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Introduction
Integro—differential equations (IDEs) are equations that take into account both integral 
and derivatives of an unknown function [30]. Mathematical modeling of real-life prob-
lems usually results in functional equations like ordinary or partial differential equations, 
integral and integro—differential equations, and stochastic equations. Many mathemati-
cal formulations of physical phenomena contain IDEs; those equations pop up in many 
fields namely physics, Astronomy potential theory, fluid dynamics, biological models, 
and chemical kinematics.

Abstract 

This paper presents an enhanced moving least square method for the solution of volt-
erra integro-differential equation: an interpolating polynomial. It is a numerical scheme 
that utilizes a modified shape function of the conventional Moving Least Square (MLS) 
method to solve fourth order Integro-differential equations. Smooth orthogonal poly-
nomials have been constructed and used as the basis functions. A robust and unre-
stricted trigonometric weight function, along with the basis function, drives the shape 
function and facilitates the convergence of the scheme. The choice of the support size 
and some controlling parameters ensures the existence of the moment matrix inverse 
and the MLS solution. Valid explanation and illustration were made for the existence 
of the inverse linear operator. To overcome problems of near-singularity, the singular 
value decomposition rule is used to compute the inverse of the moment matrix. Gauss 
quadrature rule is used to compute the integral at the initial test points when the exact 
solution is unknown. Some tested problems were solved to show the applicability of 
the method. The results obtained compare favourable with the exact solutions. Finally, 
a highly significant interpolating polynomial is obtained and used to reproduce the 
solutions over the entire problem domain. The negligible magnitude of the error at 
each evaluation knot demonstrates the reliability and effectiveness of this scheme.
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IDEs are usually difficult to solve analytically and as such, there is a need to obtain 
an efficient approximate solution. Recently, much interest from researchers in science 
and engineering has been given to non-traditional methods for non-linear IDEs. The 
Existence-uniqueness, stability, and application of integro-differential equations were 
presented by Lakshmikautham and Rao [19]. Armand and Gouyandeh discussed IDE 
of the first kind in [3] and nonlinear Fredholm Integral Equations of the second kind 
were discussed by Borzabadi, Kamyad, and Mehne in [7]. A comparison between Ado-
mian Decomposition Method (ADM) and Wavelet-Galerkin Method for solving IDEs 
was considered in [11] . He’s Homotopy Perturbation Method was applied to nth-order 
IDEs in [12] and [15]. Tau Numerical solution of Fredholm IDEs with arbitrary polyno-
mial bases. Elaborate work on IDEs was discussed in [8, 10, 13, 16, 19, 22–25, 31] and in 
[21] where Maleknejad and Mahmoudi applied Taylor polynomial to high-order non-
linear Volterra Fredholm Integro-differential Equations. Taylor Collocation Method was 
applied to linear IDEs in [18] by Karamete and Sezer.

In [2]; Theory, Method, and Application of boundary value problems for higher-order 
integro-differential equations were considered. Wavelet-Galerkin method and Hybrid 
Fourier and Block-Pulse Function in [5] and [4] were applied to IDEs respectively. 
Numerical Approximation of nonlinear Fourth-Order IDEs by Spectral Methods were 
considered in [34–38] and in [32]. A New Algorithm was utilized in solving a class of 
nonlinear IDEs in the reproducing kernel space. In [30], a Comparison between Homot-
opy Perturbation Method and Sine–Cosine Wavelets Method was applied to linear IDEs 
while in [29], a new Homotopy Method was applied to First and Second Orders IDEs.

The pseudospectral method has been proposed by using shifted Chebyshev nested for 
solving the IDEs in [28] while [14] applied the Adomian Decomposition Method (ADM) 
for solving Fourth-Order Integro-differential Equations. In [30], the main objective was 
only to obtain the exact solution to Fourth—Order Integro—differential equations. The 
ADM in [14] and the Variational Method in [27] are applied to solve both linear and 
non-linear boundary value problems of fourth-order Integro—differential equation.

In recent years, meshless methods have gained more attention not only by mathemati-
cians but also by researchers in other fields of sciences and engineering. During the past 
decades, the moving least square (MLS) method proposed in [20] has now become a very 
popular approximation scheme, especially when considering a mesh-free approximating 
function. In [17], MLS and Gauss Legendre were applied to solve Integral Equation of the 
second kind while [8] utilized MLS with Chebyshev polynomial as a basis function to solve 
IDEs and the basic MLS was adopted in [9] in the solution of IDEs. The work of [26] and 
[27] were on the application of a two –dimensional Interpolating Function to Irregular-
spaced data. A second kind chebyshev quadrature algorithm was developed for integral 
equations in [37] while a chebyshev collocation approached was adopted in the solution of 
IDEs in [33]. Many methodologies of IDEs in literature are popular with the use of regular-
spaced data, the disordered-spaced data approach of MLS requires great skill of computa-
tions and this has been a source of attraction to researchers over the years.

