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Introduction
Nonlinear applications in physical science are difficult to talk about for various rea-
sons. To start with, what are nonlinear problems? Practically speaking each prob-
lem in theoretical physical science is represented by nonlinear numerical conditions, 
aside from possibly quantum hypothesis, and even in quantum hypothesis, it is such 
a debatable question whether it will in conclusion be a linear or nonlinear theory. 
Therefore, by onward, the largest part of theoretical physics is truthful to nonlinear 
problems. Solving nonlinear equations, arise in many branches of science and engi-
neering, is one of the most important problems in numerical analysis. The Newton’s 
method is well known and most likely used method for solving nonlinear equa-
tions. Multipoint iteration methods have overcome the theoretical limit of one point 
method regarding the convergence order of computational efficiency and become the 
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most powerful tool to find the roots of nonlinear equation, boundary value problem 
and system of nonlinear equations etc. The maximum attainable computational effi-
ciency of multi-point without method is closely related to the hypothesis given by 
Kung and Traub [1] and had conjecture that the convergence order of any multipoint 
method without memory with n-evaluation is not larger than 2(n−1) . A number of 
modification of Newton’s method with improved rate of convergence are reported by 
previous researcher and there in. Some scheme developed from Newton method by 
some authors are given. Many papers are written about iterative methods for solv-
ing the non-linear equations for details, see [2–5]. Proposed and analyzed three new 
root-finding algorithms for solving nonlinear equations in one variable and derived 
these algorithms with the help of variational iteration technique, see for instance [6]. 
The variant of Frontini-Sormani method, some higher order methods for finding the 
roots (simple and multiple) of nonlinear equations are proposed. In particular, and 
have constructed an optimal fourth order method and a family of sixth order method 
for finding a simple root (see for instance, [7, 8]). The basin of attraction is a method 
to visually sense how an approach makes as a function of the different starting points. 
In this work, we discuss the possibility of approximating the derivative by suitable dif-
ference approximations. It is shown that the presented algorithm convergence eighth 
order and this theory is supported by computational results. It is observed that for 
several functions, suggested algorithm can produce even better accuracy than that of 
other methods, we think about an iterative method for solving non-linear equations 
in real and complex domains, which are a significant zone of research in the numeri-
cal analysis as it has intriguing applications in several branches of pure and applied 
science can be concentrated in the overall of the non-linear equations, for getting a 
simple root α of the function g : R −→ R i.e. g(α) = 0 , and g ′(α) �= 0 , we know the 
method of Newton for finding α utilized the iterative method

The method of Newton is the most popular and simple algorithm, which incorporates 
the derivative of the function. However, Steffensen’s method [9, 10]

a variety of Newton’s technique which doesn’t utilize the derivative of the function. In 
this technique, the derivative is approximated numerically by the central difference 
scheme. Steffensen’s technique has the same order of convergence as Newton’s method, 
based on the approximation of the first derivative. The motivation behind this work is to 
improve a new eight-order derivative-free algorithm. This work is ordered as follows. In 
the “Preliminaries” section, basic concepts used in the work are presented. The purpose 
of the “Construction of presented iterative method and analysis of convergence” section 
studies the construction of the proposed method and analyses the convergence order of 
the proposed method. While the “Results and discussion” section presents results and 
discussion in real and complex domains, in the “Numerical problems in real domain” 
section, we consider five numerical examples to demonstrate the performance of the 

xm+1 = xm −
g(xm)

g ′(xm)
.

xm+1 = xm −
(

g(xm)
)2/(

g(xm + g(xm))− g(xm + g(xm))
)

, m = 0, 1, 2, 3, ...
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proposed algorithm and in the “Graphical comparison for the basins of attraction” sec-
tion Graphical comparison by Means of the basins of attractions. “Some real-life applica-
tions” section, four application problems are solved. Finally the “Conclusion and future 
work” section concludes the paper.

