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Introduction
In the recent years, the problem of expressing sums of products of certain special poly-
nomials in terms of other special polynomials has drawn the attention of many research-
ers and mathematicians due to which this field has seen an increasing interest [1–3]. 
There are many special polynomials out of which we deal with the Pell polynomials [4–
6]. The Pell polynomials Pk(t) are defined by the binary recurrence relation

In this work, the following summations of finite products of Pell polynomials have been 
considered, given by

where the summation runs over all nonnegative integers j1, j2, . . . , jr+1 , with 
j1 + j2 + · · · + jr+1 = n. The summation (2) is represented in terms of some orthogo-
nal polynomials such as the Legendre polynomials ( Pn(x) ), Jacobi polynomials ( Pα,β

n (x) ), 
Hermite polynomials (Hn(x)) , Gegenbauer polynomials (C(�)

n (x)) , extended Laguerre 
polynomials (Lαn(x)) , and Chebyshev polynomials [7] of first kind (Tn(x)) , second kind 
(Un(x)) , third kind (Vn(x)) and fourth kind (Wn(x)) which are further represented as 
hypergeometric functions. The hypergeometric function, denoted by 2F1(a, b; c; z), is 
basically a special function represented by a hypergeometric series, which involves many 
special functions as specific cases which has been discussed in the preliminaries section.

The motivation of this work has been derived by the classical linearization problem,

(1)Pk(t) = 2tPk−1(t)+ Pk−2(t),P0(t) = 0, P1(t) = 1, k ≥ 2.

(2)
∑

j1+j2+···+jr+1=n

Pj1+1(x)Pj2+1(x) . . .Pjr+1+1(x),
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which involves the determination of the unknown coefficients dab(k) in the expansion of 
product of the polynomials sa(t) and pb(t) in terms of arbitrary polynomial {qk(t)}k≥0. 
If the two polynomials sa(t) and pa(t) are equal to qa(t) , then problem (3) is known 
as the standard linearization problem or Clebsch-Gordan-type. In other words, for 
sa(t) = pa(t) = qa(t), (3) converts to

which is called the Clebsch-Gordan-type problem. Furthermore, if we take pb(t) = 1 , 
then (3) is called the connection problem expressed as

In addition, if sa(t) = tn in (3), then it is known as the inversion problem.
In particular, the present work is motivated by the linearization problem and may be 

viewed as a generalization of the classical linearization problem as in (3). Apart from that, 
our work is also motivated by the convolution identity of Bernoulli polynomials Bn(x) 
that yields the famous Miki’s identity and Faber–Pandharipande–Zagier identity. In other 
words, it is possible to represent the sums of products of two Bernoulli polynomials as lin-
ear combinations of Bernoulli polynomials. The polynomials Bn(x) are given by

Now, if for k ≥ 2,

then, from [8],

can be derived from the Fourier expansion of δk(〈x〉) , where 〈x〉 is the fractional part of 
any real number x expressed as �x� = x − [x] and Hk are the harmonic numbers denoted 
by Hk =

∑k
n=1

1
n . Furthermore, it is interesting to observe that for x = 1

2
 , (8) gives the 

Faber–Pandharipande–Zagier identity [9] and for x = 0 , (8) gives a slight variant of 
Miki’s identity [10–12]. In this article, the Pell polynomials are represented in terms of 

(3)sa(t)pb(t) =
a+b
∑

k=0

dab(k)qk(t),

(4)sa(t)sb(t) =
a+b
∑

k=0

dab(k)sk(t),

(5)sa(t) =
a

∑

k=0

da(k)qk(t).

(6)
∞
∑

k=0

Bk(x)
tn

n!
=

tetx

et − 1
.

(7)δk(x) =
k−1
∑

l=1

Bl(x)Bk−l(x)

l(k − l)
,

(8)

k−1
∑

l=1

B2l(x)B2k−2l(x)

2l(2k − 2l)
+

2B1(x)B2k−1(x)

(2k − 1)
=

1

k
H2k−1B2l(x)

+
1

k

k
∑

l=1

(

2k
2l

)

1

2l
B2l(x)B2k−2l(x)+

2B2k−1B1(x)

(2k − 1)
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linear combination of some of the orthogonal polynomials. The generating function of 
the Pell polynomials is given by

First few terms of the Pell polynomials derived from (1) can be written as 
P2(t) = 2t , P3(t) = 4t2 + 1 , P4(t) = 8t3 + 4t , P5(t) = 16t4 + 12t2 + 1 , 
P6(t) = 32t5 + 32t3 + 6t, . . . . The first few terms of Pn(t) are graphically depicted in Fig. 1.

Furthermore, the Pell polynomials are the natural extension of the Pell numbers Pn 
defined by the same recurrence relation [6, 13]

The methodology used in this work is beneficial over other techniques in the literature 
due to the simple Fourier series expansions used here to determine the unknown coef-
ficients involved in the classical linearization type problem unlike the other methods in 
[10, 11] which are quite complex in their approach. The literature survey includes the 
work of Zhang [7], where he derived a new identity for the Chebyshev polynomials. In 
[14], the authors have shown an application of a p-adic convolution using a suitable poly-
nomial. In a different work, Kim et al. [2] have studied regarding the sums of finite prod-
ucts of Chebyshev polynomials and Fibonacci polynomials. Apart from that, the sums 
of finite products of the Genocchi functions have also been studied by Kim et al. [8]. In 
two different works, Kim et al. tackled with the sums of finite products of Chebyshev 
and Lucas-balancing polynomials [15, 16]. Furthermore, certain identities relating to the 
symmetry for the Euler polynomials are derived in [17]. In [18], a difference of sums 
of finite products have been tackled in case of Lucas-balancing polynomials. Moreover, 
the Appell polynomials were utilized to represent a family of associated sequences [19]. 
Apart from that, a new class of Bernoulli polynomials have been introduced by [20], 
related to polyexponential functions.