In this research work, we employ the MLS to solve fourth order integro- differential 
equation. The method is an effective approach for the approximation of an unknown 
function by using a set of disordered data. It consists of a local weighted least square fit, 
valid on a small neighborhood of a point, and does not require information about the 
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background cell structure. Finally, a representative polynomial is used to generalize the 
solution to the entire problem domain. It is worthy to note that the MLS do not require 
a mesh and their approximations are built from the nodes only; an interesting advantage 
over other methods in the literature. The next section considers the definition of terms. 
Section two presents the conventional MLS scheme with its convergence description. 
Section three made a discussion on the scheme. Numerical examples were considered in 
section four while section five contains the Conclusion and Recommendation.

Definition of relevant terms

Definition 1.1.1  An integro—differential equation is an equation in which the 
unknown function u(x) appears under an integral sign and contains an ordinary deriva-
tive u(n)(x) as well, where n is the order of derivative.

Definition 1.1.2  A Standard integro—differential equation is of the form.

where g(x) and h(x) are the limits of integration, � is a constant parameter, k(x, t) is the 
kernel of the integral and u(n)(x)  as defined in 1.1.1 above.

Definition 1.1.3  The conventional formula that converts multiple integrals to a single 
integral is defined as.

This follows since if

then, applying the concept of integration by parts:
∫

udv = uv −
∫

vdu

Definition 1.1.4  The fourth-order integro—differential equation is defined as.

(1)u(n)(x) = f (x)+ �

∫ h(x)

g(x)
k(x, t)u(t)dt

(2)

∫ x

0

∫ x1

0

∫ x2

0
...

∫ xn−1

0
u(xn)dxndxn−1dxn−2 . . . dx1 =

1

(n− 1)!

∫ x

0
(x − t)n−1u(t)dt

(3)
∫ x

0

∫ x1

0
F(t)dtdx1 =

∫ x

0
(x − t)F(t)dt

u(x1) =

∫ x1

0
F(t)dt

∫ x
0

∫ x1
0 F(t)dtdx1 = x1

∫ x1
0 F(t)dt|x0 −

∫ x
0 x1F(x1)dx1

= x
∫ x
0 F(t)dt −

∫ x
0 x1F(x1)dx1

=
∫ x
0 (x − t)F(t)dt; using x1 = t.

(4)

u(4)(x) =f (x)+ βu(x)

+

x
∫

0

[g(t)u(t)+ h(t)F(u(t))]dt, 0 ≤ x, t ≤ 1,

u(i)(0) = αi , i = 0, 1, 2, . . . , 3.
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where F  is a real non-linear continuous function, β , αi, i = 0, 1, 2, 3 are real constants, 
g(x), h(x) and f (x) are given.

Definition 1.1.5  [6]: The inverse of linear operator exists and it is linear L : P → Q.

This definition holds since if L−1 exists and its domain which is a vector space 
is Q then for any P1, P2 ∈ P whose images are q1 = LP1 and q2 = LP2  we have 
P1 = L−1q1 and P2 = L−1q2.L is linear implies that for any scalars α and β we have 
αq1 + βq2 = αLP1 + βLP2 = L(αP1 + βP2).

Thus, Pi = L−1qi exists. It follows that L−1(αq1 + βq2) = αL−1q1 + βL−1q2 = αP1 + βP2. 
Thus for Y ∈ Q , there exists X in P such that L−1 : Y → X . In this paper, we consider a 
general nth order Volterra Integro—differential equation of the form:

where F  is a real non-linear continuous function, β , αi, i = 0, 1, 2, ..., n− 1 are real 
constants, g(x), h(x) and f (x) are given and can be approximated by the Taylor series. 
When n = 4  Eq.  (5) reduces to fourth-order integro—differential equation with four 
conditions as proposed in this paper.

The conventional MLS scheme
This research is aimed at obtaining an efficient method for approximating voltterra 
integro-differential  equations. The method was obtained by introducing an interpola-
tion polynomial in the context of the moving least square method, thereby producing 
an enhanced form of the approach. The absolute difference between the true solutions 
and the approximated solutions obtained from the new approach was used to check how 
close the results are to the true solutions. This section comprises the basic idea of the 
conventional moving least square method and its convergence.

