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Introduction
In recent years, there has been an increasing interest in the optimization of chemi-
cal processes, leading to Energy savings or enhancing their efficiency [1]. A chemical 
reaction is a reversible or irreversible process in which two different types of chemical 
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constituents react to form a single product in the presence of an enzyme or catalyst. 
Chemical reactions are extremely important to process cheap raw materials into high-
value products in the chemical processing industries [2]. This phenomenon plays a 
significant role in the chemical industry, power, and cooling industry for drying, evapo-
ration, energy transfer in a cooling tower, and the flow in a desert cooler, etc. The study 
of heat transfer with chemical reaction is of most realistic significance to engineers and 
scientists because of its universal incidence in many branches of science and engineer-
ing. Activation energy is the smallest amount of energy that must be required to operate 
molecules or atoms in a chemical system that can start a chemical reaction. The activa-
tion energy was also first proposed by Svante Arrhenius in 1899 [3]. Activation energy 
is considered as the separating barrier between two energy states. A chemical reaction 
will start whenever this energy is crossed. At a reasonable rate to proceed with a chemi-
cal reaction, there exist a significant number of atoms or molecules with translational 
energy treater than or equal to the activation energy. Its applications can be found in oil 
repository designing, geothermal, and mechanics of water [4]. The effect of Arrhenius 
energy and chemical reaction on hydromagnetic nanofluid of Casson flow of two dimen-
sional electrically conducting thermal were numerical study by [5, 6].

In thermodynamics, the measure of disorder is called entropy. According to the second 
law of thermodynamics for an isolated system, the system spontaneously grows toward 
thermodynamic equilibrium and attains minimum entropy. On the other hand, for a 
non-isolated system, there is a possibility of a decrease in entropy of a system, which 
may transfer the same amount of entropy to surroundings. Heat transfer and viscous 
dissipation play vital roles in changing the behavior of entropy of a system. The study 
of entropy generation is a field of interest among researchers. Entropy generation was 
highlighted as an important instrument for improving the efficiency of the heat transfer 
operation. The design of new thermal systems is more important to industries develop-
ing heat transfer technology; therefore, several researchers have attempted to investigate 
the entropy generation and heat transfer performance of novel materials of heat transfer 
fluid. Obalalu et.al [7] recently used entropy generation to assess the importance of irre-
versibility in heat transfer, friction, and other nonideal processes within thermal systems. 
The impact of heat transfer together with entropy generation has been used intensively 
since the pioneering work by Bejan which involves the study of thermodynamics process 
within the boundary-layer flow [8]. The new generation of entropy and stagnant point 
flows have been studied by [9]. A computational analysis of Casson flow Nanofluid flow 
in a stretching surface of entropy generation [10]. It was observed that the non-Newto-
nian Casson parameter has been shown to improve the generation entropy number. A 
novel matrix technique for multi-order pantograph differential equations of fractional 
order have been examined by [11]. Some dynamical models involving fractional-order 
derivatives with the Mittag–Leffler type kernels and their applications based upon the 
Legendre spectral collocation method have been examined by [12]. A discretization 
approach for the nonlinear fractional logistic equation were investigated by [13]. The 
numerical approximations to the nonlinear fractional-order Logistic population model 
with fractional-order Bessel and Legendre bases were investigated by [14].

Meanwhile, since the pioneering work [15] studies related to the magnetohydro-
dynamics (MHD) is One of the important areas of development in modern scientific 
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research and engineering problems is magnetohydrodynamics this scientific field can 
also be considered as a fluid mechanics subdiscipline dealing with the mutual interac-
tions between an externally imposed magnetic field and the flows of fluids that conduct 
electricity [7]. The study of magnetic properties and compliance of electrically con-
ducting liquids is magnetic hydrodynamics. Examples include plasmas, molten metals, 
saltwater, and electrolytes. Electrically conducting heat and mass carrier fluids which 
include water, mineral oil, ethylene glycol, and so on are found useful in industry and 
engineering for industrial coolant, brake fluid, car radiator coolant, MHD generator, 
electronic voice coil cooling, nano-drug delivery, cancer therapy[16, 17]. A comprehen-
sive review of the literature about the effect of a chemical reaction on magnetohydro-
dynamic (MHD) is given by references [18–20]. In science, the electrical conduction of 
heat and heat transfer fluid, including water, mineral oil, and ethylene glycol is signifi-
cant because it is used in manufacturing, engineering, industrial coolers, brake fluid, and 
automobile radiator coolant, However, these fluids have low thermophysical properties 
that impede their usage in some places [21]. By adding ultrasound nanoparticles usu-
ally made from metal or metallic oxides to such fluids, the thermophysical properties of 
those fluids can be enhanced. The nanofluid can be used for various applications using 
a magnetic field. This includes the care of cuts, gastric medicine, sterilized instruments, 
etc. [22]. In the case of magnetic resonance imaging (MRI), high thermal hyperthermia, 
magnetic drug targeting, and tissue engineering, bio-suspension based upon the mag-
netic nanoparticle [23]. The work of Yu and Xie [24] contributes greatly to the recent 
developments of nanofluids preparations and upcoming applications in several fields. 
They suggested methods for improving the stability of nanofluids. The Numerical study 
of higher-order chemical reactions to MHD nanofluid electrically influenced by viscous 
dissipation was investigated by [25].