Preliminaries
Suppose that g(x)=0, x ∈ R, is called nonlinear equation if the function g(x) is explicitly 
algebraic function as polynomial of degree other than one or a transcendental function 
of x and they do not involve derivative or integral. A value for parameter x that satisfies 
the equation g(x)=0 is called a root or a zero of g(x). The accompanying significant defi-
nitions given underneath are needed for the ensuing convergence analysis.

Definition 1  [11] Suppose that g : [a, b] → R . Allow the next conditions to hold 

	(i)	 g(a)g(b) < 0,
	(ii)	 g ∈ C2[a, b] and g ′(x)g ′′(x) �= 0, x ∈ [a, b],

then the succession {xm} defined by Newton’s method beginning with an initial estimate 
x0 ∈ [a, b] converges to the exact solution α for g(x) = 0 in [a, b]. Additionally, we have 
the next assessment

holds, where C1 = maxx∈[a,b] |g
′′(x)|. and C2 = minx∈[a,b] |g

′(x)|.

Definition 2  [12] Let a real function g(x) with a root α and suppose that {xm} be 
a sequence of real numbers which converge towards α . The order of convergence p is 
given by

where ξ is constant called the asymptotic error and p ∈ R
+.

Definition 3  [13] Suppose that em = xm − α is m th iteration error, then the equation 
error is

If the error of equation exists, then p is convergence order of an iterative method.

Definition 4  [13] Let xm−1, xm and xm+1 are three iterations closer to α . The computa-
tional order of convergence might be approximated by

|xm − α| ≤
C1

2C2

|xm − xm−1|,m ≥ 1,

lim
m−→∞

xm+1 − α

(xm − α)p
= ξ �= 0,

em+1 = ζ epm + O(ep+1
m ).

COC ≈
ln

∣

∣

(

xm+1−xm
xm−xm−1)

)

∣

∣

ln
∣

∣

(

xm−xm−1)

xm−1−xm−2

)

∣

∣

.
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Definition 5  [4] Let a number α and its an approximation αc . We will think about two 
different ways to calculate the error in such an approximation

Absolute Error = |αc − α|    and       Relative Error = |αc − α||α|−1.
Also in this work we will discuss some specific problems using the basin of attraction as a 

standard for comparison.
Now, we shall requisition some definitions, see in [14]. Let R : C −→ C , is a rational map 

on Riemann sphere.

Definition 6  Let z ∈ C , then its orbit define as orb(z) = {z,R(z),R2(z), · · · ,Rm(z)}.

Definition 7  Let z0 is a starting point of rational map if R(z0) = z0.

Definition 8  Let z0 is a periodic point with period m which is such that Rm(z0) = z0 
where m is the smallest such integer.

Definition 9  A point z0 is called attracting if |R′(z0)| < 1 , repelling if |R′(z0)| > 1 , 
and neutral if |R′(z0)| = 1. If the derivative is also zero then the point is called 
super-attracting.

Construction of presented iterative method and analysis of convergence
For solving nonlinear equations, we drive the derivative-free iterative technique by using 
the approximate version of the first derivative of g ′(xm) by

where θ ∈ R and not equal zero. Let us consider the method in [15]:

By using Eq. (1), we obtain the following new eighth order algorithm in the absence of 
the derivative which using for solving a nonlinear equation as follows.

Eighth order derivative free iteration algorithm (8th  BM): Further, we substitute the 
approximation of the derivative g ′(x) in Eq. (2) by Eq. (1), we get the proposed algorithm 
free from derivatives, as follows:

8th BM: Given an initial approximation x0 (close to α ) the root of g(x) = 0 . We find the 
approximate solution

(1)g ′(xm) ≈
(

g(xm + θg(xm))− g(xm − θg(xm))
)/

2θg(xm),

(2)

ym = xm −
g(xm)

g ′(xm)
,

zm = xm −

(

1+
g(ym)

g(xm)− 2g(ym)

)

g(xm)

g ′(xm)
,

xm+1 = zm −

(

1+
2g(ym)

g(xm)− 2g(ym)

)

g(zm)

g ′(xm)
.
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Steps for calculating root using 8th BM 
Step 1: Define the function g(x).
Step 2: Nominate an approximation guess x0.
Step 3: By using the formula (3), we calculate the next approximation of the root 

xi+1, (i = 0, 1, 2, · · · ).