Overview of the conventional MLS

Consider a sub-domain �x , the neighborhood of a point X , and the domain of defini-
tion of the MLS approximation for the trial function at X which is located in the prob-
lem domain � . The approximation of the unknown function, u in �x over some nodes, 
xi, i = 0, 1, 2, 3, ..., n, is denoted by u(x) ∀x ∈ �x such that

where P(x) is the basis function of the special coordinates, PT denotes the transpose 
of P,m is the number of basis function and a(x) is a vector containing coefficients 
aj(x), j = 0, 1, 2, ..., m which are functions of the space coordinate X . Also,’s aj(x)′s are 
the unknown coefficients to be determined.

The coefficient vector a(x) is determined by minimizing a weighted discrete 
L2 − norm , defined as:

(5)
u(n)(x) = f (x)+βu(x)+

x
∫
0
[g(t)u(t)+ h(t)F(u(t))]dt, 0 ≤ x, t ≤ 1, u(i)(0) = αi , i = 0, 1, 2, ..., n−1

(6)u(x) =

m
∑

j=0

Pj(x)aj(x) = PT (x)a(x), ∀x ∈ �x
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where U = (U0, U1, U2, ..., Un)
T is the exact solution and wi(x) is a new trigonomet-

ric weight function associated with the node i.n is the number of nodes � for which the 
weight function, wi(x) = cos(|x − xi|)+ sin(|x − xi|) is always positive on [0, 1] and |.| 
denotes absolute value. The stationarity of J  with respect to aj(x); j ≥ 0  gives:

Hence, Eq. (8) simplifies to

By setting A(x) =
n
∑

i=0

wi(x)P(xi)P(xi)
T  as the m×m weighted moment matrix and

we have

Using singular value decomposition (svd) at the known value x, A = RDV , the 
inverse of the diagonal matrix, D−1, contains 1

d11
, 1

d22
, ..., 1

dmm
 elements at the diago-

nal for all the m nonzero elements in D and zeros elsewhere. Thus A−1 = RD−1VT

. This procedure simplifies the computation of the inverse when the matrix is large. 
Selecting the values of x at the nodal points to ensure nonzero determinant of A and 
using the above inverse at each node, Eq. (10) becomes

Substituting Eq. (11) into (1) gives

where ϕi(x) =
m
∑

k=0

Pk(x)[A
−1(x)B(x)]ki and ϕi(x) are the shape functions of the MLS 

approximation corresponding to nodal point x. In this research work, a new set of 
orthogonal polynomials is used as the basis function on [0, 1]. Consider the first m 
polynomials,pm(x).

(7)J (u) =

n
∑

i=0

wi(x)(u(xi)− Ui)
2

(8)

∂J (u)

∂a0
=

n
∑

i=0

2wi(x)P0(xi)(P(xi)a0(x)− Ui) = 0

∂J (u)

∂a1
=

n
∑

i=0

2wi(x)P1(xi)(P(xi)a1(x)− Ui) = 0

...

∂J (u)

∂an
=

n
∑

i=0

2wi(x)Pn(xi)(P(xi)an(x)−Ui) = 0

(9)
n

∑

i=0

wi(x)Pi(xi)(P(xi)
Ta(x)− Ui)ai(x) =

n
∑

i=0

wi(x)(P(xi)Ui)

B(x) = [w0(x)P(x0), w1(x)P(x1), ..., wn(x)P(xn)]

(10)A(x)a(x) = B(x)U

(11)a(x) = A−1B(x)U

u(x) = PT (x)A−1(x)B(x)U =

n
∑

i=0

ϕi(x)Ui,
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For r = 0, 1, ..., m; fi(x) = xri , i = 1, 2, ..., m+ 1 we have p1(x) = f1(x) = 1. A sim-
ple Gram Schmidth algorithm that generates other polynomials:

It follows that p2(x) = 3.4642x − 1.7321; p3(x) = 13.417x2 − 13.417x + 2.2361;

Formulation of the proposed method
We wish to use the MLS method to obtain the numerical solution of (4):

Suppose that the four-fold operator,

exists.
By applying (13) on both sides of (12) we have

and

To use the polynomials, we change the integral interval from [0, x]  to a fixed interval 
[0, 1]  using the translation t = xs; dt = xds :

for i = 2 to m

pi(x) = fi(x)

for j = 1 to i − 1

pi(x) = pi(x)− pj(x)

∫ 1

0
(pi(x)pj)dx

end

pi(x) = pi(x)/

(

∫ 1

0
(pi(x)pi)dx

)0.5

end

p4(x) = 52.916x3−79.374x2+31.75x−2.6458; p5(x) = 210x4−420x3+270x2−60x+3

(12)Lu(x) = f (x)+ βu(x)+

∫ x

0
[g(t)u(t)+ h(t)F(u(t))]dt; L =

d4

dx4
.

