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Introduction
Different censoring schemes are available in the literature to optimize time, cost and 
efficiency of the life testing experiment. Among different censoring schemes, type-I and 
type-II are the two most popular censoring schemes. In a type-I censoring scheme, the 
experiment is terminated at a prefixed time point. In type-I censoring, number of fail-
ures is purely random. So, it may happened that the observed number of failures during 
the pre-determined fixed time may be very small or sometimes zero which will lead to a 
biased or inefficient statistical analysis of associated model parameters. To get a certain 
number of failures, type-II censoring scheme is used. But in type-II censoring scheme, 
the test termination time is random and it may takes more than the expectation of the 
experimenter, which increases the cost of the experiment. The work done under such 
types of censoring schemes is mostly on the basis of single censored sample.
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However, in practical market, there are situations in which the experimenter wishes 
to compare the product produced by different producers under the same facility. 
From a practical point of view, it is necessary to identify one item in presence of the 
other relative items. This problem requires sampling of the different production lines, 
and then the joint censoring scheme is appeared. To this end, the reliability compara-
tive life test is apparently desirable. In order to guarantee the same experimental con-
dition that items are exposed to, a joint censoring model is used to describe the test 
model.

Recently, two sample joint censoring schemes becoming popular for a life testing 
experiment mainly to optimize time and cost. Two independent samples of sizes m and 
n are selected from these lines and put simultaneously on a life testing experiment. Then, 
the experimenter follows a joint complete sample scheme or a joint censoring scheme 
and terminates the life testing experiment when a pre-determined number of failures 
(say, r) occur, which is known as joint type-II censoring.

To determine reliability of a product, life time distribution plays an important role. 
Selection of a proper life time model for the product is an art. In literature various types 
of life time models are available like: exponential, Weibull, Rayleigh, gamma, logistic, 
Pareto, Kumaraswamy etc. The life time model can be selected on the basis of the failure 
rate of the product. Exponential model is used for the product having constant failure 
rate. Weibull life time model is a very general life time model which can be used when 
the product has decreasing, constant or an increasing failure rate.

Exponential life time model is such a life time model which possesses many interest-
ing properties and very much mathematically tractable. Life times of many electrical and 
electronic items follow exponential distribution. In this paper we have utilized exponen-
tial life time model. A lot of work has been done based on exponential life time model 
under various types of censoring schemes.

In the literature, joint type-II censoring scheme, joint progressive type-II censoring 
scheme and statistical analysis based upon such schemes have been discussed earlier. 
Balakrishnan and Rasouli [1] developed likelihood inference for the parameters of two 
exponential populations under joint type-II censoring. They developed inferential meth-
ods based on maximum likelihood estimates and compared their performance with 
those based on some other approaches such as Bootstrap. Shafay et al. [2] derived the 
Bayesian inference for the unknown parameters of two exponential populations under 
joint type II censoring. They developed the estimates with the use of squared-error, lin-
ear-exponential and general entropy loss functions.

Balakrishnan and Feng [3] generalized Balakrishnan and Rasouli [1] and Shafay et al. 
[2] works by considering a jointly type-II censored sample arising from h independ-
ent exponential populations. Ashour and Abo-Kasem [4, 5] derived Bayesian and non-
Bayesian estimators for two generalized exponential populations under joint type-II 
censored scheme.

Parsi and Bairamov [6] extended the scheme of two joint type-II censoring to a joint 
progressive type-II censoring scheme and considered expected values of the number 
of failures for two populations under joint type-II progressive censoring. Rasouli and 
Balakrishnan [7] provided the exact likelihood inference for two exponential popula-
tions under this censoring scheme. They have also derived the exact lower confidence 
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bounds, exact confidence intervals, and simultaneous confidence regions for the 
parameters of the model based on classical and Bayesian setup.

Balakrishnan and Su et  al. [8] extended the joint progressive censoring model to 
general K population model and studied exact likelihood inference of the unknown 
parameters for exponential distributions. Nadi and Gildeh [9] used progressive first-
failure censored sample for estimating the lifetime performance index of products for 
two-parameter exponential distribution.

Mondal and Kundu [10] recently introduced a balanced joint progressive type-II 
censoring scheme and provided the exact likelihood inference for the two exponential 
populations. It is observed that it has certain advantages over the joint progressive 
censoring scheme originally introduced by Rasouli and Balakrishnan [7].