∞
∑

n=0

Pn(x)t
n =

1

1− 2xt − t2
.

(9)Pk = 2Pk−1 + Pk−2,P0 = 0, P1 = 1, k ≥ 2.

4 2 2 4
t

100

50
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100

Pn t

P1 t

P2 t

P3 t

P4 t

P5 t

P6 t

Fig. 1 First few terms of Pn(t)
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The present article is organized in the following manner: First, in “Preliminaries” sec-
tion, the preliminaries regarding the properties of several polynomials, gamma and 
beta functions have been discussed to be used later in the subsequent sections. Then, 
the explicit formulas of some special orthogonal polynomials are given in “Methods” 
section. Apart from that, “Results and discussions” section includes some propositions 
and lemmas to be used later. In addition, some theorem have been proved regarding the 
sums of finite products of Pell polynomials in subsequent section. The final section is 
devoted for the concluding remarks.

Preliminaries

Definition 1 (Rising factorial polynomials and falling factorial polynomials) The rising 
factorial polynomials 〈t〉n1 , for n1 ≥ 1 are defined by [21]

and the falling factorial polynomials (t)n1 , for n1 ≥ 1 are defined by [21]

Furthermore, the rising factorial polynomials 〈t〉n1 and the falling factorial polynomials 
(t)n1 satisfy the following properties given by the following lemma.

Lemma 1 

(a) For any nonnegative integer n1, −�t�n1 = (−1)n1(t)n1 .

(b) For any nonnegative integer n1, −(t)n1 = (−1)n1�t�n1 .
(c) The falling factorial polynomials (t)n1 can be written in terms of gamma function 

Ŵ(t) as (t)n1 =
Ŵ(t+1)

Ŵ(t+1−n1)
, and similarly, the rising factorial polynomials can be rep-

resented by gamma function as �t�n1 =
Ŵ(t+n1)
Ŵ(t) , n1 ≥ 0.

(d) For n1 ≥ n2 ≥ 0 , (2n1−2n2)!
(n1−n2)! = (−1)n2 � 1

2
�n12

2n1−2n2

� 1
2
−n�n2

.

(e) For n1 ≥ 0 , Ŵ(n1 + 1
2
) = (2n1)!

√
π

(n1)!22n1
.

Proof
The proof of the lemma can be referred from [21]. �

Definition 2 (Beta function) Now the beta function B(x,  y) is defined in terms of 
gamma function Ŵ(x) as

for Re(x),Re(y) > 0.

(10)�t�n1 = t(t + 1) · · · (t + n1 − 1)

(11)(t)n1 = t(t − 1) · · · (t − n1 + 1).

B(x, y) =
∫ 1

0

tx−1(1− t)y−1dt =
Ŵ(x)Ŵ(y)

Ŵ(x + y)
,
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Definition 3 (Hypergeometric function) The hypergeometric function is defined by 
[22]

Definition 4 (Gauss hypergeometric function and Chu-Vandermonde formula) A 
particular case of the hypergeometric function is the Gauss hypergeometric function 
defined by [23]

and furthermore, a special case of Gauss hypergeometric function is the Chu-Vander-
monde formula given by

Note: Furthermore, there is a link between the Pell polynomials Pn(x) and Chebyshev 
polynomials of second kind denoted by Un(x) . Before, proceeding to establish the con-
nection, we need to define the Chebyshev polynomials of second kind.

Definition 5 (Chebyshev polynomials of second kind) The Chebyshev polynomials of 
second kind are given by the recurrence relation [24]

Hence, the first few terms of Un(x) are given by U0(x) = 1,U1(x) = 2x,U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x,U4(x) = 16x4 − 12x2 + 1,U5(x) = 32x5 − 32x3 + 6x,.... The first few 
terms of Un(x) are graphically depicted in Fig. 2.
In addition, the Chebyshev polynomials are explicitly given by the formula, for n ≥ 0,

(12)mFn(a1, . . . , am; b1, . . . , bn; t) =
∞
∑

s=0

�a1�s · · · �am�s
�b1�s · · · �bn�s

ts

s!
, |t| < 1, m ≤ n+ 1.

(13)2F1(a1, b1; c1; t) =
∞
∑

s=0

�a1�s�b1�s
�c1�s

ts

s!
, |t| < 1,

2F1(−s, a1; c1; 1) =
�c1 − a1�s

�c1�s
, c1 �= 0,−1, · · · 1− s.

(14)Un(x) = 2xUn−1(x)−Un−2(x),U0(x) = 1, U1(x) = 2x, k ≥ 2.

1.0 0.5 0.5 1.0
x

6

4

2

2

4

6
Un x

U0 x

U1 x

U2 x

U3 x

U4 x

U5 x

Fig. 2 First few terms of Un(x)
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where 2F1(a, b; c; x) can be referred from (13) and is given by the generating function

Lemma 2 The fundamental connection between the Chebyshev polynomials Un(x) of 
second kind and the Pell polynomials Pn(x) is given by

Proof
The explicit expression for Pn+1(x) can be referred from [5], given by

Hence, comparing (15) and (17), we get (16). 

Note: The explicit expression for Pn+1(x) can be either referred from [5] or can also be 
viewed by virtue of the combination of (16) and (15) after proving Lemma 2.

Methods

Proposition 1 Let q(x) ∈ R[x] be a polynomial of degree n and further let 
q(x) =

∑n
l=0 DlPl+1(x) . Then,

Proof
By virtue of the orthogonality property of Un(x) , we have

for m, n ≥ 0 . Combining (19) and the property (16), we have

which represents the orthogonality relation for the Pell polynomials Pn(x). Furthermore, 
the Rodrigues’ formula of the Chebyshev polynomials of second kind Un(x) is given, for 
n ≥ 0 , by

(15)Un(x) = (n+ 1)2F1(−n, 2+ n;
3

2
;
1− x

2
) =

[ n
2
]

∑

l=0

(−1)l
(

n− l
l

)

(2x)n−2l
,

∞
∑

n=0

Un(x)t
n =

1

1− 2xt + t2
.