(13)L−1 =

∫ x

0

∫ x

0

∫ x

0

∫ x

0
(.)dtdtdtdt =

∫ x

0

(x − t)3

3!
(.)dt

u(x) = a0+a1x+
a2x

2

2
+
a3x

3

6
+L−1(f (x))+L−1(βu(x))+L−1[g(t)u(t)+h(t)F(u(t))]dt

(14)u(x) =

3
∑

j=0

aj
xj

j!
+ L−1(f (x))+ L−1(βu(x))+ L−1[g(t)u(t)+ h(t)F(u(t))]dt

(15)

u(x) =

3
∑

j=0

aj
xj

j!
+L−1(f (x))+L−1(βu(x))+x

∫ 1

0

(x − xs)3

3!
[g(xs)u(xs)+h(xs)F(u(xs))]ds



Page 7 of 20Taiwo et al. Journal of the Egyptian Mathematical Society            (2022) 30:3 	

To apply the method, select the m+ 1  polynomials (basis) with nodal points xi in 
[0, 1]. By using 

n
∑

j=0

Uiϕi(x) instead of u(x) as the approximation of u(x) in (15) we have

In compact form we have.

u(x) = R(x)+
∫ 1
0 K (x, t)dt where R(x) =

3
∑

j=0

aj
xj

j! + L−1(f (x))+ L−1(βu(x)) and 

K (x, t) = x(x−xt)3

3 !
[g(xt)u(xt)+ h(xt)F(u(xt))].

Finally, we introduce the use of interpolating polynomial, up(x) at all points in [0, 1]:

It has N = k + 1  unknowns: ci, i = 0, 1, ..., k .  Calculation of the unknowns requires 
2N − 1 knots, 2N − 2  even steps, and MLS solution u(x) at the evaluation points 
xi =

1
2N−2 , i = 0, 1, ..., 2N − 2. Clearly, up(x0) = u(x0) = c0. It follows that

The above equations constitute a solvable system of k equations in k  unknowns.. 
In general, given z odd knots and N  unknowns in Eq.  (16), we have N = z+1

2   and 
k = N − 1. The polynomial up(x), is a perfect fit with unit RSquare. A sample problem at 
evaluation knots xi = 1

8 ; i = 0, 1, ..., 8 requires 9 knots, 8 steps, and k = 4. The inter-
polating polynomial becomes

The application of the new weight function, svd, and orthogonal basis in the imple-
mentation of the conventional MLS method constitutes the said enhancement.

Numerical computations
In this section, we use the MLS Method to solve integro-differential equations in the 
interval [0, 1]. All computations were carried out with scripts written in 2015 MAT-
LAB. The accuracy of this method is directly proportional to the number of basis func-
tions (m) and the nodal points (n). To compute the integral part at the initial nodes, in 
the absence of an exact solution, we use a six-point Gauss Quadrature Rule (GQR). It 
involves the Gaussian nodes.

xg = (− 0.9324695142031520, − 0.6612093864662645, − 0.2386191860831969, 
0.2386191860831969,





n
�

j=0

ϕj(x)−

3
�

k=0

ak
xk

k!
− βL−1(ϕj(x)− x

� 1

0

(x − xs)3

3 !
[g(xs)u(xs)+ h(xs)F(u(xs))]ds



Uj ≈ L−1(f (x))

(16)up(x) = c0 + c1x + ...+ ckx
k

up(x1) = c0 + c1x1 + ...+ ckx
k
1 = u(x1)

up(x2) = c0 + c1x2 + ...+ ckx
k
2 = u(x2)

... = ... + ... + ... + ... = ...

up(xk) = c0 + c1xk + ...+ ckx
k
k = u(xk)

up(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4.
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0.6612093864662645, 0.9324695142031520) and the corresponding weights.
C = (0.1713244923791703, 0.3607615730481386, 0.4679139345726910, 0.4679139345

726910,0.3607615730481386, 0.1713244923791703).
GQR requires that.
∫ b
a f (x)dx = 0.5(b− a)

∫ 1
−1 f (0.5(b− a)x + 0.5(b+ a))dx 

where ∫ 1

−1
f (x)dx =

6
∑

i=1

Cif (xgi).