In this paper we suggest a joint multiply type-II censoring scheme for the product 
having two exponential life time distributions. The rest of the paper is organized as 
follows: In “Methods” section, we first introduce the multiply type-II censoring and 
then it is utilized for development of joint multiply type-II censoring model and its 
likelihood function. Maximum likelihood estimates and their asymptotic standard 
errors of the mean life time and reliability of the two similar line products are derived. 
Based on the asymptotic normal distributions of maximum likelihood estimators, 
asymptotic confidence intervals for mean life times of the products are derived. Then 
after an influence measure is considered, by which the influence of individual obser-
vations on maximum likelihood estimates can be determined. Bayes estimation of 
mean life times and reliabilities of the products are also discussed. In “Results and 
discussion” section, the real data set regarding air-conditioning system of a fleet of 13 
Boeing 720 jet airplanes considered by Proschan [11] is used to exemplify the results 
obtained in the earlier sections. Finally overall conclusion is given in “Conclusion” 
section.

Methods
Multiply type‑II censoring

A generalization of type-II censoring scheme is known as multiply type-II censoring 
scheme. The following two types of multiply type-II censoring schemes are available:

• Under this scheme, from n items on the test we observe only the r1-th, r2-
th,⋯,rk-th failure times Xr1 , Xr2 , …,Xrk , where 1 ≤ r1 < r2 < ⋯ < rk ≤ n, and the rest of 
the data are not available.

• In life testing experiments the test is terminated either at predetermined time 
observed (type-I censoring) or at a predetermined number of failures observed 
(type-II censoring). Such censoring schemes may be from left or right. Sometimes 
left and right censoring appears together, this is known as doubly censoring. Fur-
thermore, if mid censoring arises amongst the doubly censoring in the type II cen-
soring scheme, the scheme is also known as multiply type-II censoring.

Applications of multiply type-II censoring scheme are available in literature. Some of 
the references related to the multiply type-II censoring scheme described in (a) are 
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Balakrishnan [12], Balakrishnan et  al. [13], Shah and Patel [14], Kim and Han [15], 
and in (b) are Upadhyay et al. [16], Kong [17], Shah and Patel [18], Kang et al. [19], 
Patel and Patel [20] and Shafay and Sultan [21].

Joint multiply type‑II censoring

Let there are two lines of similar products and our aim is to study the relative merits of 
these two products. A sample of size m is drawn from one product line, called type-A 
and another sample of size n is drawn from the other product line, called type-B.

Suppose that, Y1,Y2, . . . ,Ym the lifetimes of m specimens of product type-A, are inde-
pendent identically distributed random variables from distribution function F(y) and 
density function f(y), and W1,W2, . . . ,Wn , the lifetimes of n specimens of product type-
B, are also independent identically distributed random variables from distribution func-
tion G(w) and density function g(w). Further, suppose X1 < X2 < · · · < XN denote the 
order statistics of the N = m + n random variables {Y1,Y2, . . . ,Ym; W1,W2, . . . ,Wn} . 
Here we assume that the probability distributions of Y and W are continuous, a unique 
ordering is always possible, since theoretical ties do not exist. Even though, if two obser-
vations from Y and W are equal, we can break the tie using random arrangement of these 
observations.

Suppose that only k ordered failure times Xr1 ,Xr2 , . . . ,Xrk are observed out of 
X1,X2, . . . ,XN ordered failure times. Here experimenter pre-fixes the values of 
r1, r2, . . . , rk before conducting the life testing experiment. In this scheme, initial r1 − 1 
failures, some intermediate failures and last N − rk failures are not observed, since our 
aim is to save time and cost of the experiment. The joint multiply type-II censoring 
scheme can be visualized graphically as follows.

where ai = number of failures of type-A with Xri−1 < Y < Xri , i = 1, 2,…, k; r0 = 0, X0 = 0; 
bi = number of failures of type-B with Xri−1 < W < Xri , i = 1, 2,…, k; ak+1 = number of 
failures of type-A with Xrk < Y  = m − mk − 

∑k
i=1 ai ; bk+1 = number of failures of type-

B with Xrk < W  = n − nk −
∑k

i=1 bi
 = Rk+1 − ak+1; Let mk = number of failures of type-A 

out of the k observed failures = 
∑k

i=1 Zi ; nk = number of failures of type-B out of the k 
observed failures = 

∑k
i=1(1− Zi) = k −mk ; Note that mk and nk both simultaneously 

cannot be zero. If any one of them is zero the problem reduces to estimation based on 
single sample only.