Step 4: We use a specific accuracy ǫ as |xi − α| < ǫ , and repeat Step 3 until we get 
desired approximate root which satisfy the condition. In order to prove the convergence 
of 8th BM, we establish the following theorem with the help of Maple software.

Theorem  Suppose that g(x) : R −→ R for the interval (a, b). Assume that g(x) has suf-
ficiently continuous derivatives in (a, b). If α has a simple root of g(x) and if x0 is closed to 
α then 8th BM satisfies the following error equation:

Proof
Let the error at step m be denoted by em = xm − α and F = g ′(α) and 
ck = 1

k!
gk (α)
g ′(α) , k = 2, 3, ..... . If we expand g(xm) around the root α and express it in terms 

of powers of error em we obtain

Computing g2(xm) using Eq. (5), then multiply by 2θ we get

Expand g(xm + θg(xm)) and g(xm − θg(xm)) around the root α and express it in terms of 
powers of error em we get

(3)

ym = xm −
2θg2(xm)

g(xm + θg(xm))− g(xm − θg(xm))
,

zm = xm −

(

g2(xm)− g(xm)g(ym)+ g2(ym)

g2(xm)− 2g(xm)g(ym)+ g2(ym)

)

2θg2(xm)

g(xm + θg(xm))− g(xm − θg(xm))
,

xm+1 = zm −
2θg2(zm)

g(zm + θg(zm))− g(zm − θg(zm))
.

(4)em+1 = (θ4F4c23 + 2θ2F2c23 − 4θ2F2c22c3 + c23 − 4c3c
2
2 + 4c42)c

3
2e

8
m +O(e9m).

(5)

g(xm) = g(α)+ (xm − α)g ′(α)+
(xm − α)2

2!
g (2)(α)+

(xm − α)3

3!
g (3)(α)

+
(xm − α)4

4!
g (4)(α)+

(xm − α)5

5!
g (5)(α)+

(xm − α)6

6!
g (6)(α)

+
(xm − α)7

7!
g (7)(α)+

(xm − α)8

8!
g (8)(α)+ . . .

= F
(

em + c2e
2
m + c3e

3
m + c4e

4
m + c5e

5
m + c6e

6
m + c7e

7
m + c8e

8
m + . . .

)

.

(6)
2θg2(xm) = 2θF2e2m + 4θF2c2e

3
m + 2θF2(c22 + 2c3)e

4
m + 4θF2(c2c3 + c4)e

5
m

+ 2θF2(2c2c4 + 2c5 + c23)e
6
m + ...
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Using Eqs. (7) and (8), we have

Combining Eqs. (6) and (9), we get

By considering these relations and ym in Eq. (3), we get

At this time, we expand g(ym) around α by using the result in Eq. (11), as accordingly, we 
get

By considering these relations and zm in Eq. (3), we get

Expanding g(zm) and about α and using Eq. (13), we obtain

Combining Eqs. (13) and (14) we get

(7)

g(xm + θg(xm)) = F(1+ θF)em + Fc2(3θF + 1+ θ2F2)e2m + F(2θFc22

+ 2θ2F2c22 + c3 + 4θFc3 + 3c3θ
2F2 + θ3F3c3)e

3
m

+ F(5θFc2c3 + 8θ2F2c2c3 + 3θ3F3c2c3 + c4

+ 5θFc4 + 6c4θ
2F2 + 4c4θ

3F3 + c4θ
4F4 + θ2F2c32)e

4
m + ...,

(8)

g(xm − θg(xm)) = −F(−1+ θF)em + Fc2(−3θF + 1+ θ2F2)e2m − F(2θFc22

− 2θ2F2c22 − c3 + 4θFc3 − 3c3θ
2F2 + θ3F3c3)e

3
m

+ F(−5θFc2c3 + 8θ2F2c2c3 − 3θ3F3c2c3 + c4

− 5θFc4 + 6c4θ
2F2 − 4c4θ

3F3 + c4θ
4F4 + θ2F2c32)e

4
m − ...