Using v as the number of nodes in the given evaluation points ( x ), initial condition: 
u(1) = u1 = a, s = x, k(1) = K (x(1), x(1))  and j = 2 we estimate the corresponding 
values of u(x) through GQR:

when the exact solution is unknown at the initial nodes.
The accuracy of MLS increases as the number of basis polynomials and nodal points 

increases.

Numerical examples

Example 1.  Consider the following nonlinear fourth-order Integro-Differential Equa-
tion [1]:

with initial conditions: U (i)(0) = 1, i = 0, 1, 2, 3. The exact solution is given by 
U(x) = ex and using the transformation in (15) with the given initial conditions, we have:

Solution of example 1 with m = 3 and npoints = 4:

For the sake of simplicity, we implement the MLS method for example (1), using 
three polynomials, m = 3,   three nodal points (n = 3) , and four coordinate points 
(npoints = 4). Choose the initial nodal point step: dx = 0.5. Initial nodal points 
become xi = (0, 0.5, 1)T . The corresponding U(xi) = (1, 1.6487, 2.7183)T 
is obtained from the exact solution. A vector of the three basis polynomials is 
p = (1, 3.4642x − 1.7321, 13.417x2 − 13.417x + 2.2361)T . Using the above infor-
mation, we seek the approximate solution at x = (0, 0.25, 0.5, 0.75, 1)T using 
the initial nodal points and MLS method at the given evaluation coordinates 
xi, i = 0, 1, 2, 3, 4. Thus, npoints = 4. This process involves iterating from j = 1 to 
npoints + 1 to compute the required solution. At j = 1, compute  q = |x(j)− xi(i)| and 
w = sin(q)+ cos(q) for all i = 0, 1 and 2 : w = (1, 1.3570, 1.3818)T .

For i = 1 to v − 1

a = x(i); b = x(i + 1); an = 0.5(b− a)xg + 0.5(b+ a); aw = 0.5(b− a)C;

int(j) = Sum(aw × K (an, an)× k(j − 1);

u(j) = R(x(j))+ int(j); k(j) = K (x(i + 1), x(i + 1))× u(j); j = j + 1;

end

U (4)(x) = 1+

∫ x

0
e−tU(t)2dt

U(x) = 1+ x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

24
x

∫ 1

0
(x − xs)4e−xsU(xs)ds
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Using these values in Eqs. (9) to (11) gives

and

with

where p1(x) = 1, p2(x) = 3.4642x − 1.7321, p3(x) = 13.417x2 − 13.417x + 2.2361,

B = (w; w; w)T and A−1.
is obtained by singular value decomposition. Other parameters include

Repeat the above steps to update ϕ(j, :) and bT (j, :)  at j = 2, 3, 4 and 5. At j = 5 , we 
obtained

p =





1 1 1

−1.7321 0 1.7321

2.2361 − 1.11815 2.2361



;

p = (1, −1.7321, 2.2361)T ;

A =





3.7388 0.6613 3.8085
0.6613 7.1457 1.4787
3.8085 1.4787 13.6058





B =





1 1.357 1.3818
−1.7321 0 2.3934
2.2361 − 1.5173 3.0898





A−1 =





0.3754 − 0.0133 − 0.1036
−0.0133 0.1436 − 0.0119
−0.1036 − 0.0119 0.1038





p = (1, 3.4642xi - 1.7321, 13.417xi2−13.417xi+2.2361)T , p = (p1(x
(

j
)

, p2(x
(

j
)

, p3(x
(

j
)

)T

ϕ(j, :) = pTA−1B :

ϕ
�

j, :
�

=











1 0 0
0 0 0
0 0 0
0 0 0
0 0 0











a(x) = A−1BUT = (1.71887, 0.4960, 0.0627)T

bT
�

j, :
�

= p =











1 − 1.7321 2.2361

0 0 0

0 0 0

0 0 0

0 0 0










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bT =











1 − 1.7321 2.2361

1 − 0.8661 − 0.2796

1 0 − 1.1182

1 0.8661 − 0.2796

1 1.7321 2.2361











.

Using exact solution at initial nodes, as shown above, we have.
J (u) = (0, 0.0002042912556, 0.0002042912556)T . The optimal J (u) is quite close to 

zero, thus we expect a good approximation:

Using Gauss six-point quadrature rule at initial nodes will give

The exact solution is

A two-degree polynomial up(x) = 1+ 0.876603x + 0.841679x2, determines other 
intermediate solutions on [0, 1]. The fit RSquared and Adjusted RSquared are both equal 
to one. The following table contains the relevant statistics.