(16)Pn+1(x) =
1

(
√
−1)n

Un(
√
−1x).

(17)Pn+1(x) =
[ n
2
]

∑

l=0

(

n− l
l

)

(2x)n−2l
, n ≥ 0.

�

(18)Dl =
(l + 1!)(

√
−1)l+12l+1

(2n+ 1)!π

∫

√
−1

−
√
−1

q(x)
dl

dxl
(1+ x2)l+

1
2 .

(19)
∫ 1

−1

(1− x2)
1
2Um(x)Un(x)dx =

πδn,m

2
,

(20)
∫

√
−1

−
√
−1

(1+ x2)
1
2 Pm+1(x)Pn+1(x)dx =

π(
√
−1)1−n−mδn,m

2
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Again by combining (16) and (21), we get the Rodrigues’ formula of the Pell polynomials 
as

Now, by means of (20) and (22), we get the desired result. 

Results and discussions
Explicit formulas of special orthogonal polynomials

In this section, some explicit definitions of certain polynomials have been recalled which 
will be used in the subsequent sections. The explicit formula for the Chebyshev polynomi-
als of the first kind (Tn(x)) , those of the third kind (Vn(x)) , those of the fourth kind (Wn(x)) , 
Hermite polynomials (Hn(x)) , generalized Laguerre polynomials (Lαn(x)) , Legendre polyno-
mials (Pn(x)) , Gegenbauer polynomials (C(�)

n (x)) , and Jacobi polynomials (P(α,β)
n (x)) . They 

are explicitly given by

(21)Un(x) =
(n+ 1!)(−1)n2n

(2n+ 1)!
(1− x2)−

1
2
dn

dxn
(1− x2)n+

1
2 .

(22)Pn(x) =
(n+ 1!)2n

(2n+ 1)!
(1+ x2)−

1
2
dn

dxn
(1+ x2)n+

1
2 .

�

(23)Vn(x) =2F1

(

−n, n+ 1;
1

2
;
1− x

2

)

=
n

∑

l=0

(

n+ l
2l

)

2
l(x − 1)l , n ≥ 0,

(24)Wn(x) =(2n+ 1)2F1

(

−n, n+ 1;
3

2
;
1− x

2

)

=
n

∑

l=0

(

n+ l
2l

)

2
l(x − 1)l , n ≥ 0,

(25)Tn(x) =
n

2
2F1

(

−n, n;
1

2
;
1− x

2

)

=
[ n
2
]

∑

l=0

(−1)l

n− l

(

n− l
l

)

(2x)n−2l
, n ≥ 1,

(26)Hn(x) =n!
[ n
2
]

∑

l=0

(−1)l

l!(n− l)!
(2x)n−2l

, n ≥ 0,

(27)

Pn(x) =2F1

(

−n, n+ 1; 1;
1− x

2

)

=
1

2n

[ n
2
]

∑

l=0

(−1)l
(

n
l

)(

2n− 2l
n

)

xn−2l
, n ≥ 0,

(28)Lαn(x) =
�α + 1�n

n! 1F1(−n;α + 1; x) =
n

∑

l=0

(−1)l
(

n+ α

n− l

)

l!
xl , n ≥ 0,α > −1,
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Proposition 2 [1, 2]. Let q(x) ∈ R[x] be a polynomial of degree n. Then, we have the 
following: 

(a) q(x) =
∑n

k=0 Ck ,1Wk(x), where 

Ck ,1 = (−1)k2k k!
π(2k)!

∫ 1

−1
q(x) dk

dxk
(1+ x)k−

1
2 (1− x)k+

1
2 dx.

(b) q(x) =
∑n

k=0 Ck ,2Vk(x), where 

Ck ,2 = (−1)k2k k!
π(2k)!

∫ 1

−1
q(x) dk

dxk
(1+ x)k+

1
2 (1− x)k−

1
2 dx.

(c) q(x) =
∑n

k=0 Ck ,3Tk(x), where Ck ,3 = (−1)k2k k!ǫk
π(2k)!

∫ 1

−1
q(x) dk

dxk
(1− x2)k−

1
2 dx.

(d) q(x) =
∑n

k=0 Ck ,4Uk(x), where Ck ,4 = (−1)k2k+1(k+1)!
π(2k+1)!

∫ 1

−1
q(x) dk

dxk
(1− x2)k+

1
2 dx.

(e) q(x) =
∑n

k=0 Ck ,5Hk(x), where Ck ,5 = (−1)k√
πk!2k

∫∞
−∞ q(x) dk

dxk
e−x2dx.

(f) q(x) =
∑n

k=0 Ck ,6Pk(x), where Ck ,6 = 2k+1

k!2k+1

∫ 1

−1
q(x) dk

dxk
(x2 − 1)kdx.

(g) q(x) =
∑n

k=0 Ck ,7L
α
k (x), where Ck ,7 = 1

Ŵ(α+k+1)

∫∞
0

q(x) dk

dxk
(xα+ke−x)dx.

(h) q(x) =
∑n

k=0 Ck ,8P
α,β

k (x) where 

Ck ,8 = (−1)k (α+β+2k+1)Ŵ(α+β+k+1)

Ŵ(α+k+1)Ŵ(β+k+1)2α+β+k+1

∫ 1

−1
q(x) dk

dxk
(1+ x)k+β(1− x)k+αdx.

(i) q(x) =
∑n

k=0 Ck ,9C
�

k (x), where 

Ck ,9 = Ŵ(�)(�+k)

Ŵ(�+k+ 1
2
)(−2)k

√
π

∫ 1

−1
q(x) dk

dxk
(1− x2)k+�− 1

2 dx.