In many branches of many fields of science, engineering, and food processing, Cas-
son fluid (CF) has received significant attention Oil, honey, jelly, and paint are common 
examples of common commodities exhibiting CF properties [26]. Casson fluid (CF) is a 
non-Newtonian fluid with shear thinning, yield stress, and high shear viscosity. It acts 
like an elastic solid at low shear strain, while it acts like a Newtonian fluid at above criti-
cal yield stress [27] Casson first established the CF model [28]. The study defines the pig-
ment-oil suspension prediction flow. The Newtonian fluid model was shown to decrease 
to non-Newtonian fluid particularly when the stress on the wall is above the yield stress 
[29]. CF flow from hydromagnetic and thermal convection heat transfer to a stretched 
permeable surface was reported [30]. Navier’s slip condition was incorporated in the 
above-reviewed literature. This condition is good enough (Navier slip) at low shear rates. 
The slip condition of Navier however decreases as the slip length increases quickly with 
the slip rate [31]. The second-order slip boundary condition is therefore considered (a 
non-Navier slip). The rarefaction and compression effects of gas microflows have been 
studied by [32]. The results obtained were compared with test data. They observed that 
the calculated values are closer to the experimental values by using the second-order slip 
condition.

The transformed ordinary differential equation (ODE) mostly with related bound-
ary conditions becomes a strongly non-linear boundary value problem (BVP) method. 
A differential equation is an ordinary differential equation (ODE) that contains one or 
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more functions and the derivatives of one independent variable. A boundary value prob-
lem is a differential equation combined with several extra conditions called boundary 
conditions in the field of differential equations [33]. The solution of these non-linear 
(BVP) continues to fascinate and motivate scientists to create methods for obtaining 
solutions that explain the complex characteristics of the underlying problem of bound-
ary layer flow under various conditions. The numerical approach is the standard way 
to solve the transformed similarity variable boundary layer equations, Numerical ana-
lyzes are needed to overcome engineering problems leading to equations that cannot be 
analytically resolved by simple formulas. Examples of such problems occur from natural 
sciences, social sciences, engineering, medicine, and industries in major systems of alge-
braic equations, integral evaluations, and the solution of differential equations [34]. The 
numerical methods that some researchers have chosen include the collocation method 
[35]. The weighted residual method [36, 37], finite difference method [38], finite different 
element [39], Runge–Kutta scheme [40], different kinds of spectral methods for solv-
ing problems in bounded domains or under particular boundary conditions have been 
explored in many studies some analytical approaches have been found very useful In the 
analysis of magneto-hydrodynamic Casson nanofluid flow, Analytic solution in cases of 
severe nonlinearity is important. The application of analytical methods is restrictive and 
can be used only in a few equations. however, most analytical methods in fluid mechan-
ics relating to physical applications, it is illogical to utilize the analytical technique, since 
their solution turns out to be too cumbersome and it can be very slow or not possible to 
converge on the real solution. For this explanation, the numerical method is the most 
realistic way of finding a solution for extremely nonlinear structures of boundary layer 
flow. Techniques of computational numerical solutions likewise have their difficulty, 
including the problem of stability and convergence. Several studies in this regard have 
been carried out following innovative research. Liao [41] proposed the Homotopy Anal-
ysis Method (HAM) that is a powerful analytical technique, providing nonlinear dif-
ferential equations with power series solutions. There are no small or large parameters 
in this technique, as is customary in conventional perturbation. By using perturbation 
methods identified analytical solutions to weak nonlinear boundary value problems, but 
this method cannot be used for certain specified ranges of parameters in many problems 
[42]. In the presence of heat generation [43] used a homotopy disturbance method for 
the effect of variable thermal conductivity on heat transfer through the hollow sphere. 
For the nonlinear solution, other analytical approaches were used Differential equations 
method of Lindstedt-Poincare method of linearization, optimal method of homotopy 
perturbation, and method of differential transformation. An efficient semi-analytical 
method for solving the generalized regularized long wave equations with a new frac-
tional derivative operator have been investigated by [44]. The oscillatory states and pat-
terns formation in a model subjected to the dirichlet conditions have been examined 
by [45]. The computational Method for reaction diffusion-model arising in a spherical 
catalyst were investigated by [46]. A reliable numerical algorithm for fractional advec-
tion–dispersion equation arising in contaminant transport through porous media [47]. 
Jacobi collocation method for the fractional advection‐dispersion equation arising in 
porous media was investigated by [48]. Chebyshev spectral method for solving a class of 
local and nonlocal elliptic boundary value problems [49]. An introductory overview of 
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fractional-calculus operators based upon the Fox–Wright and related higher transcen-
dental functions have been examined by [50].

Many methods for heat and mass transfer study of hydromagnetic Casson nanofluid 
flow have been used, according to literature reviews. The terms chemical reaction, 
Arrhenius activation, and second-order (non-Navier) velocity slip has not been consid-
ered using numerical and analytical approaches namely Chebyshev Collocation Method 
(CCM) and Optimal Homotopy Analysis Method (OHAM) until now. The second law 
of thermodynamic in this study was extended to the analysis of the fluid flow, heat, 
and mass transfer and the dimensions of entropy generation with a rheological Cas-
son model. The present work essentially extends the recent work of Titiloye et al. [51] to 
include the second law of thermodynamic on hydromagnetic non-Darcian Casson nano-
fluid. Due to its wide applications in food processing, paper and textile dying, bio-liquid 
flow, drug production, and pharmaceuticals, the Casson rheological model is considered 
in this study. The parameter is included in the flow sector, due to their great contribu-
tion to the various physical dimensionless quantities as mentioned in the above para-
graphs and to better predict the flow. The heat and mass transfer are computed using 
the Chebyshev collocation method (CCM). This Scheme involves: assuming Chebyshev 
base form solutions with unknown coefficients for the unknown dependent functions 
in the differential equations; The assumed solutions are substituted into the governing 
equations to produce residuals or errors; the errors are then forced to become zero using 
collocation method; A system of algebraic equations is derived and then solved to obtain 
the values of the unknown coefficients. The obtained results are computed and discussed 
using tables and graphs. The concluding remarks are also presented. The method form is 
novel and can be used to build a model for blood oxygenators and hemodialyzers.