Solution of Example 1 with m = 5 and n points = 8:

Select initial nodal points  xi, using dx = 0.25; and the corresponding approximate solu-
tion U(xi) . Following the outlined steps, we compute the values of u(x) at x = 0 to 1 in 
steps of 1/8 using the MLS method and five orthogonal polynomials. The following are 
the obtained results.

The optimal J (u) is quite close to zero, thus we expect a good approximation:
The exact and Enhanced MLS solutions coincide at the knots (Fig. 1). All the interpo-

lated values are close to the exact solution. An insignificant difference exists as shown in 
this figure. The next figure highlights this observation.

Figure  2 shows insignificant errors between the exact and 
the Enhanced MLS solutions. The interpolating polynomial is 
up(x) = 1+ 0.998803x + 0.509787x2 + 0.140276x3 + 0.0694157x4.  All the computed 
coefficients are significant.

a(x) = A−1BUT = (1.71887, 0.4960, 0.0627)T .

ϕ =











1 0 0

0.375 0.75 − 0.125

0 1 0

−0.125 0.75 0.375

0 0 1











u(x) ∼= ϕ(x)U = b
T (x)a(x) = (1, 1.27175572447, 1.6487212707, 2.1308966387, 2.718281828459)T

u(x) ∼= ϕ(x)U = bT (x)a(x) = (1, 1.27278641, 1.6484375, 2.126953268, 2.708333715)T

U(x) = (1, 1.28402542, 1.64872127, 2.11700002, 2.7182818285)T

J (ū) = 10−8 × (0, 0.2461, 0.2461, 0.2883, 0.2883)T .
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Solution of Example 1 using  up(x) on [0, 1] in 15 steps.

Following the outlined steps, compute the values of up(x) at x = 0 to 1 in steps of 1/15. 
The following are the obtained results.

The obtained solutions in Table 4 are very close to the exact solution.
From Fig. 3, the exact and approximate solutions coincide at the knots.
The observed errors are insignificant as shown in Fig.  4. This implies perfect 

interpolation.

Example 2  Integro-differential equation [1]:

Solve.

U (4)(x) = 5 !
Ŵ(2)x + (1+ 1

7x
2)x2 − U(x)+

∫ x
0 tU(t)dt with initial conditions 

U (i)(0) = 0, i = 0, 1, 2, 3.

Fig. 1  Exact and MLS solutions of Example (1) at the given knots

Fig. 2  MLS approximation errors of Example (1) at the given knots
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Solution of Example 2, using m = 5 polynomials and n = 15 nodes:

The exact solution is  U(x) = x5. Applying (12) on Example 2, we have:

Select initial nodal points and the corresponding  approximate solution. Following 
the outlined steps, compute the values of u(x) in steps of 1/15 using the MLS method. 
The following are the obtained results.

U(x) =
1

55440
x11 +

1

3024
x9 + x5 −

1

24
x

∫ 1

0
(4(x − xs)3 − (x − xs)4)xsU(xs)ds

Fig. 3  Exact and MLS solution of Example (1) using up(x) at the given steps

Fig. 4  MLS approximation errors of Example (1) using up(x) at the given steps
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The optimal J (u) is quite close to zero, thus we expect a good approximation:
The exact and approximate solutions in Table 5 are very close to each other.
From Figs. 5, 6, the exact and approximate solutions coincide at the knots.

Example 3.  Consider the following nonlinear fourth-order Integro-Differential Equa-
tion [1]:

J (ū) = (0, 0.80, 1.51, 1.55, 1.74, 2.28, 2.69, 2.75, 2.81, 3.16, 3.56)T × 10−5.

U (4)(x) = −
1

2
xe−2 +

1

2
xex

2−2 −

∫ x

0
xteu(t)dt

Fig. 5  Exact and MLS solution of Example (2) at the given knots

Fig. 6  MLS approximation errors of Example (2) at the given knots
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with initial conditions: U(0) = −2, U ′′(0) = 2, U ′(0) = U ′′′(0) = 0. The exact solution 
is given by U(x) = x2 − 2 and using the transformation in (15) with the given initial con-
ditions, we have

Solution of Example 3, using m = 5 and n = 15:

Applying the same procedure gives

The optimal is quite close to zero, thus we expect a good approximation:

J (ū) = (0, 0.69, 3.21, 3.77, 6.51, 6.51, 6.62, 6.72, 6.77, 6.82, 5.82)T × 10−19.