Then, under the joint multiply type-II censoring scheme, the observable data consist of 
(Z, X), where

Z = {Z1,Z2, . . . ,Zk} with Zi = 1 or 0 according to Zi is from Y or W failure.

Denote R1 = r1−1, Ri = ri − ri−1 − 1, i = 1, 2, . . . , k and Rk+1 = ak+1 + bk+1

X = {Xr1 ,Xr2 , . . . ,Xrk }, with 1 < r1 < r2 < · · · < rk < N , and
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Then the likelihood function of (Z, X) will be given by

where C = m!n!∏k+1
i=1 ai!

∏k+1
i=1 bi!

.

Consider exponential life time models for life time Y and W as

Assuming Ti = xri − xri−1 , i = 2,…,k and substituting Eq. (2) in Eq. (1) the likelihood 
function becomes

where

and

Maximum likelihood estimate (MLE) and asymptotic standard error

The MLEs θ̂1 and θ̂2 of the parameters θ1 and θ2 are obtained by maximizing Eq. (3). To 
maximize the likelihood function in Eq. (3) we derive the likelihood equations

Solving the above equations we get MLEs of mean life times θ1 and θ2.The maximum 
likelihood method does not admit explicit solutions, but we have two equations as

and

(1)

L = C
{
F
(
xr1

)}a1{G
(
xr1

)}b1
k∏

i=1

{
f
(
xri

)}zi
k∏

i=1

{
g
(
xri

)}1−zi
k∏

i=2

[
F
(
xri

)
− F

(
xri−1

)]ai

×

k∏

i=2

[
G
(
xri

)
−

(
xri−1

)]bi{F
(
Xrk

)}ak+1
{
G
(
Xrk

)}bk+1

(2)F(y) = 1− e−y/θ1 and G(w) = 1− e−w/θ2 , y > 0, w > 0; θi > 0, i = 1, 2.

(3)

L = L(θ |X) =
C

θ
mk
1 θ

nk
2

(
1− e

−x r1
θ1

)a1

exp

(
−
uk

θ1

) k∏

i=2

[
1− e

−T i
θ1

]ai(
1− e

−x r1
θ2

)b1

exp

(
−
vk

θ2

)

×

k∏

i=2

[
1− e

−T i
θ2

]bi

θ = (θ1, θ2), uk =

k∑

i=2

aixri−1 +

k∑

i=1

zixri + ak+1xrk

vk =

k∑

i=2

bixri−1 +

k∑

i=1

(1− zi)xri + bk+1xrk

∂ log L

∂θ1
= 0 and

∂ log L

∂θ2
= 0.

(4)mkθ1 = uk −
a1x

r1e
−(xr1 /θ1)

1− e−
(
xr1/θ1

) −

k∑

i=2

{
aiTie

−(Ti/θ1)

1− e−(Ti/θ1)

}
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Using any method of iteration, the Eqs. (4) and (5) can be solved for θ1 and θ2 . The 
solutions of the two equations give us the MLEs θ̂1and θ̂2 of the parameters θ1 and θ2 
respectively.

Let I(θ1, θ2) = Ii,j
(
θi, θj

)
 i, j = 1, 2 denote the Fisher information matrix of the param-

eters θ1 and θ2 , whereand consequently the observed Fisher information matrix is 
given by

where

and

Hence asymptotic standard errors (ASEs) of MLEs are obtained by

Then, by using the asymptotic normality of the MLEs, we can express the asymp-
totic (1 − α)100% confidence intervals for θ1 and θ2 as

where Zα/2 denotes the upper α/2 percentage point of the standard normal distribution.
MLEs of Reliabilities at time t of the product of type-A and type-B are respectively 

given by

(5)nkθ2 = vk −
b1x

r1e
−(xr1 /θ2)

1− e−
(
xr1/θ2

) −

k∑

i=2

{
biTie

−(Ti/θ2)

1− e−(Ti/θ2)

}

Ii,j
(
θi, θj

)
= −E

(
∂2logL

∂θi∂θj

)

(6)Î(θ1, θ2) =




−

∂2 log L

∂θ21
0

0 −
∂2 log L

∂θ22





(θ1,θ2)=(θ̂1,θ̂2)

(7)

∂2 log L

∂θ21
=

2

θ31

{a1x
r1e

−(xr1 /θ1)

1− e−
(
xr1/θ1

)
}
−

a1x
2
r1

θ41

e−
(
xr1/θ1

)

(
1− e−

(
xr1/θ1

))2 −
2uk

θ31
+

mk

θ21
+

2

θ31

k∑

i=2

aiTie
−(Ti/θ1)