Proposition 3 1, 2]. Let m, k be nonnegative integers. Then, the following identities hold: 

 (i) 

(29)

P
α,β
n (x) =

�α + 1�n
n! 2F1

(

−n,α + β + n+ 1;α + 1;
1− x

2

)

=
n

∑

k=0

(

n+ α

n− k

)(

n+ β

k

)

(
x − 1

2
)k(

x + 1

2
)n−k

,

(30)

C�
n(x) =

(

n− 1+ 2�

n

)

2F1

(

−n, 2�+ n; �+
1

2
;
1− x

2

)

=
[ n
2
]

∑

k=0

(−1)k
Ŵ(n+ �− k)

γ (�)(n− 2k)!k!
(2x)n−2k

, n ≥ 0, � > −
1

2
, � �= 0.

∫ 1

−1

xm(1− x2)k−
1
2 dx =

{

0, m ≡ 1 (mod 2);
m!π(2k)!

2m+2k (m
2
+k)!(m

2
)!k! , if m ≡ 0 (mod 2).
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 (ii) 

 (iii) 

 (iv) 

 (v) 

 (vi) 

 (vii) 

 (viii) 

Lemma 3 For any nonnegative integers n, k, the following identity holds, for the sum-
mation of finite products of the Pell polynomial Pn(x) over all nonnegative integers 
j1, j2, . . . , ir+1 with j1 + j2 + · · · + jr+1 = n, given by

Proof
Let us denote the generating function for the Pell polynomials as G(x, t) and by definition,

∫ 1

−1

xm(1− x2)k+
1
2 dx =

{

0, m ≡ 1 (mod 2);
m!π(2k+2)!

2m+2k+2(m
2
+k+1)!(m

2
)!(k+1)! , if m ≡ 0 (mod 2).

� 1

−1

xm(1+ x)k+
1
2 (1− x)k−

1
2 dx =







(m+1)!(2k)!π
2m+2k+1(m+1

2
+k)!(m+1

2
)!(k)!

, m ≡ 1 (mod 2);
m!π(2k)!

2m+2k (m
2
+k)!(m

2
)!(k)! , if m ≡ 0 (mod 2).

� 1

−1

xm(1+ x)k−
1
2 (1− x)k+

1
2 dx =







− (m+1)!(2k)!π
2m+2k+1(m+1

2
+k)!(m+1

2
)!(k)!

, m ≡ 1 (mod 2);
m!π(2k)!

2m+2k (m
2
+k)!(m

2
)!(k)! , if m ≡ 0 (mod 2).

∫ ∞

−∞
xme−x2dx =

{

0, m ≡ 1 (mod 2);
m!

√
π

2m(m
2
)! , if m ≡ 0 (mod 2).

∫ 1

−1

xm(1− x2)kdx =

{

0, m ≡ 1 (mod 2);
m!k!22k+2(m

2
+k+1)!

(m
2
)!(m+2k+2)! , if m ≡ 0 (mod 2).

∫ 1

−1

xm(1− x2)k+�− 1
2 dx =

{

0, m ≡ 1 (mod 2);
Ŵ(k+�+ 1

2
)Ŵ(m+1

2
)

Ŵ(k+�+1+m
2
)

, if m ≡ 0 (mod 2).

∫ 1

−1

xm(1− x)k+α(1+ x)k+βdx = 2
α+β+2k+1

m
∑

s=0

(

m
s

)

(−1)m−s
2
sŴ(k + β + 1+ s)Ŵ(k + α + 1)

Ŵ(α + β + 2k + s + 2)
.

(31)
∑

j1+j2+···+jr+1=n

Pj1+1(x)Pj2+1(x) · · ·Pjr+1+1(x) =
1

r!2r
P
(r)
n+r+1(x).
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Then, differentiating G(x, t) with repect to x, r times, we get

from which we obtain

Furthermore, we have

By virtue of (33) and (36), we get the desired result. It can be also observed that Lemma 3 
can be proved in a simple way. However, it was proved in Lemma 5 of [1] that

Hence, combining (16) with (38), we have the desired result of Lemma 3. 

Theorem 1 Let n,r be nonnegative integers, and let ǫn = 2− δn,0. Then, the summation 
of finite products of the Pell polynomials can be represented as

G(x, t) =
∞
∑

n=0

Pn(x)t
n =

1

1− 2xt − t2
.

(32)
∂rG(x, t)

∂xr
=

2r trr!
(1− 2xt − t2)r+1

(33)
(

1

1− 2xt − t2

)r+1

=
1

2r trr!
∂rG(x, t)

∂xr

(34)=
1

2rr!

∞
∑

n=r+1

P(r)
n (x)tn

(35)=
1

2rr!

∞
∑

n=0

P
(r)
n+r+1(x)t

n+r+1
.

(36)
(

1

1− 2xt − t2

)r+1

=
∞
∑

n=0

Pj1+1(x)t
j1+1Pj2+1(x)t

j1+1 · · ·Pjr+1+1(x)t
jr+1+1

(37)=
∞
∑

n

∑

j1+j2+···+jr+1=n

Pj1+1(x)Pj2+1(x) · · ·Pjr+1+1(x).

(38)
∑

j1+j2+···+jr+1=n

Uj1(x)Uj2(x) · · ·Ujr+1
(x) =

1

r!2r
U

(r)
n+r(x).

�

(39)

∑

j1+j2+···+jr+1=n

Pj1+1(x)Pj2+1(x) · · ·Pjr+1+1(x)

=
1

(
√
−1)nr!

n
∑

i=0

(

r + [ i
2
]

r

)

(n+ r − [
i

2
])rVn−i(

√
−1x)

(40)=
1

(
√
−1)nr!

n
∑

i=0

(−1)i
(

r + [ i
2
]

r

)

(n+ r − [
i

2
])rWn−i(

√
−1x)
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Proof
The proof of the theorem is by virtue of Theorem 1 of [1], Theorem 1 of [2] and (16). 