Mathematical model
Consider a non-Darcian porous medium with a two-dimensional incompressible MHD 
chemically reactive Casson nanofluid flow over a stretching sheet (see Fig. 1). x denotes 
the distance along the line, while y  denotes the distance perpendicular to the sheet. The 
fluid’s properties are believed to be constant during the simulation. T and C represent 

Fig. 1 The physical geometry of the flow
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the fluid temperature and the fraction of nanoparticles in the fluid while the ambient 
temperature and the nanoparticle volume fraction are described by the symbols T∞ and 
C∞ respectively. Tw stands for the fluid wall temperature and Cw stands for the volume of 
nanoparticles on the wall A magnetic field of strength B0 is placed normal to x . (Fig. 2).
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The corresponding boundary conditions are.

The second-order velocity slip that was used is as follows [49].

The second-order velocity slip constant factor is (N2)o < 0 while first-order velocity 
slip constant factor is (N1)o > 0.

The transformed Arrhenius function is defined by the term 
(

T
T∞

)m
e
−Ea
κT  , 

κ = 8.61× 10−5 eV/K is Boltzmann constant m is the unitless exponent fitted rate con-
stant (−1 < m < 1) and Ea is the activation energy. The following non-dimensional 
quantities were introduced:
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ential equations.
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with the corresponding boundary conditions

Other quantities of concern are the bejan number, Nusselt number, and Sherwood 
number which can be given as

Numerical solution
A summary of the Chebyshev collocation method

The spectral system is applied in various fields of engineering to find the numerical solu-
tion of several equations (standard, partial, linear, non-linear, and fractional [52]. Che-
byshev’s collocation approach is more successful in numerical methods like the finite 
difference methods, with various numerical methods such as finite difference schemes 
and iterative processes [53, 54]. In the case of numerical techniques such as final differ-
ential schemes, the method of collocating Chebyshev is more effective than numerical 
techniques like finite and iterative schemes, since in a small number of terminologies 
the correct solution produces with minimal storage. This approach is better than other 
numerical methods.

Application of CC

To apply CCM in this problem, by using suitable transformations, convert the semi-
infinite flow of the problem to the Chebyshev polynomial domain [– 1, 1]. Then using 
the shifted Chebyshev base function from [− 1, 1] to [0, L]. The boundary value prob-
lem (BVP) in Eqs. (9) and (13) is solved via the Chebyshev collocation scheme (CCS). 
The description of this method can be found in [24].
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Rf (η, ai, bi),Rθ (η, ai, bi, ci) and Rφ(η, ai, bi, ci) are derived by substituting Eq.  (15) 
into (16)–(18). The residues are minimized as small as possible using the collocation 
method as follows:

where ηj is the shifted Gauss Lobato collocation points defined as follows

In this manner, Eqs. (16)–(18) form a system of 3N + 3 algebraic equations with 
3N + 3 unknown constant coefficients, ( ai bi and cj ). The derived algebraic equa-
tions are solved using the Newton method and the values of constant coefficients are 
obtained. The value of L is chosen to be 12 to ensure that all numerical solutions obey 
the far-field asymptotic correctly.

Solution by optimal homotopy analysis method (OHAM)
The governing boundary value problem (BVP) is described by Eqs.  (9) and (13). These 
equations are highly nonlinear ordinary differential equations that define the govern-
ing boundary value problem (BVP). According to the existing literature, such BVP can 
therefore be resolved with different techniques. which include perturbation method, The 
weighted residual method [36, 37], finite difference method [38], finite different element 
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[39], Runge–Kutta scheme [40]. The solution of these non-linear (BVP) continues to fas-
cinate and motivate scientists to create methods for obtaining solutions that explain the 
complex characteristics of the underlying problem of boundary layer flow under various 
conditions [55, 56]. However, the optimal homotopy analysis approach (OHAM) is used in 
this study. It is based on the homotopy principle, which is a fundamental idea in differen-
tial geometry and topology. The special qualities which distinguish OHAM from all other 
methods (especially analytic approximate methods) are.

1. It provides freedom in the selection of the auxiliary linear operator, which distin-
guishes OHAM from all other methods (especially analytic approximate methods). 
The initial guess, form of the equation, and solution expression of high-order equa-
tions; therefore, approximations at very high-order are easy to obtain.

2. It provides a very simple way to ensure solution series convergence.
3. Furthermore, unlike HAM, the square residual error minimization is used to find an 

optimum value for the auxiliary parameter h. Because of this unique quality, OHAM 
has effectively solved several non-linear engineering, scientific, financial, etc. issues.

This method is defined in detail in [57]. OHAM is used to solve equations (9) and (13), 
which are subject to boundary conditions The original guesses and the linear auxiliary 
operator as follow:

Together with the properties

To decide the arbitrary constants of the boundary conditions, we utilized cj
(
j = 1 · · · 6

)
 , 

for p ∈ [0, 1] . The deformation problem of zeroth-order can be described as

(22)Lf =
d2

dη2
, Lθ = d2

dη2
, Lφ = d2

dη2
,

(23)Lf
(
c1 + c2y

)
= 0, Lθ

(
c3 + c4y

)
= 0, Lφ

(
c5 + c6y

)
= 0

(24)(1− p)Lf
[
û(η; p)− uf (η)

]
= p�f ℵf

[
f̂ (η; p), θ̂ (η; p), φ̂(η; p)

]
,

(25)(1− p)Lθ

[
θ̂ (η; p)− θ0(η)

]
= p�θℵθ

[
f̂ (η; p), θ̂ (η; p), φ̂(η; p)

]
,

(26)(1− p)Lφ

[
φ̂(η; p)− φ0(η)