(9)

g(xm + θg(xm))− g(xm − θg(xm)) = 2θF2em + 6θF2c2e
2
m + (4c22θF

2 + 8θF2c3 + 2c3θ
3F4)e3m

+ (10c3θF
2c2 + 6c3θ

3F4c2 + 10θF2c4 + 8c4θ
3F4)e4m + ...

(10)

2θg2(xm)

g(xm + θg(xm))− g(xm − θg(xm))
= em − c2e

2
m + (2c2m − 2c3 − c3θ

2F2)e3m + (7c2c3

+ θ2F2c2c3 − 3c4 − 4c4θ
2F2 − 4c32)e

4
m + ...

(11)
ym = α + c2e

2
m + (−2c22 + 2c3 + c3θ

2F2)e3m + (−7c2c3

− θ2F2c2c3 + 3c4 + 4c4θ
2F2 + 4c32)e

4
m + ...

(12)
g(ym) = Fc2e

2
m + F(−2c22 + 2c3 + c3θ

2F2)e3m − F(7c2c3

+ θ2F2c2c3 − 3c4 − 4c4θ
2F2 − 5c32)e

4
m − ...

(13)
zm = α + (2c32 − c2c3 − θ2F2c2c3)e

4
m + (−10c42 + 14c3c

2
2

+ 5θ2F2c22c3 − 2c23 − 3θ2F2c23 − θ4F4c23 − 2c2c4 − 4θ2F2c2c4)e
5
m + ...

(14)

g(zm) = −Fc2(−2c22 + c3 + c3θ
2F2)e4m − F(10c42 − 14c3c

2
2

− 5θ2F2c22c3 + 2c23 + 3θ2F2c23 + θ4F4c23 + 2c2c4 + 4θ2F2c2c4)e
5
m + ...
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By using Eqs. (13) and (15) in the last expression of Eq. (3), we obtain

From Eq. (16) and em+1 = xm+1 − α finally we have

The last equation shows that 8th BM is eight order of convergence. This completes the 
proof. �

Results and discussion
Numerical problems in real domain

In this section, we give the results of some numerical examples to compare our 
proposed algorithm with the methods in [16] which are called Dehghan Method 2 
(DM2), King Method (KM) and Proposed Free Derivative Method (PFDM). We are 
using five examples to display the effectiveness of the presented algorithm. All the 
computations were done by using Maple 18 and were satisfied the condition such that 
|xm − α| < 1.0× 10−15 , as well as the maximum number of tainiterations is less than 
or equal to three. The computational results in Table 1 lists the absolute value of the 
given nonlinear function gi(xm), i = 1, 2, 3, 4, 5,m = 3, for our proposed algorithm at 
θ = 1,−1, 0.5,−0.5 . In addition, it can be seen that in Table 1 the computational order 
of convergence (COC) perfectly coincides with the theoretical results. The results are 
given in Table 1 in terms of the number significant digits for each test function at 3rd 
iteration, that is, e.g. 1.0× 10−41 shows that the absolute value of the given nonlin-
ear function g1(x3) at 3rd iteration is zero up to 41 decimal places. In Table 2, “Div” 
indicates that the algorithm does not converge after the maximum allowed iteration 
is reached. From Table 2 one can see that the computational results achieved are not 
far different. In g1(x) for initial guess −1.5 , 8th BM require 3 iterations for different 
θ , DM2 requires 5, KM requires 36 iterations, and PFDM requires 4 iterations. For 
initial guess −1.0 8th BM require 3 and 4 iterations, KM and PFDM require 4 and 

(15)

2�g2(zm)

g(zm + �g(zm)) − g(zm − �g(zm))
= −(−2c2

2
+ c3 + c3�

2F 2)c2e
4

m
+ (−10c4

2
+ 14c3c

2

2
+ 5�

2F 2c2
2
c3

− 2c2
3
− 3�

2F 2c2
3
− �

4F 4c2
3
− 2c2c4 − 4�

2F 2c2c4)e
5

m
+ ...