1− e−(Ti/θ1)

−
1

θ41

k∑

i=2

aiT
2
i e

−(Ti/θ1)

(
1− e−(Ti/θ1)

)2

(8)

∂2 log L

∂θ22
=

2

θ32

{
b1x

r1e
−(xr1 /θ2)

1− e−
(
xr1/θ2

)

}
−

b1x
2
r1

θ42

e−
(
xr1/θ2

)

(
1− e−

(
xr1/θ2

))2 −
2vk

θ32
+

nk

θ22
+

2

θ32

k∑

i=2

biTie
−(Ti/θ2)

1− e−(Ti/θ2)

−
1

θ42

k∑

i=2

biT
2
i e

−(Ti/θ2)

(
1− e−(Ti/θ2)

)2

(9)
ASE(θ̂1) =

√√√√
−1

E
(
∂2 log L

∂θ21

) and ASE(θ̂2) =

√√√√√
−1

E

(
∂2 log L

∂θ22

)

(10)θ̂1 ± Zα/2ASE(θ̂1) and θ̂2 ± Zα/2ASE(θ̂2)



Page 7 of 16Gadhvi  J Egypt Math Soc           (2021) 29:17  

The ASE of MLE of reliability at time t for the product A is calculated as

Similarly the asymptotic standard error of MLE of reliability at time t for the product B 
can be calculated.

Influence measure

In this section we have considered the influence of individual observations on maximum 
likelihood estimates. We have used the method considered by Poon and Tang [22].

Let L(θ) be the likelihood function of θ given in Eq. (1). Define the case weight pertur-
bation w = (w1,w2, . . . .,wN )

′
 and corresponding perturbed log-likelihood function will 

be

Using Eq. (2) in Eq. (13) it can be further simplified as

If w = w0 = (1, 1, . . . , 1)′ , from Eq.  (14) we see that log L(θ |w0) = log L(θ) . If i-
th observation is deleted i.e. wi = 0 and if such deletion leads to very different MLE of 

(11)R̂A(t) = e−t/θ̂1 and R̂B(t) = e−t/θ̂2

(12)ASEA(t) =

√
dRA(t)

dθ1
V (θ̂1)

∣∣∣∣∣∣
θ=θ̂1

(13)

log L(θ |w) =

a1∑

i=1

wi log
(
F
(
xr1 , θ1

))
+

r1−1∑

i=a1+1

wi log
(
G
(
xr1 , θ2

))
+

k∑

i=1

wrizi log
(
f
(
xr1 , θ1

))

+

k∑

i=1

wri(1− zi) log
(
g
(
xr1 , θ2

))
+

k∑

j=2

aj+rj−1∑

i=rj−1+1

wi log
[
F
(
xrj , θ1

)
− F

(
xrj−1 , θ1

)]

+

k∑

j=2

rj−1∑

i=aj+rj−1+1

wi log
[
G
(
xrj , θ2

)
− G

(
xrj−1 , θ2

)]

+

ak+1+rk∑

i=rk+1

wi log
[
1− F

(
xrk , θ1

)]
+

N∑

i=ak+1+rk+1

wi log
[
1− G

(
xrk , θ2

)]

(14)

log L(θ |w) =

a1�

i=1

wilog

�
1− exp

�
−
xr1
θ1

��
+
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wilog

�
1− exp

�
−
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�
1
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θ = (θ1, θ2), then it leads to influence of i-th observation. In a similar manner if a small 
perturbation of wi from wi = 1 leads to a very different MLE of θ = (θ1, θ2), it will be evi-
dence of influence of i-th observation. Thus, if log L(θ |w) becomes maximum under θ̂w , 
then the change of θ̂w , as a function of w reveals the information about how influential 
an individual observation is. Cook [23] proposed the displacement D(w) as

The directions giving large change of D(w) at w0 are of interest. Cook [23] proposed the 
following straightforward computation method of such a direction as described below:

which is a 2 × 2 matrix.
Define

which is a 2 × N matrix, N = m + n is a total sample size.
The (1, j)th element of the matrix A is given by

and (2, j)th element as

Using the Eqs. (7) and (8) the matrix H can be computed at MLE of the parameters.
Then matrix � is defined as

Poon and Poon [24] introduced the basic perturbation direction  (pdi) with the help of 
diagonal elements and trace value of the matrix �.

and suggest that the observations with large  pdi values as influential. From Eqs. (16) to 
(17), influence measures can be computed with given density function f(xi, θ). To iden-
tify the large values of  pdi, Poon and Poon [24] introduced the reference constant (c) as

which can be used to identify the observations having large  pdi values.