]
= p�φℵφ

[
f̂ (η; p), θ̂ (η; p), φ̂(η; p)

]
,

(27)

ℵf

[
f̂ (η; p), θ̂ (η; p), φ̂(η; p)

]
=
(
1+ 1

β

)
∂3 f̂ (η; p)

∂η3
+ f̂ (η; p) ∂

2 f̂ (η; p)
∂η2

−
(
∂ f̂ (η; p)
∂η2

)2

− Pp

(
1+ 1

β

)(
∂ f̂ (η; p)

∂η

)
− Fs

(
∂ f̂ (η; p)
∂η2

)2
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as a function of the boundary conditions

where ℵf ,ℵθ and ℵφ  are nonlinear operators and �f , �θ and �φ are nonzero auxiliary 
parameters. It gives the following results for p = 0 and p = 1

In other words, when p varies from 0 to 1, then f̂ (η; p), θ̂ (η; p) and φ̂(η; p) vary 
from f0(η), θ0(η) and φ0(η) to f(η), θ(η) and φ(η) . Now, the Taylor series expansion of 
f̂ (η; p), θ̂ (η; p) and φ̂(η; p) concerning p yield

where

(28)

ℵθ

[
û
(
y; p

)
, θ̂
(
y; p

)
, φ̂

(
y; p

)]

= 1

Pr

(
∂2θ̂ (η; p)

∂η2

)
+ f̂ (η; p)

(
∂θ̂(η; p)

∂η

)

+ Nb

(
∂θ̂(η; p)

∂η

)(
∂φ̂(η; p))

∂η

)
+ Nt

(
∂θ̂(η; p)
∂η2

)2

+ Ec

(
1+ 1

β

)(
∂2 f̂ (η; p)

∂η2

)2

= EcM

(
∂ f̂ (η; p)
∂η2

)2

+ EcPp

(
1+ 1

β

)(
∂ f̂ (η; p)
∂η2

)2

+ EcFs

(
∂3 f̂ (η; p)

∂η3

)

(29)

ℵφ

[
f̂ (η; p), θ̂ (η; p), φ̂(η; p)

]
=∂2φ̂(η; p)

∂η2
+ Nt

Nb

(
∂2θ̂ (η; p)

∂η2

)

+ Sc

(
f̂ (η; p)∂φ̂(η; p)

∂η

)

− Scσ ∗2 φ̂(η; p)
(
(Tr − 1)θ̂(η; p)+ 1

)m
e

−E

(Tr−1)θ̂(η;p)+1

(30)

f̂ (0; p) = S,
∂ f̂ (0; p)

∂η
= �+

(
1+ 1

β

)(
δ1

(
∂2 f̂ (0; p)

∂η2

)
+ δ2

∂3 f̂ (0; p)
∂η3

)
,

θ̂ (0; p) = 1, φ̂(0; p = 1,

∂ f̂ (∞; p)
∂η

→ 0, θ̂ (∞; p) → 0, φ̂(∞; p) → 0,

(31)

f̂ (η; 0) = u0(η), f̂ (η; 1) = u(η),

θ̂ (η; 0) = θ0(η), θ̂ (η; 1) = θ(η),

φ̂(η; 0) = φ0
(
ηy
)
, φ̂(η; 1) = φ(η)
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It can be obtained if the auxiliary parameters, initial guesses, and auxiliary linear oper-
ators are correctly chosen such that Eqs. (24)–(26) converge at p = 1.

The corresponding mth order deformation problems are:

subjected to boundary conditions

(32)

f (n, p) = u0(η)+
∞∑

m=1

um(η)p
m

θ(n, p) = θ0(η)+
∞∑

m=1

θm(η)p
m

φ(n, p) = φ0(η)+
∞∑

m=1

φm(η)p
m

(33)

fm(η) =
1

m!
∂mf (η; p)

∂ym

∣∣∣∣
p=0

,

θm(η) =
1

m!
∂mθ(η; p)

∂ym

∣∣∣∣
p=0

,

φm(η) =
1

m!
∂mφ(η; p)

∂ym

∣∣∣∣
p=0

(34)

f (η) = u0(η)+
∞∑

m=1

,um(η),

θ(η) = θ0(η)+
∞∑

m=1

, θm
(
y
)
,

φ(η) = φ0(η)+
∞∑

m=1

,φm
(
y
)
,

(35)
Lf [fm(η)− Xmum−1] = �uRu,m(η),

Lθ [θm(η)− Xmθm−1] = �θRθ ,m(η),

Lφ[φm(η)− Xmφm−1] = �φRφ,m(η),

(36)
fm(0) = S, f ′m(0) = �+

(
1+ 1

β

)(
δ1f

′′
m(0)+ δ2f

′′′
m (0)

)
,φm(0) = 1,φm(0) = 1

f ′m(∞) → 0, θm(∞) → 0,φm(∞) → 0,

(37)

Rf ,m(y) =
(
1+ 1

β

)
∂3 f̂m−j−1(η)

∂η3
+

m−1∑

k=0

(
f̂ (η)

∂3 f̂m−j−1(η)

∂η3
− ∂ f̂j(η)

∂η

∂ f̂m−j−1(η)

∂η
+m

∂2 f̂m−j−1(η)

∂η2

+Pp

(
1+ 1

β

)
∂2 f̂m−j−1(η)

∂η2
− Fs

∂2 f̂j(η)

∂η2

∂ f̂m−j−1(η)

∂η

)
,
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where

The following are the general solutions:

(38)

Rθ ,m(η) =
1

Pr

∂2θ̂m−1(η)

∂η2
+

m−1∑

k=0

f̂j(η)
∂θm−j−1(η)

∂η

+ Nb
∂θ̂j(η)