(16)
xm+1 = α + (θ4F4c23 + 2θ2F2c23 − 4θ2F2c22c3 + c23 − 4c3c

2
2 + 4c42)c

3
2e

8
m + O(e9m).

(17)em+1 = (θ4F4c23 + 2θ2F2c23 − 4θ2F2c22c3 + c23 − 4c3c
2
2 + 4c42)c

3
2e

8
m + O(e9m).

Table 1  Numerical results for test functions

Function x0 |g
i
(x

m
)|, i = 1, 2, 3, 4, 5,m = 3, for 8th BM

� = 1 � = −1 � = 0.5 � = −0.5 COC

g1(x3) −1.5 5.75× 10
−41

5.75× 10
−41

4.36× 10
−65

4.36× 10
−65 8.11

g2(x3) −0.2 1.00× 10
−100

1.00× 10
−100

1.45× 10
−488

1.45× 10
−488 7.99

g3(x3) 1.5 3.00× 10
−500

3.00× 10
−500

3.00× 10
−500

3.00× 10
−500 8.00

g4(x3) −1.7 3.00× 10
−499

3.00× 10
−499

3.00× 10
−499

3.00× 10
−499 8.00

g5(x3) 0.7 1.32× 10
−395

1.32× 10
−395

31.75× 10
−433

31.75× 10
−433 8.00
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Table 2  Comparison of different methods for solving test functions

Function x0 The number of iteration

Previous methods Presented algorithm

DM2 KM PFDM θ = −1.0 � = −0.5 � = 0.5 � = 1.0 α

g1(x) −1.5 5 36 4 3 3 3 3 0.7390851332151606
−1.0 5 4 4 3 4 4 3
−0.5 5 3 3 2 2 2 2

0.0 4 3 3 2 2 2 2

g2(x) −0.2 3 3 3 2 2 2 2 0.5235987755982989

0.0 3 3 3 2 2 2 2

0.5 2 2 2 1 1 1 2

1.0 4 3 3 2 2 2 2

g3(x) 0.3 7 9 5 3 3 3 3 1.4044916482153412

0.5 9 6 5 3 3 3 3

1.3 3 2 3 2 3 2 2

1.5 3 2 3 2 2 2 2

g4(x) −1.7 3 2 3 2 3 3 2 −1.6716998816571610
−0.9 4 17 90 3 2 2 2
−0.5 Div 23 5 Div 2 2 2

0.0 Div 55 8 Div Div Div 2

g5(x) 0.5 6 3 4 3 2 2 2 0.8570567764718169

0.7 4 3 3 2 2 2 2

1.1 Div 3 7 6 3 3 2

2.5 4 3 9 2 2 2 3

Fig. 1  Iteration values at different iteration numbers for 8th BM at different θ ( θ = −1,−0.5, 0.5, 1 ) 
respectively for g1(x).

Fig. 2  Iteration values at different iteration numbers for 8th BM at different θ ( θ = −1,−0.5, 0.5, 1 ) 
respectively for g2(x).
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DM2 requires 4 iterations. So the quickest algorithm to hit the root is ours. In g2(x) 
the method having the least iteration is 8th BM. As far as the numerical results are 
concerned, for most of the functions we tested, the proposed algorithm can be com-
petitive with the methods we are comparing. The computational results presented 
in Table 1 and Table 2 show that our algorithm is more efficient compared with the 
proposed methods in [16]. Figures  1, 2 and 3 show the graphical representation of 
the values of the iteration (xi) at various iteration numbers with different values of θ 
appear, These figures show that the proposed algorithm reaches the exact solution at 
least a number of iterations, which is 2, and this shows that the 8th BM is effective 
at any θ . Absolute errors at different iterations numbers with various values of θ are 
shown in Figs. 4 and 5, These figures show that 8th BM converges quickly and more 
accurately at least the number of iterations. Consequently, the 8th BM is considered 
as an improvement for the methods of derivative-free which are solving nonlinear 
equations. The following examples are used for numerical verification:

Fig. 3  Iteration values at different iteration numbers for 8th BM at different θ ( θ = −1,−0.5, 0.5, 1 ) 
respectively for g3(x).

Fig. 4  Absolute errors at different iteration numbers for 8th BM with different θ ( θ = −1,−0.5, 0.5, 1 ) 
respectively for g4(x).

Fig. 5  Absolute errors at different iteration numbers for 8th BM with different θ ( θ = −1,−0.5, 0.5, 1 ) 
respectively for g5(x).
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Graphical comparison for the basins of attraction

Here we examine the comparison of some high order simple root finder in the complex 
plane using a basin of attraction. We consider the polynomial g(z) = zr − 1; z ∈ C for 
achieving the unity roots in the form



















g1(x) = −(x − cos(x)), α = 0.7390851332151606

g2(x) = sin(x)− 0.5, α = 0.5235987755982989

g3(x) = 1− (x2 − sin2(x)), α = 1.4044916482153412

g4(x) = x(x2 − 1)+ 3, α = −1.6716998816571610

g5(x) = −(0.5+ cos(x)− tan(x)), α = 0.8570567764718169
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The basin of attraction compared to the roots of the function g(z) comprises of all begin-
ning points z0 which are pulled to ωk . We use a comparison between iterative methods 
by using these basins. In the computational examples, let D = [−2, 2] × [−2, 2] ∈ C of 
250× 250 points, furthermore, we apply our algorithm beginning in each a z0 in D. The 
basin of attraction for complex Newton’s method was first started by [13]. The basin of 
attraction is an approach to see how a calculation acts as a function for the different 
beginning points. It is another approach to look at the iterative methods. We give a color 
for each point z0 ∈ C according to the root at which the corresponding iterative algo-
rithm starting from z0 converges, for details, one may see [17, 18]. the accompanying 
test functions had been considered of comparison: g(z) = zr − 1, r = 2, 3, 4, 5 respec-
tively. We compare the newly proposed algorithm, namely (8th BM) and four different 
methods as Bhavna Panday and Jai Prakash Jaiswa [13], Changbum method (CMB) [19], 
Sharma Methods (SB) [20] and Behzad method (BG) [21]. We choose nonlinear func-
tions to provide the accuracy of the newly proposed algorithm for different θ to find 
complex roots for complex functions. The roots of used functions are listed and the 
computations reported using Maple 18 had been done. More scientific calculations in 
numerous territories of science request a high exactness level of numerical accuracy. We 
use the next applications for the comparison of the other methods as follows

ωk = cos

(

2π(k − 1)

r

)

+ i sin

(

2π(k − 1)

r

)

; k = 1, 2, ..., r.

Fig. 6  Plots of 8th BM for θ = 0.5 , θ = 1 and the method in [13], respectively for g1(z).

Fig. 7  Plots of 8th BM for θ = 0.5 , θ = 1 and the method in SB [20] respectively for g2(z).
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The sequence {zk}∞k=0
 is of the point orbit, if this converges to the root then we say 

that is attracted to. the initial points for the sequence of converges to z∗ is the basin of 

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

g1(z) = z2 − 1, z∗ = {±1}

g2(z) = z3 − 1, z∗ = {−0.5 ± 0.866025i, 1}

g3(z) = z2 − z +
1

z
, z∗ = {0.877439 ± 0.744862i,−0.754878}

g4(z) = z4 − 1, z∗ = {±i,±1}

g5(z) = z5 − 1, z∗ = {1,−0.809017 − 0.587785i, 0.309017 ± 0.951057i,−0.809017 + 0.587785i}

g6(z) = z3 − z, z∗ = {0,±1}

g
7(z) = z2 + 2z − 1, z∗ = {−1.46771 + 0.226699i,−0.4533980i, 1.467710 + 0.2266990i}.