Remark
The r-th derivative of the Pell polynomial Pn+1(x) is given by

Furthermore,

By default, we assume that

throughout the remaining part of the paper.

(41)=
1

(
√
−1)nr!

[ n
2
]

∑

i=0

ǫn−2i

(

r + i
r

)

(n+ r − i)rTn−2i(
√
−1x)

(42)=
(r + n)!
(
√
−1)nr!

[ n
2
]

∑

i=0

1

(n− 2i)!i! 1
F1(−i;−n− r;−1)Hn−i(

√
−1x)

(43)

=
(r + n)!
(
√
−1)nr!

[ n
2
]

∑

i=0

2n+ 1− 4i

i!(n− i +
√
12)n−i

2F1(−i, i − n−
√
12;−n− r; 1)Pn−2i(

√
−1x)

(44)

=
Ŵ(n+ α + 1)2n

(
√
−1)nr!

n
∑

k=0

(−1)k

Ŵ(k + α + 1)

[ n−k
2

]
∑

l=0

(− 1
4
)l(n− l + r)!

l!(n− k − 2l)!(n+ α)2l
L
(α)

k (
√
−1x)

(45)=
(−2)n

(
√
−1)nr!

n
∑

k=0

(−2)kŴ(α + β + k + 1)

Ŵ(α + β + 2k + 1)

[ n−k
2

]
∑

l=0

(− 1
4
)l(n− l + r)!

l!(n− k − 2l)!

(46)

× 2F1(2l + k − n,β + k + 1;α + β + 2k + 2; 2)P(α,β)

k (
√
−1x)

=
(r + n)!

(
√
−1)nr!(�)n+1

[ n
2
]

∑

i=0

(n− 2i + �)(�+ n)i

i! 2F1(−i, i − �− n;−n− r; 1)C(�)
n−i(

√
−1x).

�

(47)P
(r)
n+1 =

[ n−r
2

]
∑

l=0

(

n− l
l

)

(n− 2l)r2
n−2lxn−r−2l

.

(48)P
(r+k)
n+r+1 =

[ n−k
2

]
∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2lxn−k−2l

.

∑

j1+j2+···+jr+1=n

Pj1+1(x)Pj2+1(x) · · ·Pjr+1+1(x) = ηn,r(x)
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Theorem 2 Let n,r be nonnegative integers. Then, we obtain the following representa-
tions for the summation of finite products of the Pell polynomials

Proof
In order to prove (49), we let

(49)

∑

j1+j2+···+jr+1=n

Pj1+1(x)Pj2+1(x) · · ·Pjr+1+1(x)

=
(

r + n
n

) n
∑

i=0

(−1)j

(

n
[

i
2

]

)

2F1

(

−
[

i

2

]

,

[

i

2

]

− n;−n− r;−1

)

Wn−i(x)

(50)=
(r + n)!
n!r!

n
∑

i=0

(

n
[

i
2

]

)

2F1

(

−
[

i

2

]

,

[

i

2

]

− n;−n− r;−1

)

Vn−i(x)

(51)=
(r + n)!

r!

[ n
2
]

∑

i=0

ǫn−2j

(n− i)!i! 2
F1(−i, i − n;−n− r;−1)Tn−2i(x)

(52)=
(r + n)!

r!

[ n
2
]

∑

i=0

n− 2i + 1

(n− i + 1)!i! 2
F1(−i, i − n− 1;−n− r;−1)Un−2i(x)

(53)=
(r + n)!

r!

n
∑

i=0

1

(n− 2i)!i! 1
F1(−i;−n− r; 1)Hn−i(x)

(54)=
(r + n)!

r!

[ n
2
]

∑

i=0

2n+ 1− 4i

i!(n− i + 1
2
)n−i

2F1(−i, i − n−
1

2
;−n− r;−1)Pn−2i(x)

(55)=
2n

r!
Ŵ(n+ 1+ α)

n
∑

k=0

(−1)k

Ŵ(k + α + 1)

[ n−k
2

]
∑

l=0

(− 1
4
)l(n− l + r)!

l!(n− k − 2l)!(n+ α)2l
Lαk (x)

(56)
=

(−2)n

r!

n
∑

k=0

(−2)kŴ(α + β + k + 1)

Ŵ(α + β + 2k + 1)

[ n−k
2

]
∑

l=0

(− 1
4
)l(n− l + r)!

l!(n− k − 2l)!

× 2F1(2l + k − n,β + k + 1;α + β + 2k + 2; 2)P(α,β)

k (x)

(57)=
(r + n)!
r!(�)n+1

[ n
2
]

∑

i=0

(n− 2i + �)(�+ n)i

i! 2F1(−i, i − �− n;−n− r;−1)C
(�)
n−2i(x).

(58)ηn,r(x) =
n

∑

k=0

Ck ,1Wk(x).
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Then, by virtue of Proposition 2(a), we obtain

Then, by (31) and (48) and subsequently integration by parts k times, we get

Now, by virtue of Proposition 3(iv), we have

After further simplifying (58)–(60), we get

Now, let us substitute n− 2i − 1 in place of k in the first summation term and n− 2i in 
place of k in the second summation term which results in

Furthermore, by virtue of the rising factorial polynomials and the falling factorial poly-
nomials in (10), (11) and their properties in 1(a) and (b), we can write

Ck ,1 =
(−1)k2kk!
π(2k)!

∫ 1

−1

ηn,r(x)
dk

dxk
(1+ x)k−

1
2 (1− x)k+

1
2 dx.

(59)

Ck ,1 =
(−1)k2kk!
π(2k)!