∂η

∂θ̂m−j−1(η)

∂η
+ Nt

∂θ̂j(η)

∂η

∂θ̂m−j−1(η)

∂η

+ Ec

(
1+ 1

β

)
∂ f̂j(η)

∂η

∂ f̂m−j−1(η)

∂η
+ EcM

∂ f̂j(η)

∂η

∂ f̂m−j−1(η)

∂η

+ EcPp

(
1+ 1

β

)
∂2 f̂j(η)

∂η2

∂ f̂m−j−1(η)

∂η
+ EcFs

∂2 f̂j(η)

∂η2

∂ f̂m−j−1(η)

∂η
,

(39)
Rφ,m(η) =

∂2φm−1(η)

∂η2

+
m−1∑

k=0

(
Nt

Nb

∂θ̂j(η)

∂η

∂φm−j−1(η)

∂η
+ Scf̂j(η)

∂φm−j−1(η)

∂η
+ Scσ ∗2φ(η)((Tr − 1)θ(η)+ 1)me

−E

(Tr−1)θ̂(η)+1

)

Xm

{
1 m > 1
0 m ≤ 1

Table 1 SCM solutions in various approximation orders of convergence when 
M = Pp = 1 = 2 = β = 1, Fs = δ = δ1 = δ2 = 0.5

Number of iteration (N) −f
′′

(η) − θ′ (0) φ′ (0)

4 3.054620 0.233124 0.358571

6 3.004633 0.180744 0.297306

8 3.002122 0.98752 0.06982

10 3.001933 0.987525 0.06982

12 3.001933 0.98752 0.06982

14 3.001933 0.180557 0.296766

16 3.001933 0.180557 0.296766

20 3.001933 0.180557 0.296766

24 3.001933 0.180557 0.296766

30 3.001933 0.180557 0.296766

Table 2 Show the optimal auxiliary parameter values at various approximation values when 
M = Pp = 1 = 2 = β = 1, Fs = δ = δ1 = δ2 = 0.5

Order-of approximation �f �θ �φ �
t
m

2 − 0.86345 − 2.52072 − 1.51245 7.7 ×  10−3

3 − 0.88412 − 1.92653 − 1.90756 2.3 ×  10−3

4 − 0.89635 − 1.99556 − 1.61023 8.5 ×  10−3

5 − 0.92745 − 1.85853 − 1.96075 5.3 ×  10−3
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then f ∗m(η), θ∗m(η),φ∗
m(η) are the particular solutions [58, 59]

Convergence control parameter

It’s worth noting that the sequence solution arrangements (38)–(40) provide auxiliary 
parameters, ℏf , ℏθ and ℏφ . The degree of convergence solution is prescribed by the vari-
ous values of the auxiliary parameters of the over-the-level portion of the bends segment 
of the curves in OHAM. A square residual error reduction is assumed to achieve ideal 
optimal values for auxiliary parameters as follows:

(40)
Lf (η) = f ∗m(η)+ c1 + c2η,

θm(η) = θ∗m(η)+ c3 + c4η,

φm(η) = φ∗
m(η)+ c5 + c6η,

(41)�
f
m =

l∫

0

ℵu

(
m∑

k=0

f
(
η, �f , �θ , �φ

)
,

m∑

k=0

θ
(
η, �u, �θ , �φ

)
,

m∑

k=0

φ
(
η, �θ , �φ

)
)
dη,

(42)�
f
m =

l∫

0

ℵf

m∑

k=0

f
(
y, �u, �θ , �φ

)
,

m∑

k=0

θ
(
y, �u, �θ , �φ

)
,

m∑

k=0

φ
(
η, �θ , �φ

)
dη,

Table 3 Show Individual residual square error and OHAM solutions convergence at various  
approximation orders when M = Pp = 1 = 2 = β = 1, Fs = δ = δ1 = δ2 = 0.5,�u = −0.82706,�θ = −0.75851,�φ = −0.96084

m �
f
m

�
θ

m �
φ

m
f
′′(0) −θ

′
(0) −φ

′
(0) CPU time (s)

2 1.79× 10−3 2.64× 10−6 2.68× 10−8 2.289542 0.137041 0.011381 0.3437448

4 2.54× 10−8 1.65× 10−7 1.14× 10−13 2.273865 0.13685 0.011487 0.7187314

6 2.35× 10−11 4.85 ×10−11 9.47× 10−15 2.274001 0.137146 0.011488 1.1405919

8 1.54× 10−12 1.03× 10−13 2.26× 10−17 2.274003 0.137151 0.011488 1.671824

10 8.95× 10−17 4.03× 10−17 6.25× 10−20 2.274004 0.137151 0.011488 2.3905487

12 9.20× 10−19 3.19× 10−19 5.55× 10−23 2.274004 0.137151 0.011488 3.3280166

14 2.09× 10−22 4.05× 10−22 1.32× 10−25 2.274004 0.137151 0.011488 3.7185883

20 7.76× 10−24 1.41× 10−24 2.63× 10−28 2.274004 0.137151 0.011488 12.1245886

26 6.19× 10−27 1.60× 10−27 8.66× 10−31 2.274004 0.137151 0.011488 18.2174761

30 2.46× 10−29 5.56× 10−30 1.37× 10−33 2.274004 0.137151 0.011488 22.3578236

Table 4 Comparison of wall heat transfer rate 
(
−θ ′(0)

)
 in the absence of nanoparticle for different 

values of Pr when M = Pp = Fs = S = δ1 = δ2 = 0,β → ∞

Pr Present Study Wang [57] Khan and Pop [60] Makinde 
and Aziz 
[61]