Fig. 7  Exact and MLS solution of Example (3) at the given knots

Fig. 8  MLS errors of Example (3) at the given knots
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From Fig. 7 and Table 7, the exact and approximate solutions coincide at the knots.
The observed errors are insignificant as shown in Fig.  8. This implies perfect 

interpolation.
Following the procedure in example (1), the interpolating polynomial is Only the 

first and third coefficients are significant. Others are very close to zero and thus insig-
nificant since their P-Values are greater than 0.05:

Table 1  Parameter results

Coef Estimate Standard error t-Statistic P Value

a0 1 1.68341 × 10–12 5.94031 × 1011 0

a1 0.876603 7.97655 × 10–12 1.09898 × 1011 0

a2 0.841679 7.64892 × 10–12 1.10039 × 1011 0

Table 2  Exact and MLS solutions of Example (1) at the given knots, CPU time = 0.75 s

x Approximate u(x) MLS u(x) Exact u(x) MLS error MLS error (enhanced)

0.0000 1.000000000000000 1.006439459167527 1.000000000000000 0.006439459167527 0.000000000000000

0.1250 1.133106724297920 1.126228676652465 1.133148453066826 0.006919776414362 0.000041728768907

0.2500 1.284025416687755 1.272883207934215 1.284025416687741 0.011142208753526 0.000000000000014

0.3750 1.455010035292180 1.447178650505727 1.454991414618201 0.007812764112474 0.000018620673979

0.5000 1.648721270700119 1.648109094186998 1.648721270700128 0.000612176513130 0.000000000000009

0.6250 1.868226545966574 1.875472047307945 1.868245957432222 0.007226089875722 0.000019411465649

0.7500 2.117000016612683 2.128917843084613 2.117000016612675 0.011917826471938 0.000000000000008

0.8750 2.398922570625700 2.407362950738166 2.398875293967098 0.008487656771067 0.000047276658602

1.0000 2.718281828459046 2.711632358267080 2.718281828459046 0.006649470191965 0.000000000000000

Table 3  Parameter results

Coef. Estimate Standard error t-Statistic P value

a0 1 8.5546 × 10–15 1.16896 × 1014 3.21329 × 10–56

a1 0.998803 1.36072 × 10–13 7.34026 × 1012 2. 06,683 × 10–51

a2 0.509787 6.0822 × 10–13 8.38162 × 1011 1.21573 × 10–47

a3 0.140276 9.41689 × 10–13 1.48962 × 1011 1.21856 × 10–44

a4 0.069416 4.67094 × 10–13 1.48612 × 1011 1.2301 × 10–44

Table 4  Solution of Example (1), using at to 1 in steps of 1/15, CPU time = 0.52 s

x Approximate u(x) Exact U(x) MLS error MLS error (enhanced)

0.000000 1.00000 1.00000 0.0000000 0.000000000

0.0666667 1.06890 1.06894 0.0064395 0.000043585

0.133333 1.14259 1.14263 0.0069198 0.000039754

0.200000 1.22139 1.22140 0.0001114 0.000017405

… … … … …

1.000000 2.71828 2.71828 0.000066495 0.000000129
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The Rsquare and Adjusted Rsquare are both 1.0. The statistics in Table 8 show that 
the chosen coefficients are the desired constants in The polynomial is a good fit for 
the MLS data. Any value, in.

[0, 1] interval can easily be evaluated with high precision.

Discussion of results

It is worthy to note that the computetions were carried out using MATLAB 9.2 on 
a personal computer of the following specifications. Windows 10 operating sys-
tem in MATLAB 9.2 environment on 8.00 GB RAM HP Pavilion × 360 Convertible, 
64-bits Operating System, × 64-based processor Intel(R) Core(TM) i3-7100U CPU @ 
2.40 GHz. All the computed coefficients, in Table 1, are significant. Their P-Values are 
less than 0.05. Thus represents the generic polynomial which computes the values of 
on the interval [0, 1]. Throughout the numerical reports in Tables 1, 2, 3, 4, 5, 6, 7, and 
8, expect where stated otherwise MLS is taken to mean the conventional moving least 
square method while MLS (Enhanced) is the new approach.

The magnitude of the computed errors in Table  2 indicates a close proximity 
between the exact and MLS solutions. The following figure compares the obtained 
solutions.

