
ally asymptotically stable. “Results” section presents numerical simulations to verify our 
theoretical results. Finally, we conclude this work in “Conclusion” section.

Methods
In this study, we develop a model with pathogen population, NB denoted by B(t) and 
human population, NH . That is, the total population will be N (t) = NH(t)+ NP(t) . The 
human population is subdivided into Susceptible individuals-S(t), Infected individuals-
I(t) and Recovered individuals-R(t) compartments. The model assumes that human 
population will be recruited to susceptible compartment at the rate � and susceptible 
individuals are infected at the rate of αB

κ+B where α is the rate of Salmonella Typhi inges-
tion in drinks or foods and B

κ+B is the probability of individuals in consuming foods or 
drinks contaminated with typhoid causing bacteria. All human populations experience 
natural death at the rate µ . In addition, the infected individuals die from typhoid at the 
rate δ . Infected individuals are treated at the rate ǫ . Infected individuals will excrete Sal-
monella Typhi bacteria to the environment at the rate η and Salmonella Typhi will die at 
the rate ν Finally, 0 ≤ ω ≤ 1) is a constant representing the treatment of infected indi-
viduals. This parameter changes the rate of infection as well as the rate shedding of Sal-
monella Typhi to the environment.

Assumptions of the model

The following are the assumptions of the model: 
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 (i) The population birth and death rate occur at different rates.
 (ii) Typhoid is transmitted through ingestion Salmonella bacteria in foods or drinks.
 (iii) Infectious individuals recover as a result of treatment.
 (iv) There is permanent immunity upon recovery.
 (v) All the newly born individuals will join only susceptible class.
 (vi) Infectious individuals excrete Salmonella Typhi bacterium to the environment.

Model flowchart and equations

From Fig. 1 we have the following equations of the model:

Analysis of the model

Since system (1) describes human population and pathogen population, all feasible solu-
tions are uniformly bounded in a proper subset of Ŵ = ŴH × ŴB . The feasible region

is positively invariant.

Disease free equilibrium (DFE)

Let the DFE be denoted by E0(S0, I0,R0,B0) . To determine the disease free equilib-
rium point, we equate the right-hand side of system (1) to zero and substitute S = S0 , 
I = I0 = 0 , R = R0 = 0 and B = B0 = 0 . Solving the remaining equation we get S0 = �

µ
 . 

Thus
E0(S0, I0,R0,B0) = E0(

�
µ
, 0, 0, 0)

(1)

dS
dt

= �−

[

(1−ω)αB
κ+B + µ

]

S

dI
dt

=
(1−ω)αBS

κ+B − (µ+ ǫ + δ)I
dR
dt

= ǫI − µR
dB
dt

= (1− ω)ηI − νB

ŴH =

{

(S, I ,R) ∈ R
3
+; S > 0, I ,R ≥ 0;NH ≤

�

µ

}

∪ ŴB =

{

B ∈ R+;B ≥ 0;NB ≤
�(1− ω)η

µν

}

IS B

R

Λ

µ νµ+ δ

µ

ε

(1−ω)αB
κ+B (1− ω)η

Fig. 1 Flowchart
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The basic reproduction number

The basic reproduction number (R0) is the expected number of secondary infections 
produced in a completely susceptible population by a typical infected individual dur-
ing his/her infectious lifetime in the presence of protection. By using the next genera-
tion matrix approach [7], R0 is given by ρ(FV−1) (the spectral radius of the matrix 
FV−1 ). The matrices F  and V  are given by

and

Therefore, it follows that

Existence of the endemic equilibrium (EE)

We denote our endemic equilibrium point as E∗(S∗, I∗,R∗,B∗).

Theorem 1 There exists a unique endemic equilibrium of system (1) when R0 > 1.

Proof To prove this theorem, we equate the right-hand side of system (1) to zero and 
replace S, I, R and B with S∗ , I∗ , R∗ , and B∗ , respectively, to get

From the last two equations of system (2) we have

Adding the first and the second equation of system (2) the solving for S∗ we obtain

F =

[

0
(1−ω)�α

µκ

0 0

]

V =

[

(µ+ ǫ + δ) 0

−(1− ω)η ν

]

.