0.2 0.1734 0.1691 0.1691 0.1691

0.7 0.4539 0.4539 0.4539 0.4539

2.0 0.9114 0.9113 0.9114 0.9114



Page 15 of 25Obalalu  Journal of the Egyptian Mathematical Society            (2022) 30:6  

(43)�θ
m =

l∫

0

ℵθ

m∑

k=0

f
(
η, �u, �θ , �φ

)
,

m∑

k=0

θ
(
η, �u, �θ , �φ

)
,

m∑

k=0

φ
(
η, �θ , �φ

)
dη

Table 5 Values of Nusselt number and Sherwood number for various parameters

Parameters Values θ
′
(η) −φ

′
(η)

OHAM CCS OHAM CCS

M 0.1 3.230213 3.230214 3.3704865 3.3704866

0.3 3.259212 3.259213 3.3883765 3.3883766

0.5 3.2682832 3.2682833 3.4036234 3.4036235

Pp 0.1 3.230721 3.230722 3.370476 3.370474

0.3 3.223712 3.223713 3.373123 3.373122

0.5 3.219021 3.219022 3.377754 3.377753

Ec 0.1 3.230932 3.230933 3.370645 3.370644

0.3 3.494832 3.494831 3.564124 3.564125

0.5 3.773123 3.773122 3.770543 3.770542

β 0.1 3.230832 3.230831 3.370124 3.370125

0.3 3.251234 3.251235 3.208234 3.2082355

0.5 3.272883 3.272882 3.087543 3.087544

Nb 0.1 3.230234 3.230231 3.370123 3.370122

0.3 3.013844 3.013843 3.073123 3.073123

0.5 2.868346 2.868345 2.878232 3.878233

Nt 0.1 1.224089 1.224089 1.364179 1.364178

0.5 1.225770 1.225770 1.365968 1.3659669

1.0 1.227898 1.227898 1.368220 1.3682121

Table 6 Skin friction coefficient and rate of heat transfer for (Prandtl-number = 7 Water)

β Ec M Pp Fs Skin friction 
coefficient

Heat transfer rate

0.1 0.6 1.5 2 0.2 2.78522 4.78326

1.5 0.6 1.5 2 0.2 3.42345 6.92976

2.0 0.6 1.5 2 0.2 4.45087 7.73098

0.1 0.6 1.5 2 0.2 3.21246 4.83235

0.1 2.0 1.5 2 0.2 2.88234 3.74832

0.1 4.0 1.5 2 0.2 2.72986 3.84978

0.1 0.6 1.5 2 0.2 3.16234 4.97235

0.1 0.6 2.5 2 0.2 2.65081 3.77085

0.1 0.6 5.0 2 0.2 2.13279 4.95124

0.1 0.6 1.5 2 0.2 3.13064 4.49096

0.1 0.6 1.5 7 0.2 2.25274 4.08245

0.1 0.6 1.5 8 0.2 2.66289 2.27092

0.1 0.6 1.5 2 0.2 2.760411 3.67245

0.1 0.6 1.5 2 1.0 2.642715 3.54663

0.1 0.6 1.5 2 3.5 2.362795 2.32023
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Table 7 Wall shear stress and rate of heat transfer for (Prandtl-number = 0.71 Air)

β Ec M Pp Fs Shear stress at the 
wall

Heat transfer rate

0.1 0.6 1.5 2 0.2 2.27598 6.16312

1.5 0.6 1.5 2 0.2 3.78987 8.24287

2.0 0.6 1.5 2 0.2 5.82123 9.34184

0.1 0.6 1.5 2 0.2 2.94634 3.28432

0.1 2.0 1.5 2 0.2 2.68943 4.17023

0.1 4.0 1.5 2 0.2 2.47223 5.28125

0.1 0.6 1.5 2 0.2 2.72176 5.8486

0.1 0.6 2.5 2 0.2 2.42124 4.44298

0.1 0.6 5.0 2 0.2 2.08505 3.13409

0.1 0.6 1.5 2 0.2 2.16323 6.43025

0.1 0.6 1.5 7 0.2 2.38184 5.48509

0.1 0.6 1.5 8 0.2 2.3982 3.51012

0.1 0.6 1.5 2 0.2 2.88698 7.70609

0.1 0.6 1.5 2 1.0 2.78154 8.28195

0.1 0.6 1.5 2 3.5 2.45432 5.13412

Fig. 3 Comparison of the velocity profile obtained using and CCM and OHAM

Fig. 4 Comparison of the temperature profile obtained using and CCM and OHAM
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(44)�
f
m =

l∫

0

ℵf

l∑

k=0

f
(
y, �u, �θ , �φ

)
,

m∑

k=0

θ
(
y, �u, �θ , �φ

)
,

m∑

k=0

φ
(
η, �θ , �φ

)
dη

(45)�θ
m =

l∫

0

ℵθ

m∑

0

f
(
y, �u, �θ , �φ

)
,

m∑

k=0

θ
(
y, �u, �θ , �φ

)
,

m∑

k=0

φ
(
η, �θ , �φ

)
dη,

Fig. 5 Comparison of the nanoparticle volume fraction obtained using CCM and OHAM

Fig. 6 a, b, c, d, e, and f Effect of Casson parameter, magnetic field parameter, porosity and first-order slip 
parameters, second-order slip, wall transpiration (suction/injection) Eckert number, chemical reaction and 
activation energy parameters on velocity, fluid temperature, amd concentration profiles
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According to Abolbashar et al. [57]

where ϕt
m is the total square residual error. ϕt

m is reduced to achieve the full value of 
convergence control parameters Minimize the values of convergence control parame-
ters in MATHEMATICA 11.3 to achieve optimum values, �f , �θ and �φ . Average square 
residual errors for f (η), θ(η) and φ(η) are computed respectively using the following for-
mulae [51]