∫ 1

−1

ηn,r(x)
dk

dxk
(1+ x)k−

1
2 (1− x)k+

1
2 dx

=
(−1)k2kk!
π(2k)!2rr!

∫ 1

−1

P
(r)
n+r+1(x)

dk

dxk
(1+ x)k−

1
2 (1− x)k+

1
2 dx

=
2kk!

π(2k)!2rr!

∫ 1

−1

P
(r+k)
n+r+1(x)(1+ x)k−

1
2 (1− x)k+

1
2 dx

=
2kk!

π(2k)!2rr!

[ n−k
2

]
∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2l×

∫ 1

−1

xn−k−2l(1+ x)k−
1
2 (1− x)k+

1
2 dx.

(60)

� 1

−1

xn−k−2l(1+ x)k−
1
2 (1− x)k+

1
2 dx =







− (n−k−2l+1)!(2k)!π
2n+k−2l+1( n+k−2l+1

2
)!( n−k−2l+1

2
)!(k)!

, n �≡ k (mod 2);
(n−k−2l)!(2k)!π

2n+k−2l( n+k−2l
2

)!( n−k−2l
2

)!(k)!
, if n ≡ k (mod 2).

ηn,r(x) = −
1

r!

n
∑

k = 0

n �≡ k (mod 2)

[ n−k
2

]
∑

l=0

(n− k + 1− 2l)(n− l + r)!

2l!
(

n+k+1
2

− l
)

!
(

n−k+1
2

− l
)

!
Wk(x)

+
1

r!

n
∑

k = 0

n ≡ k (mod 2)

[ n−k
2

]
∑

l=0

(n− l + r)!

l!
(

n+k
2

− l
)

!
(

n−k
2

− l
)

!
Wk(x).

ηn,r(x) =
1

r!

[ n
2
]

∑

i=0

i
∑

l=0

(n− l + r)!
(n− l − i)!(i − l)!l!

Wn−2i(x)

−
1

r!

[ n−1
2

]
∑

i=0

i
∑

l=0

(n− l + r)!
(n− l − i)!(i − l)!l!

Wn−2i−1(x).
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A further simplification in terms of the hypergeometric function gives us

which gives the desired result. The proof of (50) is similar to that of (49). Now, for prov-
ing (51), we proceed as in (49) and by taking

Then, by virtue of Proposition 2(c), we obtain

Then, by (31) and (48) and then using integration by parts k times, we get

Now, by virtue of Proposition 3(i), we have

Furthermore, using (61)–(63), and after some simplifications, we obtain

ηn,r(x) =
(

r + n
n

) [ n
2
]

∑

i=0

(

n
i

) i
∑

l=0

�−i�l�i − n�l
�−n− r�l

(−1)l

l!
Wn−2i(x)

−
(

r + n
n

) [ n−1
2

]
∑

i=0

(

n
i

) i
∑

l=0

�−i�l�i − n�l
�−n− r�l

(−1)l

l!
Wn−2i−1(x).

ηn,r(x) =
(

r + n
n

) [ n
2
]

∑

i=0

(

n
i

)

2F1(−i, i − n;−n− r;−1)Wn−2i(x)

−
(

r + n
n

) [ n−1
2

]
∑

i=0

(

n
i

)

2F1(−i, i − n;−n− r;−1)Wn−2i−1(x)

=
(

r + n
n

) n
∑

i=0

(−1)i

(

n
[

i
2

]

)

2F1

(

−
[

i

2

]

,

[

i

2

]

− n;−n− r;−1

)

Wn−2i(x)

(61)ηn,r(x) =
n

∑

k=0

Ck ,3Tk(x).

Ck ,3 =
(−1)k2kk!ǫk

π(2k)!

∫ 1

−1

ηn,r(x)
dk

dxk
(1− x2)k−

1
2 dx.

(62)

Ck ,1 =
(−1)k2kk!ǫk

π(2k)!

∫ 1

−1

ηn,r(x)
dk

dxk
(1− x2)k−

1
2 dx

=
(−1)k2kk!ǫk
π(2k)!2rr!

∫ 1

−1

P
(r)
n+r+1(x)

dk

dxk
(1− x2)k−

1
2 dx

=
2kk!ǫk

π(2k)!2rr!

∫ 1

−1

P
(r+k)
n+r+1(x)(1− x2)k−

1
2 dx

=
2kk!ǫk

π(2k)!2rr!

[ n−k
2

]
∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2l

×
∫ 1

−1

xn−k−2l(1− x2)k−
1
2 dx.

(63)
∫ 1

−1

xn−k−2l(1− x2)k−
1
2 dx =

{

0, n �≡ k (mod 2);
(n−k−2l)!π(2k)!

2n+k−2l( n+k
2

−l)!( n−k
2

−l)!k!
, if n ≡ k (mod 2).
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Then, putting k = n− 2i and using (10), (11), we have

which on further simplification lends us

Similarly for proving (52), let us assume

Then, by virtue of Proposition 2(d), we obtain

Then, by (31) and (48) and then using integration by parts k times, we get

Now, by virtue of Proposition 3(ii), we have

Furthermore, using (64)–(66), and after some simplification, we obtain

ηn,r(x) =
1

r!

n
∑

k = 0

n ≡ k (mod 2)

ǫk

[ n−k
2

]
∑

l=0

(n− l + r)!

l!
(

n+k
2

− l
)

!
(

n−k
2

− l
)

!
Tk(x).

ηn,r(x) =
1

r!

[ n
2
]

∑

i=0

ǫn−2i

i
∑

l=0

(n− l + r)!
(n− l − i)!(i − l)!l!

Tn−2i(x)

=
(r + n)!

r!

[ n
2
]

∑

i=0

ǫn−2i

(n− i)!i!

i
∑

l=0

�−i�l�i − n�l
�−n− r�l

(−1)l

l!
Tn−2i(x),

ηn,r(x) =
(r + n)!

r!