(15)D(w) = log L
(
θ̂ |w0

)
− log L

(
θ̂w|w0

)

(16)Let H =
∂2 log L(θ)

∂θ1∂θ2

∣∣∣∣(θ1, θ2) =
(
θ̂1, θ̂2

)

(17)A =

(
∂2 log L(θ |w)

∂(θ1, θ2)∂w

)

(θ1,θ2)=(θ̂1,θ̂2),w=w0

(18)
∂2 log L(θ |w)

∂θ1∂wj

∣∣∣∣θ1 = θ̂1,w = w0j

(19)
∂2 log L(θ |w)

∂θ2∂wj

∣∣∣∣θ2 = θ̂2,w = w0j

(20)� = −A′(H)−1A

(21)pdi =
�ii√

trace
(
�2

) , i = 1, 2, . . .N

(22)c =
2trace(�)

N
√
trace

(
�2

)
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Bayes estimation

In this section we consider the Bayes estimates of mean life time and reliability of the prod-
ucts of type-A and type-B. To obtain Bayes estimate of the parameter θ of the distribution, 
we should decide prior distribution of θ. Prior distribution can be determined by analyst’s 
pre-data understanding/knowledge/belief about θ. Usually the parametric form of the prior 
is chosen such that the posterior distribution of θ be of the same form i.e. belongs to the 
same family of the prior distributions. Use of such a prior is mostly for mathematical and 
computational convenience in practice. Usually the Bayes estimate of the parameter θ fall 
somewhere between the prior and likelihood estimates. Thus Bayes estimate of the param-
eter depends on the initial beliefs about the parameter θ.

Unfortunately, when both the parameters θ1 and θ2 are unknown then there does not exist 
any natural conjugate priors. In this article, similarly as in Kundu and Pradhan [25], we use 
the inverse gamma priors for the parameters θ1 and θ2.

The inverse gamma priors IG(c1, d1) and IG(c2, d2) for θ1 and θ2 respectively defined as

On the basis of the likelihood function in Eq. (3) and above independent inverse gamma 
prior distributions, the joint posterior density function of θ1 and θ2 can be constructed as

where

From the expression of the posterior distribution given in (14) it is quite difficult 
to obtain Bayes estimates of the parameters in closed form, so we use approximation 
method to evaluate them. There are several approximation methods to obtain Bayes esti-
mates of the parameters. Here, we use importance sampling method proposed by Kundu 
and Pradhan [25]. The importance sampling method can be used to derive estimates of 
parameters.

Using importance sampling approach Bayes estimates of θ1 and θ2 can be obtained as 
follows:

(23)π1(θ1) =
e−d1/θ1d

c1
1

θ
c1+1
1 Ŵc1

= IG(c1, d1) and π2(θ2) =
e−d2/θ2d

c2
2

θ
c2+1
2 Ŵc2

= IG(c2, d2),

θi > 0, ai > 0, bi > 0, i = 1, 2.

(24)

h(θ1, θ2|x ) = Lπ1(θ1)π2(θ2)

∝
e
−
(uk+d1)

θ1 (uk + d1)
mk+c1

θ
mk+c1+1

1
Ŵ(mk + c1)

e
−
(vk+d2)

θ2 (vk + d2)
nk+c2

θ
nk+c2+1

2
Ŵ(nk + c2)

(
1− e

−
(

xr1
θ1

))a1
(
1− e

−
(

xr1
θ2

))b1

(uk + d1)
mk+c1 (vk + d2)

nk+c2

×

k∏

i=2

[
1− e

−T i
θ1

]ai k∏

i=2

[
1− e

−T i
θ2

]bi

(25)∝ IG(mk + c1,uk + d1)IG(nk + c2, vk + d2)h3(θ1, θ2|x )

(26)
h3(θ1, θ2|x ) =

(
1− e

−
(
xr1
θ1

))a1(
1− e

−
(
xr1
θ2

))b1

(uk + d1)
mk+c1(vk + d2)

nk+c2

k∏

i=2

[
1− e

−T i
θ1

]ai k∏

i=2

[
1− e

−T i
θ2

]bi
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Step 1: Generate θ1 from IG(mk + c1,uk + d1)∼Inverse gamma(mk + c1,uk + d1)

Step 2: Generate θ2 from IG(nk + c2, vk + d2) ∼ Inverse gamma(nk + c2, vk + d2)

Step 3: Repeat Steps 1 and 2 N times to obtain ( θ11, θ21 ), …, ( θ1N , θ2N)
Step 4: The Bayes estimate ε̂B of ε(θ1, θ2) , any function of θ1andθ2 under the squared-
error loss function can then be approximated as

The Bayes estimate of θ1 is obtained by considering ε(θ1, θ2) = θ1 in the above 
computation.