(46)�θ
m =

l∫

0

ℵφ

m∑

k=0

f
(
y, �u, �θ , �φ

)
,

m∑

k=0

θ
(
y, �u, �θ , �φ

)
,

m∑

k=0

(
η, �θ , �φ

)
dη,

(47)ϕt
m = ϕu

m + ϕθ
m + ϕφ

m

(48)

εf =
1

j + 1

j∑

k=1

[
Ak

(
eηR2

f (η)

)

η=xk

]
,

εθ = 1

j + 1

j∑

k=1

[
Ak

(
eηR2

θ (η)

)

η=xk

]
,

εφ = 1

j + 1

j∑

k=1

[
Ak

(
eηR2

φ(η)

)

η=xk

]

Fig. 7 a, b, c, and d Eckert number, chemical reaction, activation energy parameters, Brownian parameter, 
and thermophoresis parameter, suction parameter on fluid temperature, concentration profiles, Nusselt 
number, and Sherwood number
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Validation, computational results, and discussion
To get a clear understanding of the non-linear general model established, In this section, 
the numerical and analytical solutions of velocity, temperature, concentration, skin fric-
tion coefficient, Nusselt number, and Sherwood number are presented. Moreover, the 
effect of physical parameters on the profiles of velocity, temperature, and concentration 
is shown. MATHEMATICA software was used to carry out the program for the ordi-
nary differential equations Equation.

Table  1 displays the convergence of CCM for the different orders of approxima-
tion. From Table  2 it was observed as the order of approximation increases, the opti-
mum values of auxiliary parameters and the minimum values of square residual error 
are increased. Table 3 depicts the individual square residual error and convergence of 
the OHAM solution at various approximation orders. The OHAM solution is validated 
using the Chebyshev collocation method (CCM), and there is a strong match between 
the two results. To determine the accuracy of our method, a decent understanding was 
observed with previous published result Table 4. Table 5 shows the effect of M,Pp , β ,Ec , 
Nb, and Nt. However, it is noticed that the values of Nusselt number elevate with M 
= Pp , Ec , β , Whereas it reduces with increasing Nt and Nb, also it is found that Sher-
wood number enhance M, Ec, Nb Whereas it decreases with Pp and Nt.

The direction skin friction coefficient increases as the Prandtl-number grows. While 
the degree of heat transfer rate additionally expands the convection heat and supply 
more to the fluid movement inside the boundary layer. It found that the magnitude of the 
skin friction coefficient had slightly decreased and the degree of heat transfer expansion 
in magnetic field force. Logically, the magnetic field force delivers an electromagnetic 
power that diminishes the level. However, direction skin friction coefficient heat trans-
fer rate is more pronounced for Casson fluid compared with (Prandtl-number = 0.71 

Fig. 8 a, b, c, and d Effect of magnetic field parameter (M), Brinkman number, on entropy generation, and 
Bejan number profile
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air) and (Prandtl-number = 7 water). An increasing Eckert number decreases the direc-
tion of the skin friction coefficient. On the contrary, the higher value of the Ec num-
ber improves the heat transfer rate. In the situation of (Prandtl-number = 0.71 air) and 
(Prandtl-number = 7 water), As the temperature increases, the skin friction coefficient 
and heat transfer rate drop in the fs and Pp, this observation is displayed in Tables 6 and 
7.

To see the efficiency of the method used, simulation is given. The graphical effects 
of dimensionless velocity, temperature, and volume fraction of nanoparticles are com-
pared (see Figs. 3, 4, 5) obtained using the Chebyshev collocation method (CCM) and 
Homotopy analysis method (OHAM). In each of the instances, there is a high degree of 
agreement.

Figure 6a depicts the effect of Casson and Magnetic field parameters on the veloc-
ity profile. The outcome indicates that the fluid velocity decreases with the Casson 
parameter. The Casson rheological parameter of acts as a fluid with a strong reaction 
to yield stress via plastic dynamic viscosity. It has also been found that the Casson 
rheological parameter decreases the reaction of non-Newtonian fluid. This recom-
mends that the pure fluid act as a Newtonian fluid. However, the rheological veloc-
ity flow of the Casson boundary plate viscosity is greater when associated with the 
Newtonian fluid on contrary, the fluid temperature increases with Casson rheologi-
cal parameter (see Fig.  6b). Figure  6c shows that as the magnetic field parameter 
increases, the fluid flow slows down. The existence of the Lorentz force can be attrib-
uted to that, which acts as a resistance force against fluid flow. Therefore, it slows the 
fluid speed while it can suppress and decelerate the movement of CF. From Fig. 6d the 
fluid temperature within the boundary layer speeds up due to increasing magnetic 
field parameters. Since ohmic heating serves as a supplementary heat source to the 
fluid temperature. Figure 6c, d exhibit the impacts of porosity and porosity and first-
order slip parameters (Pp and δ1 ) on fluid velocity. It was found that both porosity 
and first-order slip parameters. These results are perhaps due to the porosity param-
eter being inversely proportional to fluid permeability 

(
kp
)
. A rise in porosity param-

eter, manifests in increased resistance of the Casson nanofluid flow which leads to 
flow retardation. However, the first-order slip parameter decreases the velocity profile 
Subsequently, since not all the pulling force can be transmitted to the Casson nano-
fluid from the stretching sheet. This causes the fluid velocity to reduce. Eckert number 
has a significant effect on the temperature profile. This depicted that the physical case 
where more thermal energy is supplied as the Eckert number increase to boost the 
fluid temperature [8]. This allows the heat to conduct from the plate. This is because 
the thermal boundary layer is increased due to the conversion of kinetic energy into 
heat energy in the boundary layer with a greater viscous heating effect. From Fig. 7b 
It was found that the impacts of the chemical reaction and activation energy parame-
ters on the nanoparticle volume fraction profile. The definition is obvious from Eq. (4) 
that the term e