All the P-Values, in Table 3, are less than 0.05. The computed Rsquare and Adjusted 
Rsquare are equal to 1.0. The statistics in Table 3 show that the estimated coefficients are 
the desired constants in The estimated polynomial is a good fit for the MLS data.

Table 6  Parameter results

Coef. Estimate Standard error t-statistic P value

a0 1.04754 ×10
−16 2.33136 ×10

−15 0.0449326 0.966315

a1 − 0.09375 3.70832 ×10
−14 − 2.5281 ×10

12 1.46884 ×10
−49

a2 0.78125 1.65756 ×10
−13 4.71325 ×10

12 1.21582 ×10
−50

a3 − 2.18756 2.56635 ×10
−13- 8.52377 ×10

12 1.13664 ×10
−51

a4 2.50000 1.27296 ×10
−13 1.96393 ×10

13 4.03315 ×10
−53

Table 7  Exact and MLS solutions at the given knots, CPU time = 0.5 s

x Approximate u(x) Exact U(x) MLS error MLS error 
(enchanced)

0 − 2.000000000000000 − 2.00000000000000 0 0

0.066666666666667 − 1.995555555555558 − 1.995555555555556 0.000000107013828 0.000000000000002

0.133333333333333 − 1.982222222222227 − 1.982222222222222 0.000000487796545 0.000000000000004

0.200000000000000 − 1.960000000000002 − 1.960000000000000 0.000000812959607 0.000000000000002

… … … … …

0.800000000000000 − 1.360000000000001 − 1.360000000000000 0.000048779654539 0.000000000000001

0.866666666666667 − 1.248888888888889 − 1.248888888888889 0.000004877964554 0.000000000000001

0.933333333333333 − 1.128888888888893 − 1.128888888888889 0.000001070138276 0.000000000000004

1.000000000000000 − 1.000000000000000 − 1.000000000000000 0 0
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The observed errors are insignificant as shown in Fig.  6. This implies perfect 
interpolation.

Following the given procedure in example (1), the interpolating polynomial is All the 
computed coefficients are significant except the first which has zero value.

All parameters with a P-Value less than 0.05 are chosen. The Rsquare and Adjusted 
Rsquare are both one. The statistics in Table 6 show that the estimated coefficients are 
the desired constants of The polynomial is a good fit for the Enhanced MLS data. Any 
value of in [0, 1] interval can easily be evaluated with high precision. A high distinction of 
this method over existing methods is the significant interpolating polynomials obtained 
as a result of the constructed basis function which was then used to reproduce the solu-
tions over the entire problem domain. The solutions produce a negligible magnitude of 
the error at each evaluation point and this demonstrates its reliability and effectiveness 
over existing methods.

Conclusion
An enhanced MLS method with smooth basis polynomials is used to solve the fourth 
order integro—differential equation of the Volterra type. At any arbitrary point, can be 
chosen to minimize the weight residual. Based on the results obtained, the value was 
given as a function of which accounts for the major difference between the Enhanced 
MLS, MLS method and the popular Least Square Method. Moreso, from the table 
of results, the error of the Enhanced MLS solution shows a tendency to increase as 
increases to the end boundary point. This behaviour is expected in any numerical 
method. Hence, we conclude that the proposed Enhanced Moving Least Square method 
is good for solving the class of equations described in this paper. Finally, a significant 
interpolating polynomial could be constructed and used to reproduce the solutions over 
the entire problem domain. The magnitude of the error at each evaluation knot demon-
strates the reliability and effectiveness of this scheme. The application of the new weight 
function, svd, and orthogonal basis in the implementation of the conventional MLS 
method constitutes the said enhancement. The determinant of the moment matrix A(x) 
via SVD minimized the problem of near singularity and improved the accuracy of the 
results. The study concluded that enhanced MLS provides an alternative and efficient 
method of finding solutions to Volterra Integro-Differential equations and Fredholm–
Volterra Integro-Differential equations. It is therefore recommended that the methods 
be used in solving the classes of problems considered.

Table 8  Parameter results

Coef. Estimate Standard error t-statistic P value

a0 − 2.00000 8.39093 × 10–15 − 2.38353 × 1014 1.85896 × 10–57

a1 − 6.31799 × 10–14 1.33468 × 10–13 − 0.473369 0.660627

a2 1.00000 5.96583 × 10–13 1.67621 × 1012 7.60038 × 10–49

a3 − 5.15 × 10–13 9.23672 × 10–13 − 0.557941 0.606636

a4 2.71 × 10–13 4.58158 × 10–13 0.591785 0.585822
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