R0 = ρ(FV−1) =
(1− ω)2η�α

νµκ(µ+ ǫ + δ)

(2)

0 = �−

[

(1−ω)αB∗

κ+B∗ + µ

]

S∗

0 =
(1−ω)αB∗S∗

κ+B∗ − (µ+ ǫ + δ)I∗

0 = ǫI∗ − µR∗

0 = (1− ω)ηI∗ − νB∗

(3)R∗ =
ǫI∗

µ
,

(4)B∗ =
(1− ω)ηI∗

ν
.

(5)S∗ =
�− (µ+ ǫ + δ)I∗

µ
.
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Now we substitute Eqs. (4) and (5) in the second equation of system (2) and then solve 
for I∗ to obtain

and it follows that I∗ > 0 given that R0 > 1 .  �

Local stability of disease free equilibrium point

In this section, we analyze the local stability of the disease free equilibrium point.

Theorem 2 The disease-free equilibrium (DFE) is locally asymptotically stable if and 
only if all eigenvalues of the Jacobian matrix of system (1) at the DFE have a negative real 
part.

ProofThe Jacobian of system at the DFE is given by

From matrix ( 7) we obtain the characteristic equation

Solving for � in Eq. (8) we get

�1 = �2 = −µ , �3 = −ν,�4 = −(µ+ ǫ + δ)

Clearly, all eigenvalues have a negative real part as required.  �

Global stability of disease free equilibrium point

In this section, we analyze the global stability of the disease free equilibrium point by 
following [8].

Theorem 3 The disease free equilibrium is globally asymptotically stable if R0 ≤ 1.

(6)
I∗ =

κ(µ+ ǫ + δ)

(

1−
(1−ω)2�αη
νµκ(µ+ǫ+δ)

)

−

(

(1−ω)2(µ+ǫ+δ)αη
νµ

+
(1−ω)(µ+ǫ+δ)η

ν

)

=
−κνµ(1−R0)

(1− ω)2αη + (1− ω)µη
,

(7)J (E0) =









−µ 0 0 −
(1−ω)α�

κµ

0 −(µ+ ǫ + δ) 0
(1−ω)α�

κµ

0 ǫ −µ 0

0 (1− ω)η 0 −ν









(8)(�+ µ)2(�+ ν)[�+ (µ+ ǫ + δ)] = 0
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Proof We begin the proof by constructing the Lyapunov function

Differentiating Eq. (9) with respect to t we get

Now we plug in values dI
dt

 and dB
dt

 into Eq. (10) using system (1) to get

Substituting S = S0 =
�
µ

 in Eq. (11) we obtain

And it follows that

Clearly dV
dt

≤ 0 if R0 ≤ 1 . Moreover, dV
dt

= 0 ⇔ R0 = 1 or B = 0 which leads 
to I = R = 0 . Thus, it follows that the invariant set of system (1) on the set 
{(S, I ,R,B) ∈ Ŵ : V̇ |(1) ≤ 0} is the singleton the disease free equilibrium point (E0) . 
Hence, from the LaSalle’s invariance principle [8], E0 is globally asymptotically stable on 
the set Ŵ if R0 ≤ 1 .  �

Local stability of endemic equilibrium point

In this section, we analyze the local stability of the endemic equilibrium point.

Theorem 4 The endemic equilibrium is locally asymptotically stable if R0 > 1.

ProofThe Jacobian of system at the EE is given by

The trace of the Jacobian matrix (13) is negative and the determinant is given by

(9)V = (1− ω)ηI + (µ+ ǫ + δ)B.

(10)
dV

dt
= (1− ω)η

dI

dt
+ (µ+ ǫ + δ)

dB

dt
.

(11)

dV

dt
= (1− ω)η

(

(1− ω)αBS

κ + B
− (µ+ ǫ + δ)I

)

+ (µ+ ǫ + δ)((1− ω)ηI − νB)

=

(

(1− ω)2ηαS

(κ + B)(µ+ ǫ + δ)ν
− 1

)

(µ+ ǫ + δ)νB.

dV

dt
=

(

(1− ω)2η�α

µ(κ + B)(µ+ ǫ + δ)ν
− 1

)

(µ+ ǫ + δ)νB

≤

(

(1− ω)2η�α

µκ(µ+ ǫ + δ)ν
− 1

)

(µ+ ǫ + δ)νB.

(12)
dV

dt
≤ (R0 − 1)(µ+ ǫ + δ)νB.