−E
(Tr−1)θ+1 Scσ ∗2((Tr − 1)θ + 1)m increases as σ ∗ raised. This corresponds 

change the profile of the nanoparticle volume fraction. Besides, as the activation 
energy parameter (E) is increased, the nanoparticle volume fraction profile is raised. 
The activation energy is the sum of energy that must be resolved before a chemical 
reaction can occur. An appreciable number of molecules with energy is significantly 
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larger than the activation energy, which must be active to have a reasonable chemical 
reaction [62]. A rise in the activation energy parameter (E) contributes to a decrease 
in the nanoparticle volume fraction profile of Scσ ∗2((Tr − 1)θ + 1)me

−E
(Tr−1)θ+1 . As a 

function, the volume fraction profile of nanoparticles increases.
Figure 7a, d reveals that the Increase in the Brownian motion parameter values trig-

gers a rapid drop in the concentration profiles. The concentration profiles decrease 
with the reduction of the increases Nb parameter to a certain amount near the extend-
ing layer wall. The thermophoresis and Brownian motion both constitute two impor-
tant processes of nanofluid flow. It is interesting to note that Brownian motion favours 
the growth of concentration level whereas thermophoresis reduces it. The concentra-
tion boundary layer near the wall decreases as Nb grows, but away from the wall. From 
this figure, it is seen that Nt is increasing to a certain value of η near the stretching wall, 
but the opposite is beyond that. The pattern has been observed. This implies that the 
concentration boundary layer exists. Boundary Thickness grows, but only to a point, 
this is because of the altered nanoparticle concentration. Figure 7c displays the impact 
of suction parameters on the Nusselt number. Nusselt number decreases as a suction 
parameter (S < 0) , decreases, but increases with suction parameter (S > 0) . Also, Fig. 7d 
displays the impact of suction parameters on Sherwood number. The Nusselt number 
is observed to reduce as the suction parameter (S < 0). increases, whereas it rises as the 
injection parameter reduces.

Figure 8a–d Show the effect of Magnetic field parameter (M), Brinkman Number, on 
entropy generation, and Bejan number profile. It was found that increasing the Brinkman 
number (Be) contributes to convective heating and joule heating respectively, however, 
their effects generate an instability system. The situation of concentration irreversibil-
ity becomes more as the magnetic field parameter (M) increases; the effect controls the 
operation factor in the entropy production. Consequently, the entropy generation rise in 
Fig. 8a while the opposite effect is observed for Fig. 8c. It should be noted that the Bejan 
number has a significant quantity ratio to produce entropy and also indicates the con-
vective heat transfer ratio for the production of entropy. In general, the number of Bejan 
reveals numerical values ranging from 0 to 1, where the number of Bejan is close to 1, it 
shows that the production of the entropy is linked with the heat transfer that dominates. 
The Bejan number has therefore been increased by Fig. 8a, b.

Conclusion
Due to heat and mass transfer of Arrhenius activation energy and binary chemical reac-
tion, the work has addressed the second-order velocity slip effect on reactive Casson 
nanofluid flow in a non-Darcian porous medium. Using CCS and OHAM, dimensionless 
conservation equations have been obtained and observed against various thermophysi-
cal parameters. The key findings of the present study are listed as:

1. For all physical parameter values used in this problem, both the OHAM and CCM 
provide a series of convergent solutions.
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2. The mounting values of Casson parameter, Magnetic field parameter, second-order 
slip, and wall transpiration (suction/injection) Eckert number, Brownian Parameter, 
and thermophoresis parameter have a significant effect on the temperature profile.

3. Chemical reaction, Arrhenius activation energy, Brownian Parameter, and thermo-
phoresis parameter reduce the concentration field.

4. The effect of the Casson parameter, the magnetic field parameter reduces the velocity 
profile.

5. Both Nusselt number and Sherwood number profile become elevated for increment-
ing suction parameter (S > 0) while it is a detraction function of the injection param-
eter (S < 0).

6. The effect of Brinkman number and magnetic field parameter (M) increases Bejan 
number profile contrary effect is found entropy production.

In the presence of Chemical reaction, Arrhenius activation energy, the presented 
analysis could be extended to explore the case of unsteady Casson nanofluids flow in 
a porous medium with the inference of solar radiation, Therefore Both OHAM and 
CCM, implementation can be expanded to include different and multi-dimensional flow 
problems.

List of symbols
u, v: Velocity in x and y directions; µ∞: Constant viscosity; ρ∞: The density of the base fluid; β: Casson parameter; k(T ): 
Variable thermal conductivity; µ(T ): Variable viscosity; DB(C): Variable mass diffusivity; DT: Thermophoretic diffusion coef-
ficient; cp: Specific heat at constant pressure; k∞: Constant nanofluid thermal conductivity; cs: Specific heat of the solid 
surface; J0: Current density; ν∞: Constant kinematic viscosity; �: Latent heat of diffusion; τ: The ratio of nanoparticle heat 
capacity to the fluid heat capacity; 

(
kp
)
o
: Permeability coefficient; DB∞: Constant Brownian diffusion coefficient; uw =

Urx
L

: The velocity of the sheet; � > 0: Stretching sheet; vw: Suction/injection; uslip: Velocity slip; T∞: Ambient temperature; T : 
Nanofluid temperature; Cw: Wall nanoparticle volume fraction; C∞: The ambient nanoparticle volume fraction; a: Positive 
constant; M: Magnetization in magnets; s: Width of magnets and electrodes; α∞: Constant thermal diffusivity; C: Nano-
particle volume fraction; E: Activation energy; (S > 0)/(S < 0): Suction/injection parameter.
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