[ n
2
]

∑

i=0

ǫn−2i

(n− i)!i! 2
F1(−i, i − n;−n− r;−1)Tn−2i(x).

(64)ηn,r(x) =
n

∑

k=0

Ck ,4Uk(x).

Ck ,4 =
(−1)k2k+1(k + 1)!

π(2k + 1)!

∫ 1

−1

ηn,r(x)
dk

dxk
(1− x2)k+

1
2 dx.

(65)

Ck ,4 =
2kk!ǫk

π(2k)!2rr!

∫ 1

−1

P
(r+k)
n+r+1

(x)(1− x
2)k+

1
2 dx

=
2kk!ǫk

π(2k)!2rr!

[ n−k

2
]

∑

l=0

(

n− l + r

l

)

(n+ r − 2l)r+k2
n+r−2l×

∫ 1

−1

x
n−k−2l(1− x

2)k+
1
2 dx.

(66)

∫ 1

−1

xn−k−2l(1− x2)k+
1
2 dx =

{

0, n �≡ k (mod 2);
(n−k−2l)!π(2k+2)!

2n+k−2l+2( n+k
2

−l+1)!( n−k
2

−l)!(k+1)!
, if n ≡ k (mod 2).
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Then, similar to the previous cases, putting k = n− 2i and using (10), (11), we have

which on further simplification, as in the previous cases, will give us the desired 
result. A similar procedure can be followed for the proof of (53). Next, for (54), we let 
ηn,r(x) =

∑n
k=0 Ck ,6Pk(x) . Then, by virtue of Proposition 2(f ), we obtain

Then, by (31) and (48) and then using integration by parts k times, we get

Now, by virtue of Proposition 3(vi), we have

After some modifications and putting k = n− 2i and further using (10), (11), we have

Then, by virtue of 1(d) and (10)

which on further simplification, as in the previous cases, will give us the desired result. 
Next, to prove (55), assuming

ηn,r(x) =
1

r!

n
∑

k = 0

n ≡ k (mod 2)

(k + 1)

[ n−k
2

]
∑

l=0

(n− l + r)!

l!
(

n+k
2

− l + 1

)

!
(

n−k
2

− l
)

!
Uk(x).

ηn,r(x) =
1

r!

[ n
2
]

∑

i=0

(n− 2i + 1)

i
∑

l=0

(n− l + r)!
(n− l − i + 1)!(i − l)!l!

Un−2i(x)

=
(r + n)!

r!

[ n
2
]

∑

i=0

n− 2i + 1

(n− i + 1)!i!

i
∑

l=0

�−i�l�i − n− 1�l
�−n− r�l

(−1)l

l!
Un−2i(x),

Ck ,6 =
2k + 1

k!2k+1

∫ 1

−1

ηn,r(x)
dk

dxk
(x2 − 1)kdx.

(67)Ck ,4 =
2k + 1

k!2k+12rr!

∫ 1

−1

P
(r+k)
n+r+1(x)(1− x2)kdx

(68)

=
2k + 1

k!2k+12rr!

[ n−k
2

]
∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2l

∫ 1

−1

xn−k−2l(1− x2)kdx.

∫ 1

−1

xn−k−2l(1− x2)kdx =

{

0, n �≡ k (mod 2);
(n−k−2l)!k!22k+2( n+k

2
−l+1)!

( n−k
2

−l)!(n+k−2l+2)!
, if n ≡ k (mod 2).

ηn,r(x) =
1

r!

[ n
2
]

∑

i=0

(2n− 4i + 1)

i
∑

l=0

(n− l + r)!(n− l − i + 1)!2(2n−2l−2i+1)

(2n− 2l − 2i + 2)!(i − l)!l!
Pn−2i(x).

ηn,r(x) =
(r + n)!

r!

[ n
2
]

∑

i=0

2n− 4i + 1

(n− i + 1
2
)n−i!i!

i
∑

l=0

�−i�l�i − n− 1
2
�l

�−n− r�l
(−1)l

l!
Pn−2i(x),
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Then, by virtue of Proposition 2(g), we obtain

Then, by (31) and (48) and using integration by parts k times, we get

After some modifications and putting k = n− 2i and further using (10), (11), we have

Then, by virtue of Lemma 1(c), we get

Now, for (56), we proceed as in (55) and by taking

Then, by virtue of Proposition 2(h), we obtain

Then, by (31) and (48) and then using integration by parts k times, we get

(69)ηn,r(x) =
n

∑

k=0

Ck ,7Lk(x).

Ck ,7 =
1

Ŵ(α + k + 1)

∫ ∞

0

ηn,r(x)
dk

dxk
(xα+ke−x)dx.

(70)

Ck ,7 =
(−1)k

Ŵ(α + k + 1)2rr!

∫ ∞

0

P
(r+k)
n+r+1(x)x

k+αe−xdx

=
(−1)k

Ŵ(α + k + 1)2rr!

[ n−k
2

]
∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2l

×
∫ ∞

0

xn+α−2le−xdx.

ηn,r(x) =
2n

r!

n
∑

k=0

(−1)k

Ŵ(α + k + 1)

[ n−k
2

]
∑

l=0

(

1
4

)l
(n− l + r)!Ŵ(n+ α − 2l + 1)

l!
Lαk (x).

ηn,r(x) =
2nŴ(α + n+ 1)

r!

n
∑

k=0

(−1)k

Ŵ(α + k + 1)

[ n−k
2

]
∑

l=0

(

1
4

)l
(n− l + r)!

(n+ α)2l(n− k − 2l)!l!
Lαk (x).

(71)ηn,r(x) =
n

∑

k=0

Ck ,8P
(α,β)

k (x).