(13)J (E∗) =











−

�

(1−ω)αB∗

κ+B∗ + µ

�

0 0 −
(1−ω)ακ

(κ+B∗)2
S∗

(1−ω)αB∗

κ+B∗ −(µ+ ǫ + δ) 0
(1−ω)ακ

(κ+B∗)2
S∗

0 ǫ −µ 0

0 (1− ω)η 0 −ν
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which is positive if

Since there exist a unique endemic equilibrium of system (1) provided that R0 > 1 (Ref 
Theorem 1), if the determinant is positive, by Routh–Hurwitz criteria, the endemic state 
E∗(S∗, I∗,R∗,B∗) is locally asymptotically stable.  �

Global stability of the endemic equilibrium point

We study the global asymptotic stability of the endemic equilibrium using LaSalle’s 
invariance principle [8].

Theorem 5 The Endemic Equilibrium Point E∗ of system (1) is globally asymptotically 
stable if R0 > 1.

Proof
We apply [8] approach to prove global stability of E∗ . Consider the following Lyapunov 
function

The derivative of V is

Next, we replace dS
dt

 , dI
dt

 , dR
dt

 and dB
dt

 in Eq. (14) using system (1), to have

At endemic equilibrium, system (1) becomes

Det(J (E∗)) =−
(1− ω)2η�ακµ

(κ + B∗)2
+

(1− ω)2ηακµ

(κ + B∗)2
(µ+ ǫ + δ)I∗

+

(

(1− ω)αB∗

κ + B∗
+ µ

)

(µ+ ǫ + δ)ν,

(1− ω)2η�ακµ

(κ + B∗)2
<

(1− ω)2ηακµ

(κ + B∗)2
(µ+ ǫ + δ)I∗ +

(

(1− ω)αB∗

κ + B∗
+ µ

)

(µ+ ǫ + δ)ν.

V (S, I ,R,B) =

(

S − S∗ ln
S

S∗

)

+M

(

I − I∗ ln
I

I∗

)

+ P

(

R− R∗
ln

R

R∗

)

+ Q

(

B− B∗
ln

B

B∗

)

.

(14)
dV

dt
=

(

1−
S∗

S

)

dS

dt
+M

(

1−
I∗

I

)

dI

dd
+ P

(

1−
R∗

R

)

dR

dt
+ Q

(

1−
B∗

B

)

dB

dt
.

(15)

dV

dt
=

(

1−
S∗

S

)(

�−

(

(1− ω)αB

κ + B
+ µ

)

S

)

+M

(

1−
I∗

I

)(

(1− ω)αBS

κ + B
− (µ+ ǫ + δ)I

)

+ P

(

1−
R∗

R

)

(ǫI − µR)+ Q

(

1−
B∗

B

)

((1− ω)ηI − νB).
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Substituting (16) into (15), we get

which upon simplification we arrive at

where w = S
S∗ , x = I

I∗ , y =
R
R∗ and z = B

B∗ . Furthermore, Eq. (17) can be written as

where

To determine M, P and Q, we set the coefficients of wz, y and z of Eq. (18) equal to zero 
and obtain,

(16)

� =

[

(1− ω)αB∗

κ + B∗
+ µ

]

S∗

(µ+ ǫ + δ) =
(1− ω)αB∗S∗

(κ + B∗)I∗

µ =
ǫI∗

R∗

ν =
(1− ω)ηI∗

B∗

dV

dt
=

(

1−
S∗

S

)

(

[

(1− ω)αB∗

κ + B∗
+ µ

]

S∗ −

[

(1− ω)αB

κ + B
+ µ

]

S)

+M

(

1−
I∗

I

)

(
(1− ω)αBS

κ + B
−

(1− ω)αB∗S∗I

(κ + B∗)I∗
)

+ P

(

1−
R∗

R

)

(ǫI −
ǫI∗R

R∗
)+ Q

(

1−
B∗

B

)

((1− ω)ηI −
(1− ω)ηI∗B

B∗
),

(17)

dV

dt
= −µ

(S − S∗)2

S
+

(

1−
1

w

)(

(1− ω)αB∗S∗

κ + B∗

)

−

(

1−
1

w

)(

(1− ω)αwzB∗S∗

κ + zB∗

)

+M

(

(1− ω)αB∗S∗wz

κ + zB∗
−

(1− ω)αB∗S∗x

(κ + B∗)
−

(1− ω)αB∗S∗wz

(κ + zB∗)x
+

(1− ω)αB∗S∗

(κ + B∗)

