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Introduction
Let A be the class of functions of the form:

which are analytic in the open unit disc

Jackson q-derivative of a function f is given by (see [1, 2])

If f (z) = zn , then

where

(1)f (z) = z +

∞
∑

k=2

akz
k

U = {z : z ∈ C, |z| < 1}.

(2)Dqf (z) =

{

f (qz)−f (z)
(q−1)z (z �= 0),

f ′(0) (z = 0).

Dqf (z) = Dq(z
n) =

qn − 1

q − 1
zn−1 = [n]qz

n−1,

[n]q :=
1− qn

1− q

Abstract 

By using Jackson q‑derivative, some characterizations in terms of convolutions for two 
classes of analytic functions in the open unit disc are given. Also, coefficient conditions 
and inclusion properties for functions in these classes are found.
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Using the observation

we have

If the function f defined by (1), then

Also, we have the following q-derivative rules

and

The q-difference operator Dq has been extensively investigated in the field of geometric 
function theory by many authors. For some recent works related to this operator on the 
classes of analytic functions, we refer to [3–7].

The Hadamard product (or convolution) of two functions f , g ∈ A, denoted by f ∗ g , is

where f is given by (1) and g(z) = z +
∞
∑

k=2

bkz
k . Govindaraj and Sivasubramanian [8] 

defined the differential operator Snq f (z) : A → A by:

and for n ∈ N0 = {0, 1, . . .}

where

lim
q→1

1− qn

1− q
= n

lim
q→1−

Dqf (z) = lim
q→1−

[n]qz
n−1 = nzn−1 = f ′(z).

Dqf (z) = 1+

∞
∑

k=2

[k]qakz
k−1.

Dq[f (z).g(z)] = g(z)Dqf (z)+ f (qz)Dqg(z)

Dq
f (z)

g(z)
=

g(z)Dqf (z)− f (z)Dqg(z)

g(z)g(qz)
.

(f ∗ g)(z) = f (z) ∗ g(z) = z +

∞
∑

k=2

akbkz
n,

S0qf (z) =f (z),

S1qf (z) =zDqf (z)

(3)

Snq f (z) =zDq(S
n−1
q f (z))

=z +

∞
∑

k=2

[k]nqakz
k

=(f ∗ Gn
q )(z),

Gn
q (z) = z +

∞
∑

k=2

[k]nqz
k .
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The differential operator Snq is called Salagean q-differential operator.

Definition 1 For f ∈ A , we say f belongs to class S∗
�,ζ (A,B) , if and only if

where 0 < ζ < 1, 0 ≤ � ≤ 1,−1 ≤ B < A ≤ 1,Dζ is Jackson q-derivative with q = ζ and 
≺ denotes the usual subordination (see [9–11]).

It is noticed that, by giving specific values to A, B and � we obtain the following important 
subclasses studied by various authors in earlier works: 

1. S∗0,q(1− 2α,−1) ≡ S∗q(α) and S∗1,q(1− 2α,−1) ≡ Cq(α) are, respectively, the classes 
of q-starlike and q-convex functions (see Seoudy and Aouf [12] and Ramachandran 
et al. [13])

2. S∗0,q(A,B) ≡ S∗q [A,B] and S∗1,q(A,B) ≡ C[A,B] the classes of q-starlike and q-convex 
functions which are associated with the Janowski functions (see Srivastava et al. [14])

3. S∗0,q(
b2−a2+a

b
, 1−a

b
) ≡ S∗q(α), where a =

1−αq
1−q  and b = 1−α

1−q (see Polatoglu et al. [15])
4. lim

ζ→1−
S∗α,ζ ([b(1+m)−m],−m) ≡ S∗M(α, b),where b ∈ C,m = 1− 1

M and M > 1
2
 

(see Lashin [16])
5. lim

ζ→1−
S∗0,ζ ([b(1+m)−m],−m) ≡ F∗(b,M),where m = 1− 1

M and M > 1
2
 (see Nasr 

and Aouf [17])
6. lim

ζ→1−
S∗0,ζ (1− 2α,−1) ≡ S∗(α) and lim

ζ→1−
S∗1,ζ (1− 2α,−1) ≡ C(α)(0 ≤ α < 1) the 

classes of starlike and convex functions of order α (see Robertson [18] ).
7. lim

ζ→1−
S∗0,ζ (1,−1) ≡ S∗ and lim

ζ→1−
S∗1,ζ (1,−1) ≡ C the usual classes of starlike, convex 

and spirallike functions (see Goodman [19]).

With the help of the Salagean ζ-differential operator Snζ  given by (3),  we say that a function 
f ∈ A is in the class S∗

�,ζ (n,A,B) if and only if

where 0 < ζ < 1, −1 ≤ B < A ≤ 1, 0 ≤ � ≤ 1 and n ∈ N0.

We note that 

1. lim
ζ→1−

S∗
�,ζ (n, 1− 2α,−1) ≡ Sn(�,α) (see Wang and Aghalary [20]).