Fig. 8  Plots of 8th BM for θ = 0.5 , θ = 1 and the method in BG [21] respectively for g3(z).

Fig. 9  Plots of 8th BM for θ = 0.5 , θ = 1 and the method in CMB [19] respectively for g4(z).

Fig. 10  Plots of 8th BM for θ = 0.5 and θ = 1 respectively for g5(z).
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attraction of. Boundaries between basins generally are fractals in nature. 8th BM which 
is given for real domain is also used to achieve the graphs of complex polynomials that 
envision the roots getting process. Figures 6 and 7 show the basins of attraction of 8th 
BM at θ = 0.5 , θ = 1 and the methods in [13, 21], from left to right respectively for the 
quadratic and cubic polynomials. the red of color shows the roots z∗ . This shows that the 
convergence of 8th BM when the initial points are chosen near the root is rapid conver-
gence, as the red intensity of the colors emphasizes that the proposed algorithm con-
verges in less than 5 iterations. The 8th BM is more accurate with few iterations number 
and most basins of attraction at θ = 0.5 , θ = 1 for g1(z) . Figures 8, 9, 10, 11 and 12 show 
the basins of attractions of 8th BM and the other methods in [13, 15, 22], where the 
presented algorithm is globally convergent with the lowest iterations number. when the 
polynomial degree increments from 3 to 7, the 8th BM has difficulties, and their itera-
tions number increments. 8th BM has small spread points compared with the others.

Some real‑life applications
In this section we present some applications and compare our results to well-known 
methods:

Fig. 11  Plots of 8th BM for θ = 0.5 and θ = 1 and the method in [13] respectively for g6(z).

Fig. 12  Plots of 8th BM for θ = 0.5 and θ = 1 respectively for g7(z) and the method in [13]
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Application 1  The deepness of embedment x if a sheet-pile wall is governed by the fol-
lowing equation [23]:

It can be rewritten as

An engineer has rated the deepness to be x = 2.5 . Here we get the root of the equation 
g(x) = 0 with initial point 2.5 and compare some fully famous methods to our proposed 
algorithm.

Application 2  The vertical stress ηz created at point in an elastic continuum under the 
brink of a strip base supporting a regular pressure p is given via Boussinesq’s formula 
[23] to be:

A scientist is interested in estimating the value of x at which the vertical stress ηz ought 
to be 25 percent of the footing stress p. Initially it is rated that x = 0.4 . The above can be 
rewritten for ηz being equal to 25 percent of the footing stress p : 

Now we find the root of the equation g(x) = 0 with initial point 0.4 and compare some 
well famous methods to our proposed algorithm.

Application 3  In general, many applications in science and engineering which include 
definition of unknown in turn lead to root-finding problem. The Planck’s radiance law 
problem appearing in [24, 25] is one among them and it is given by

which calculates the density of energy during an isothermal blackbody. Here, µ is the 
wavelength of the radiation; T is the absolute temperature of the blackbody; k is Boltz-
mann’s constant; h is the Planck’s constant; and c is the speed of light. assume that we 
would like to define wavelength µ , which corresponds to maximum the density of energy 
φ(µ) . From the previous equation, we get

It can be checked that a maxima for φ occurs when E = 0 , that is when 
(

ehc/µTK (hc/µTK )

ehc/µTK−1

)

= 5 Here, taking x = hc/µkT  , the above equation becomes

x =
1

4.62
(x3 + 2.87x2 − 10.28).

g(x) =
1

4.62
(x3 + 2.87x2 − 10.28).− x.

ηz =
p

π
+ sin(x) cos(x).

g(x) =
x + sin(x) cos(x)

π
− 0.25.