)

+ P

(

ǫI∗x − ǫI∗y−
ǫI∗x

y
+ ǫI∗

)

+ Q

(

(1− ω)ηI∗x − (1− ω)ηI∗z −
(1− ω)ηI∗x

z
+ (1− ω)ηI∗

)

,

dV

dt
= −µ

(S − S∗)2

S
+ f (w, x, y, z),

(18)

f (w, x, y, z) =
(

1− 1
w

)(

(1−ω)αB∗S∗

κ+B∗

)

−

(

1− 1
w

)(

(1−ω)αwzB∗S∗

κ+zB∗

)

+M
(

(1−ω)αB∗S∗wz
κ+zB∗ −

(1−ω)αB∗S∗x
(κ+B∗) −

(1−ω)αB∗S∗wz
(κ+zB∗)x +

(1−ω)αB∗S∗

(κ+B∗)

)

+P
(

ǫI∗x − ǫI∗y− ǫI∗x
y + ǫI∗

)

+Q
(

(1− ω)ηI∗x − (1− ω)ηI∗z − (1−ω)ηI∗x
z + (1− ω)ηI∗

)

.

M
(1− ω)αB∗S∗

κ + zB∗
= 0

− PǫI∗ = 0

− Q(1− ω)ηI∗ = 0
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Let M=1, solving for P and Q, we have

Substituting for M, P and Q in Eq. (18) and simplifying the result, we obtain

Using arithmetic and geometric mean inequality, we have

1
w + x > 2 , y+ x

y +
wz
x − x − z > 1 and z + x

z − x > 1.

Clearly f (w, x, y, z) ≤ 0 , hence dG
dt

≤ 0 in � . The equality dV
dt

= 0 if and only if 
w = x = y = z = 1 and S = S∗ , I = I∗ , R = R∗ , B = B∗ . Thus, system (1) has a unique 
endemic equilibrium point E∗ which is globally asymptotically stable if R0 > 1 using 
LaSalle’s invariance principle in [8].  �

Results
We carry out numerical simulations of model (1), using MATLAB ode45 solver. The 
parameter values used are presented in Table 1.

Figure 2a shows that in the absence of treatment or presence of ineffective treatment 
(0 ≤ ω < 1) , the number of infected individuals decreases at the onset of the disease, fol-
lowed by a rapid increase and settles at the endemic level. But when treatment is effec-
tive (ω = 1) , the number of infected individuals decreases and finally converges to the 
disease-free equilibrium point. Figure  2b exhibits that in the absence of treatment or 
the presence of ineffective treatment (0 ≤ ω < 1) , the number of pathogens rises rapidly; 
this is due to the continued shedding of pathogens by infected individuals. Figure 2b also 
shows that when the treatment is effective (ω = 1) , the number of pathogens decreases 
and eventually converges to the disease-free equilibrium point.

P =
(1− ω)αB∗S∗

(κ + zB∗)ǫI∗
, Q =

(1− ω)αB∗S∗

(κ + zB∗)ηI∗

f (w, x, y, z) =
(1− ω)αB∗S∗

κ + B∗

(

2−
1

w
− x

)

+
(1− ω)αB∗S∗

κ + zB∗

(

x + z − y−
x

y
−

wz

x
+ 1

)

+
(1− ω)2αB∗S∗

κ + zB∗

(

x − z −
x

z
+ 1

)

Table 1 Parameter values of the model

Parameter symbol Value Source

� 467 humans/day [9]

µ 0.0247/day Assumed

α 0.25/day Assumed

κ 50,000 Assumed

δ 0.002/day Assumed

η 1.431× 10
−2/day Assumed

ǫ 0.0657/day [9]

ν 0.001/day Assumed

ω 0 ≤ ω ≤ 1 Assumed
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Conclusion
In this study, we have formulated a mathematical model describing the transmission of 
typhoid fever with treatment as control strategy. The model has disease free equilibrium 
and endemic equilibrium. We have derived the basic reproduction number R0 and shown 
that the typhoid fever will disappear if R0 < 1 . We have also shown that typhoid fever per-
sists in the population if R0 > 1 , implying that after some period of time the typhoid fever 
will become hazardous. The findings of the numerical simulation indicate that effective 
treatment is adequate in eradicating typhoid fever.
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