Ck ,8 =
(−1)k(α + β + 2k + 1)Ŵ(α + β + k + 1)

Ŵ(α + k + 1)Ŵ(β + k + 1)2α+β+k+1

∫ 1

−1

ηn,r(x)
dk

dxk
(1+ x)k+β(1− x)k+α

.
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Now, by virtue of Proposition 3(viii), we have

Furthermore, using (71)–(73), and after some simplifications, weobtain

Then, using (10), (11), we have

which on further simplification using the hypergeometric function in (12) will result 
in the identity (56). For the final proof of (57), we proceed similarly by assuming 
ηn,r(x) =

∑n
k=0 Ck ,9C

(�)

k (x) . Then, by virtue of Proposition 2(i), we obtain

Then, by applying (31) and (48) and further integrating by parts k times, we get

(72)

Ck ,8 =
(−1)k(α + β + 2k + 1)Ŵ(α + β + k + 1)

Ŵ(α + k + 1)Ŵ(β + k + 1)2α+β+k+1

∫ 1

−1

ηn,r(x)
dk

dxk
(1+ x)k+β(1− x)k+αdx

=
(−1)k(α + β + 2k + 1)Ŵ(α + β + k + 1)

Ŵ(α + k + 1)Ŵ(β + k + 1)2α+β+k+12rr!

∫ 1

−1

P
(r)
n+r+1(x)

dk

dxk
(1+ x)k+β(1− x)k+αdx

=
(α + β + 2k + 1)Ŵ(α + β + k + 1)

Ŵ(α + k + 1)Ŵ(β + k + 1)2α+β+k+12rr!

∫ 1

−1

P
(r+k)
n+r+1(x)(1+ x)k+β(1− x)k+αdx

=
(α + β + 2k + 1)Ŵ(α + β + k + 1)

Ŵ(α + k + 1)Ŵ(β + k + 1)2α+β+k+12rr!

×
[ n−k

2
]

∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2l

×
∫ 1

−1

xn−k−2l(1+ x)k+β(1− x)k+αdx.

(73)

∫ 1

−1

xn−k−2l(1− x)k+α(1+ x)k+βdx = 2
α+β+2k+1×

n−k−2l
∑

s=0

(

n− k − 2l
s

)

(−1)n−k−2l−s
2
sŴ(k + β + 1+ s)Ŵ(k + α + 1)

Ŵ(α + β + 2k + s + 2)
.

ηn,r(x) =
n

∑

k=0

2α+β+2k+1(α + β + 2k + 1)Ŵ(α + β + k + 1)

Ŵ(α + k + 1)Ŵ(β + k + 1)2α+β+k+12rr!

[ n−k
2

]
∑

l=0

(

1
4

)l
(n− l + r)!

(n− k − l)!l!

n−k−2l
∑

s=0

(

n− k − 2l
s

)

(−1)n−k−2l−s
2
sŴ(k + β + 1+ s)Ŵ(k + α + 1)

Ŵ(α + β + 2k + s + 2)
P

(α,β)

k (x).

ηn,r(x) =
(−2)n

r

n
∑

k=0

(−2)kŴ(α + β + k + 1)

Ŵ(α + β + 2k + 1)

[ n−k
2

]
∑

l=0

(

1
4

)l
(n− l + r)!

(n− k − l)!l!

n−k−2l
∑

s=0

�k − n+ 2l�s�k + β + 1�s
�α + β + 2k + 2�s

2s

s!
P

(α,β)

k (x)

Ck ,9 =
Ŵ(�)(�+ k)

Ŵ(�+ k + 1
2
)(−2)k

√
π2rr!

∫ 1

−1

ηn,r(x)
dk

dxk
(1− x2)k+�− 1

2 dx.
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Now, by virtue of Proposition 3(vii), we have

After certain simplifications, we get

Then, by taking k = n− 2i and by virtue of 1(d) and (10), we obtain

which on further simplification, we get

and hence the proof is completed. �

Conclusion
This paper deals with the sums of finite products of Pell polynomials which are rep-
resented via hypergeometric functions and explicit computations. It shows how the 
orthogonal polynomials is utilized very effectively to express the sums and hence the 
technique of conversion is very much easy and accurate.
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(74)

Ck ,9 =
Ŵ(�)(�+ k)

Ŵ(�+ k + 1
2
)2k

√
π2rr!

∫ 1

−1

P
(r+k)
n+r+1(x)(1− x2)k+�− 1

2 dx

=
Ŵ(�)(�+ k)

Ŵ(�+ k + 1
2
)2k

√
π2rr!

[ n−k
2

]
∑

l=0

(

n− l + r
l

)

(n+ r − 2l)r+k2
n+r−2l

×
∫ 1

−1

xn−k−2l(1− x2)k+�− 1
2 .

∫ 1

−1

xn−k−2l(1− x2)k+�− 1
2 dx =

{

0, n �≡ k (mod 2);
Ŵ(k+�+ 1

2
)Ŵ( n−k

2
−l+ 1

2
)

Ŵ(�+1−l+ n+k
2

)
, if n ≡ k (mod 2).

ηn,r(x) =
Ŵ(�)

r!

n
∑

k = 0

n ≡ k (mod 2)

(�+ k)

Ŵ(�+ n+k
2

+ 1)

[ n−k
2

]
∑

l=0

(n− l + r)!
(

n+k
2

+ �

)

l
(

n−k
2

− l
)

!

(−1)l

l!
C
(�)

k (x).

ηn,r(x) =
Ŵ(�)(r + n)!

r!

[ n
2
]

∑

i=0

(n+ �− 2i)

i!Ŵ(n+ �− i + 1)
C
(�)
n−2i(x)

i
∑

l=0

�−i�l�−i − �− n�l
�−n− r�l

(−1)l

l!

ηn,r(x) =
(r + n)!
r!(�)n+1

[ n
2
]

∑

i=0

(n− 2i + �)(�+ n)i

i! 2F1(−i, i − �− n;−n− r;−1)C
(�)
n−2i(x)
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