φ(µ) =
8πhcµ−5

ehc/µTK − 1
,

φ′(µ) =

(

8πhcµ−6

ehc/µTK − 1

)(

ehc/µTK (hc/µTK )

ehc/µTK − 1
− 5

)

= D.E.
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Let us define

The aim is to find a root of the equation g(x) = 0 . Obviously, one of the root x = 0 is 
not taken for discussion. As argued in [24], g(x) = 0 for x = 5 and e−5 ≈ 6.74 × 10−3 . 
Hence, it is expected that another root of the equation g(x) = 0 might occur near x = 5 . 
The approximate root of g(x) is given by 4.96511423174427630369. Consequently, the 
wavelength of radiation µ corresponding to which the energy density is maximum is 
approximated as µ ≈ hc

KT 4.96511423174427630369.

Application 4  Study of the multipactor effect [26]. The trajectory of an electron in the 
air gap between two parallel plates is given by

where E0 sin(ωt +�) is the RF electric field between plates at time t0, x0 and ν0 are the 
position and velocity of the electron e and m are the charge and mass of the electron at 
rest respectively. For the particular parameters, one can deal with a simpler expression 
as follows:

The required zero of the above function is −0.3094661392082146514....

Table 3 show the numerical calculations with respect to iterations number (m). The 
numerical applications of the above real life experiments demonstrate the validity and 
applicability of the proposed algorithm. This shows that the proposed algorithm is 
very much appropriate for all the application experiments . In most of the cases, the 
proposed algorithm show better performance in comparison to the existent methods.

1− 0.2x = e−x
.

g(x) = 1− 0.2x − e−x
.

x(t) = x0 +
(

ν0 + eE0(mω)−1
sin(ωt0 +�)

)

(t − t0)+ eE0(mω2)−1(cos(ωt +�)+ sin(ω +�)),

f (x) = x − 0.5 cos(x)+ 0.25π .

Table 3  Comparison of results for Applications

Applications m Error = |x
m
− x

m−1
|

Previous methods Presented 
algorithm 
(� = 1)

8
th
PNPDM [27] 8

th
PKJ [28] 8

th
PJ [29] 8

th
BM

Application 1 4 8.39× 10
−56

4.24× 10
−116

5.68× 10
−65

3.43× 10
−252

Application 2 3 3.71× 10
−75

3.69× 10
−75

1.12× 10
−75

9.65× 10
−129

Application 3 3 2.08× 10
−82 2.69× 10

−77
2.13× 10

−92
1.54× 10

−103

Application 4 4 3.63× 10
−221

3.76× 10
−258

1.89× 10
−182

1.45× 10
−525
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Conclusion and future work
In this study, we suggested a derivative-free iterative algorithm with different values 
of the parameter θ to solve nonlinear equations in real and complex domains. Consid-
ering that the proposed algorithm is derivative-free this allows us to apply it also on 
nonsmooth equations with positive and promising results. Moreover, this algorithm 
is particularly appropriate, to those applications in which the required derivatives 
are lengthy . Tables 1 and 2 display the best performance of the suggested algorithm 
in terms of accuracy, speed, number of iterations, and computational order of con-
vergence as compared to other known algorithms. Figures  1-5 show that 8th BM 
converges quickly and more accurately at least the number of iterations. Figures  6-
12 show that the basins of attraction of the new algorithm known can compete with 
other optimal eighth order algorithms in the literature. Theoretical and COC are veri-
fied in the considered problems. Five examples in the real domain and seven in the 
complex domain are solved where 8th BM produces better results than compared 
methods. The maximum number of iterations is less than or equal to three, to reach 
an absolute error less than 10−15 . Four real life applications are solved where the new 
algorithm produce better results than other compared methods.

In the upcoming future we plan to progress as follows. We will research solution of 
systems with large number of equations. Also, We will improve the codes so it handle a 
system of algebraic equations.

Abbreviations
8th  BM:: Eighth order derivative free iteration algorithm..
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