2. lim
ζ→1−

S∗
�,ζ (0, 1− 2α,−1) ≡ T (�,α) (see Altintas [21])

3. lim
ζ→1−

S∗
�,ζ (1, 1− 2α,−1) ≡ C(�,α) (see Kamali and Akbulut [22])

(4)
(1− �)zDζ f (z)+ �zDζ

(

zDζ f (z)
)

(1− �)f (z)+ �zDζ f (z)
≺

1+ Az

1+ Bz
(z ∈ U),

(5)
(1− �)Sn+1

ζ f (z)+ �Sn+2
ζ f (z)

(1− �)Snζ f (z)+ �Sn+1
ζ f (z)

≺
1+ Az

1+ Bz
(z ∈ U),
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Methods
The aim of the present paper is to obtain convolution properties, necessary and sufficient 
conditions, coefficient estimates, and inclusion properties of functions belonging to the 
class S∗

�,ζ (n,A,B) with techniques similar to those used by Silverman et al. [23].

Results and discussion

Proposition 2 If f ∈ A, then

and

Proof To prove the first part, we write

It is well Known that

then

To prove the second part, we write

Now, we will prove that µk =
[k]ζ [k+1]ζ

[2]ζ
, where µk is the coefficient of zk i.e. will prove

From (8), we find that [2]ζµ1 = [1]ζ [2]ζ . Next assume that (8) is true for k = m. Then

(6)
z

(1− z)(1− ζ z)
= z +

∞
∑

k=2

[k]ζ z
k

(7)
z

(1− z)(1− ζ z)(1− ζ 2z)
= z +

∞
∑

k=2

[k]ζ [k + 1]ζ

[2]ζ
zk

z

(1− z)(1− ζ z)
= z[1+ (1+ ζ )z + (1+ ζ + ζ 2)z2 + (1+ ζ + ζ 2 + ζ 3)z3 + · · · ].

1− ζ n

1− ζ
= 1+ ζ + · · · + ζ n−1

z

(1− z)(1− ζ z)
= z +

1− ζ 2

1− ζ
z2 +

1− ζ 3

1− ζ
z3 + · · · = z +

∞
∑

k=2

[k]ζ z
k .

z

(1− z)(1− ζ z)(1− ζ 2z)
=z + [1+ ζ(1+ ζ )]z2 + [1+ ζ(1+ ζ )+ ζ 2(1+ ζ + ζ 2)]z3

+ [1+ ζ(1+ ζ )+ ζ 2(1+ ζ + ζ 2)+ ζ 3(1+ ζ + ζ 2 + ζ 3)]z4 + · · ·

(8)

[2]ζµk =
1− ζ 2

1− ζ
[1+ ζ

1− ζ 2

1− ζ
+ ζ 2

1− ζ 3

1− ζ
+ · · · + ζ k−1 1− ζ k

1− ζ
] = [k]ζ [k + 1]ζ .
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Hence, by induction, the result is valid for all k,  which ends the proof. 

Theorem 3 A function f of the form (1) in the class S∗
�,ζ (A,B) if and only if

where C = Cθ = e−iθ+A
A−B , θ ∈ [0, 2π).

Proof The function f belongs to the class S∗
�,ζ (A,B) if and only if

Thus f ∈ S∗
�,ζ (A,B) is equivalent to

This simplifies to

Since

From (6), It follows that

(see also Piejko et al. [24]). Using (11) and (12), we obtain

Using the identity zDζ (f ∗ g) = f ∗ zDζ g , we conclude that

[2]ζµm+1 =
1− ζ 2

1− ζ
[1+ ζ

1− ζ 2

1− ζ
+ ζ 2

1− ζ 3

1− ζ
+ · · · + ζm−1 1− ζm

1− ζ
+ ζm

1− ζm+1

1− ζ
]

=[m]ζ [m+ 1]ζ +
1− ζ 2

1− ζ
ζm

1− ζm+1

1− ζ
}

=[m+ 1]ζ {
1− ζm

1− ζ
+ ζm

1− ζ 2

1− ζ
} = [m+ 1]ζ [m+ 2]ζ .

�

(9)
1

z

[

f (z) ∗

{

(1− �)
z − ζCz2

(1− z)(1− ζ z)
+ �

z + ζ(1− (1+ ζ )C)z2

(1− z)(1− ζ z)(1− ζ 2z)

}]

�= 0(z ∈ U)

(1− �)zDζ f (z)+ �zDζ

(

zDζ f (z)
)

(1− �)f (z)+ �zDζ f (z)
=

1+ Aω(z)

1+ Bω(z)
.

(1− �)zDζ f (z)+ �zDζ

(

zDζ f (z)
)

(1− �)f (z)+ �zDζ f (z)
�=

1+ Aeiθ

1+ Beiθ
, ( z ∈ U, θ ∈ [0, 2π)).

(10)
zDζ

[

(1− �)f (z)+ �zDζ f (z)
]

(

1+ Beiθ
)

−
[

(1− �)f (z)+ �zDζ f (z)
]

(

1+ Aeiθ
)

�= 0.

(11)f (z) = f (z) ∗
z

(1− z)
.