Similarly, the Bayes estimate of θ2 can be computed. The Bayes estimates of the reli-
abilities at time t of the two types of products can be obtained by replacing the function 
ε(θ1, θ2) by an expression of reliability function given in (11). Some further applications 
of this method can also be found in Kundu and Pradhan [25] and Rastogi and Tripathi 
[26].

Results and discussion
In this section we perform the analysis of a real data set to illustrate how the proposed 
methods work in practice. We have used the following data set proposed by Proschan 
[11]. Proschan [11] presented data on intervals between failures (in hours) of the air 
conditioning system of a fleet of 13 Boeing 720 jet airplanes. After analyzing the data, 
he observed that the failure distribution of the air-conditioning system for each of the 
planes was well approximated by exponential distributions. These data sets were used by 
Rasouli and Balakrishnan [7] and Mondal and Kundu [27].

For the purpose of illustration, we chose here the planes “7914” and “7913,” and we 
assume the failure times of air-conditioning systems in the two planes follow exponential 
life time model with means θ1 > 0 and θ2 > 0 respectively. The samples of sizes m = 24 
and n = 27 for plane 7914 and 7913 are considered respectively. The corresponding fail-
ure time data are presented in Table 1.

Here we call the air-conditioning systems of plane 7914 as product of type-A and 
of plane 7913 as product of type-B. As an example, we have constructed two jointly 
multiply type-II censored samples with k = 9 and k = 6 from the above data to exem-
plify the results obtained in the earlier sections, which are shown in the Tables 2 and 3 
respectively.

Using the Eqs. (4), (5) and (9) the MLEs and their asymptotic standard errors are cal-
culated and presented in the Table 4. The results are obtained in case of joint multiply 
type-II as well as for usual joint type-II censored samples.

(27)ε̂B =

∑N
i=1 ε(θ1i, θ2i)h3(θ1i, θi2|x )∑N

i=1 h3(θ1i, θ2i|x )

Table 1 Failure times of air-conditioning systems in two airplanes

Plane Failure times

7914 3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97, 102, 139, 188, 197, 210

7913 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97, 106, 111, 141, 142, 
163, 191, 206, 216
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MLEs of reliabilities at time t = 100 for both the types of products along with their 
asymptotic standard errors are calculated using the Eqs. (11) and (12) and shown in the 
Table 5.

Estimation of θ1 is quite stable over different choice of k, the estimation of θ2 seems 
to be quite sensitive to the joint multiply type II censoring scheme employed when k is 
small. This effect also observed in reliability of the products.

When two populations are not identical and consider smaller samples from them, then 
ordinary joint type-II censoring scheme resulting in poor inference for mean of both the 
populations. From Table 4, we observed that asymptotic standard errors for each of the 
product A and product B are smaller in case of joint multiply type-II censoring scheme 
than that of under joint type-II censoring scheme. Which reveals the advantage of joint 
multiply type-II censoring over the joint type-II censoring.

Now we calculate influence measure for the joint multiply type-II censored sample 
with k = 6, with the data given in Table 3.

Table 2 Joint multiply type-II censoring scheme with k = 9

i 1 2 3 4 5 6 7 8 9

ri 3 8 14 22 27 31 37 40 43

Xri 4 14 22 39 51 72 97 106 141

Z 0 1 1 0 0 1 1 0 0

ai 1 3 1 5 3 0 2 1 1 3

bi 1 1 4 2 1 3 3 1 1 5

Ri 2 4 5 7 4 3 5 2 2 8

Ti – 10 8 17 12 21 25 9 35

Table 3 Joint multiply type-II censoring scheme with k = 6

i 1 2 3 4 5 6

ri 3 8 14 22 27 31

Xri 4 14 22 39 51 72

Z 0 1 1 0 0 1

ai 1 3 1 5 3 0 8

bi 1 1 4 2 1 3 12

Ri 2 4 5 7 4 3 20

Ti – 10 8 17 12 21

Table 4 MLE and ASE

Censoring scheme k MLE ASE

θ̂1 θ̂2 ASE(θ̂1) ASE

(

θ̂2

)

Joint multiply type-II 9 59.51328 86.02658 12.08575 9.25042

6 63.47124 88.61522 12.96159 22.89991

Joint type-II 9 54.16666 125.3333 22.11366 72.36123

6 81.33333 93.33333 46.95782 53.88602
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In our example, we have total 51 products including both the types A and type B, so 
the order of matrix A will be 2× 51.

The 51 elements a1wj , j = 1, 2, …, 51 of the first row of matrix A can be calculated using 
Eq. (18) as

and

a1wj =
−

xr1
θ21

e
−

xr1
θ1

1− e
−

xr1
θ1

, for j = 1

a1wrj
=

Zjxrj

θ21
−

Zj

θ1
, for j = 1, 2, . . . , 6

a1wj =
−T2

θ21
e
−

T2
θ1

1− e
−

T2
θ1

+
x3

θ21
, for j = 4, 5, 6

a1wj =
−T3

θ21
e
−

T3
θ1

1− e
−

T3
θ1

+
x8

θ21
, for j = 9

a1wj =
−T4

θ21
e
−

T4
θ1

1− e
−

T4
θ1

+
x14

θ21
, for j = 15 to 19

a1wj =
−T5

θ21
e
−

T5
θ1

1− e
−

T5
θ1

+
x22

θ21
, for 23 to 25

a1wj =
−T6

θ21
e
−

T6
θ1

1− e
−

T6
θ1

+
x27

θ21
, for 28

a1wj =
x31

θ21
, for j = 32 to 39

Table 5 Reliability and ASE

Censoring scheme k Reliability at t = 100 ASE

type‑A type‑B type‑A type‑B

Joint multiply type-II 9 0.18632 0.31273 0.00526 0.00422

6 0.20690 0.32352 0.00513 0.00412

Joint type-II 9 0.15784 0.45029 0.00538 0.00287

6 0.29244 0.34252 0.00442 0.00393
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Similarly the 51 elements a2wj , j = 1, 2, . . . , 51 of the second row of the matrix A 
are calculated using Eq. (19) by replacing θ1 by θ2 in the expressions of the elements 
of the first row of matrix A given above. Replacing the MLEs θ̂1 and θ̂2 in place of 
θ1 and θ2 , and substituting the values in vector  w0 the numeric values of the elements 
of the matrix A can be obtained.

The matrix H−1 can be obtained from Eq. (16) at MLEs as

Hence the elements of matrix � can be calculated using Eq. (20). The basic perturba-
tion direction values  (pdi) from Eq. (21) comes out as given in Table 6.

From Eq. (22) the reference constant c is calculated and comes out 0.05456.
To identify the observations which have greater effect on MLEs, we find out the  pdi 

values. The plot of  pdi versus i, with reference line at constant c is given in Fig. 1. From 
the plot we observe that no observations have  pdi values more than the reference con-
stant c. Hence none of the observations influence MLEs in a disproportionate way.

Bayes estimates of mean life times and reliabilities of the products are presented in 
Tables 7 and 8 respectively based on the "Methods" section in case of k = 9 and 6 for dif-
ferent choice of prior parameters c1, d1, c2 and d2.There are many ways of determining 
the values of prior parameters. The values for different prior parameters can be chosen 
by utilizing the prior information from the past data. Here we have adopted the method 
used by Sultana et al. [28]. Suppose that N numbers of past data are available from the 
given population. Let θ̂1j and θ̂2j , j = 1, 2, . . .N  denote the corresponding MLEs of 
unknown parameters θ1 and θ2 . The selection of prior parameters can be made by equat-
ing mean and variance of θ̂1j and θ̂2j with the corresponding mean and variance of the 
prior distributions.

From the above table, we observe that increase in the value of c1(c2) Bayes estimate 
of θ1(θ2 ) are sensitive and decreases in both the cases of censoring schemes, but Bayes 
estimate of θ1(θ2 ) remains almost stable under changes in the value of d1(d2.). Under the 

a1wj = 0, for all remaining j.

H−1 =

[
−168.002810 0

0 −524.405878

]

Table 6 Values of  pdi

i pdi i pdi i pdi i pdi i pdi

1 0.032053 11 0.034785 21 0.023740 31 0.000617 41 0.036101

2 0.052264 12 0.034785 22 0.017143 32 0.043944 42 0.036101

3 0.049860 13 0.034785 23 0.002952 33 0.043944 43 0.036101

4 0.025273 14 0.014579 24 0.002952 34 0.043944 44 0.036101

5 0.025273 15 0.009428 25 0.002952 35 0.043944 45 0.036101

6 0.025273 16 0.009428 26 0.013330 36 0.043944 46 0.036101

7 0.044246 17 0.009428 27 0.009853 37 0.043944 47 0.036101

8 0.020746 18 0.009428 28 0.005278 38 0.043944 48 0.036101

9 0.017592 19 0.009428 29 0.005278 39 0.043944 49 0.036101

10 0.034785 20 0.023740 30 0.005278 40 0.036101 50 0.036101

51 0.036101
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reduction of number of failures observed, k = 9 to k = 6, in joint multiply type-II censor-
ing scheme Bayes estimate of both the parameters decreases. The same concussions can 
be seen for reliability of the product also.

Conclusion
We have developed a maximum likelihood estimation of reliability for the products 
are being produced by two lines under the same facility based on multiply type-II joint 
censoring scheme. Bayesian estimation is considered using the importance sampling 
method. The effect of prior parameters on Bayes estimates is examined. The influence 
measure to identify observations which have disproportionately influence on MLEs of 
the parameters is also considered.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60
pd

i
i

Fig. 1 Values of  pdi versus i and reference line at value c = 0.05456

Table 7 Bayes estimates of mean life times

c1 d1 c2 d2 k = 9 k = 6

θ̂1 θ̂2 θ̂1 θ̂2

18 999 40 2861 73.7492 80.9237 65.1143 74.6591

15 999 40 2861 83.4231 81.0132 73.9114 74.6439

21 999 40 2861 66.1775 80.8727 58.2935 74.7057

18 1010 40 2861 74.1121 80.9243 65.4957 74.6591

18 990 40 2861 73.4522 80.9232 64.8022 74.6592

18 999 35 2861 73.7936 89.3611 65.0836 82.8931

18 999 45 2861 73.7049 74.0086 65.1433 67.9528

18 999 40 2840 73.7488 80.5592 65.1145 74.2678

18 999 40 2900 73.7497 81.6007 65.1139 75.3859

26 1503 88 7526 69.3600 86.0126 63.4718 83.6187

23 1503 88 7526 75.8186 86.0316 69.4822 83.5422

29 1503 88 7526 63.9656 86.0114 58.4701 83.7024

26 1450 88 7526 68.0226 86.0117 62.0660 83.6213

26 1400 88 7526 66.7609 86.0109 60.7398 83.6240

26 1525 88 7526 69.9152 86.0130 64.0554 83.6176

26 1503 91 7526 69.3591 83.6080 63.4917 81.1899

26 1503 85 7526 69.3611 88.5629 63.4513 86.1991

26 1503 88 7520 69.3600 85.9574 63.4718 83.5609

26 1503 88 7530 69.3600 86.0494 63.4718 83.6572
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To exemplify the results obtained in the papers, two multiply type-II joint censored 
samples with different termination times k = 9 and k = 6 are considered from the real life 
example of failure times of air-conditioning systems in two airplanes 7914 and 7913.

We observe from the outcomes that maximum likelihood estimation of average failure 
time for plane 7914 is quite stable over different choice of k, and the estimation of aver-
age failure time for plane 7913 seems to be quite sensitive to the multiply type II censor-
ing scheme employed when k is small.

We have seen that for small sample i.e. k = 6, no observations have siginifcant dispro-
portionate infuenece on the MLEs.We also observe that increase in the value of shape 
parameter of prior distribution, Bayes estimate of mean failure time are sensitive and 
decreases in both the cases of censoring schemes, but remain almost stable under the 
changes in the value of scale parameter.

Abbreviations
MLE: Maximum likelihood estimate; ASE: Asymptotic standard error.
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Table 8 Bayes estimates of reliability at time t = 100

c1 d1 c2 d2 k = 9 k = 6

R̂1(t) R̂2(t) R̂1(t) R̂2(t)
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18 999 40 2840 0.25770 0.28900 0.21529 0.26015

18 999 40 2900 0.25771 0.29362 0.21529 0.26540

26 1503 88 7526 0.23651 0.31267 0.20690 0.30243

23 1503 88 7526 0.26742 0.31275 0.23711 0.30210

29 1503 88 7526 0.20944 0.31266 0.18082 0.30279

26 1450 88 7526 0.22990 0.31266 0.19965 0.30244

26 1400 88 7526 0.22360 0.31266 0.19275 0.30245
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