(12)zDζ f (z) = f (z) ∗
z

(1− z)(1− ζ z)

(13)(1− �)f (z)+ �zDζ f (z) = f (z) ∗
z − (1− �)ζ z2

(1− z)(1− ζ z)
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Substituting (13) and (14) into (10), we get

So that the left hand side of (15) may be expressed as

or, equivalently,

Then (15) can be rewritten as the following

where z ∈ U, θ ∈ [0, 2π). Hence the proof of Theorem 3 is complete. 

Taking � = 0 in Theorem 3, we get the following corollary

Corollary 4 A function f of the form (1) in the class S∗ζ (A,B) if and only if

where C = Cθ = e−iθ+A
A−B , θ ∈ [0, 2π).

Remark 5
Letting A = b(1+m)−m and B = −m with m = 1− 1

M and M > 1
2
 in Corollary 4 we 

get the result obtained by Aouf and Seoudy [25, Theorem 2.1].
Taking � = 1 in Theorem 3, we get the following corollary

Corollary 6 A function f  of the form (1) is in the class Cζ (A,B) if and only if   
 1z
[

f (z) ∗ z+ζ [1−(1+ζ )C]z2

(1−z)(1−ζ z)(1−ζ 2z)

]

�= 0 (z ∈ U)

(14)zDζ

[

(1− �)f (z)+ �zDζ f (z)
]

= f (z) ∗
z + ζ [1− (1− �)(1+ ζ )]z2

(1− z)(1− ζ z)(1− ζ 2z)
.

1

z
[f (z) ∗ {−(1− �)(1− ζ 2z)[(A− B)eiθz − ζ

(

1+ Aeiθ
)

z2]

(15)
−�(1− ζ 2z)(A− B)eiθz + �ζ(1+ ζ )(1+ Beiθ )z2}/(1− z)(1− ζ z)(1− ζ 2z)] �= 0.

1

z
[f (z) ∗

{

−(1− �)(1− ζ 2z)[(A− B)eiθz − ζ

(

1+ Aeiθ
)

z2]

− �[(A− B)eiθz + {ζ(A− B)eiθ

−[ζ(1+ ζ )(A− B)eiθ + ζ(1+ ζ )

(

1+ Beiθ
)

]}z2]
}

/(1− z)(1− ζ z)(1− ζ 2z) ]

1

z
[f (z) ∗ {−(1− �)(1− ζ 2z)[(A− B)eiθz − ζ

(

1+ Aeiθ
)

z2]

− �[(A− B)eiθz + ζ [(A− B)eiθ − (1+ ζ )

(

1+ Aeiθ
)

]z2]}/(1− z)(1− ζ z)(1− ζ 2z)]

1

z



f (z) ∗







(1− �)
z − ζ (e−iθ+A)

(A−B) z2

(1− z)(1− ζ z)
+ �

z + ζ

�

1− (1+ ζ )
(e−iθ+A)
(A−B)

�

z2

(1− z)(1− ζ z)(1− ζ 2z)









 �= 0

�

1

z

[

f (z) ∗
z − ζCz2

(1− z)(1− ζ z)

]

�= 0(z ∈ U)
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where C = Cθ = e−iθ+A
A−B , θ ∈ [0, 2π).

Remark 7
Letting A = b(1+m)−m and B = −m with m = 1− 1

M and M > 1
2
 in Corollary 6 we 

get the result obtained by Aouf and Seoudy [25, Theorem 2.4].

Remark 8
1 Letting ζ → 1−1,A = [b(1+m)−m] and B = −m with m = 1− 1

M and M > 1
2
 in 

Theorem 3, we obtain the result obtained by Lashin [16].
2 Letting ζ → 1−1,A = [b(1+m)−m] and B = −m with m = 1− 1

M and M > 1
2
 in 

Corollaries 4 and 6, respectively, we obtain the results obtained by El-Ashwah [26, 
Theorem 2.1 and Theorem 2.4].

3 Taking ζ → 1−1,A = 1− 2α,B = −1 and eiθ = x(|x| = 1) in Corollaries 4 and 6, we 
obtain the results obtained by Silverman et al. [23, Theorems 1,2].

4 Taking ζ → 1−1and eiθ = x(|x| = 1) in Corollaries 4 and 6, respectively, we obtain 
the results obtained by Padmanabhan and Ganesan [27, Theorem 1,2].

Theorem 9 A necessary and sufficient condition for the function f of the form (1) to be in 
the class S∗

�,ζ (n,A,B) is

for all θ ∈ [0, 2π) and z ∈ U .

Proof From Theorem 3, we have f (z) ∈S∗
�,ζ (n,A,B) if and only if

where C = Cθ = e−iθ+A
A−B , θ ∈ [0, 2π). Now, we can easily deduce that

Using Proposition 2 and the relation z
(1−z) = z +

∑∞
k=2 z

k , (18) can be written as

(16)1−

∞
∑

k=2

[k]nζ
ζ [k−1]ζ (e

−iθ+B)−(A−B)
(A−B) [(1− �)+ �[k]ζ ]akz

k−1 �= 0

(17)

1

z

[

Snζ f (z) ∗

{

(1− �)
z − ζCz2

(1− z)(1− ζ z)
+ �

z + ζ(1− (1+ ζ )C)z2

(1− z)(1− ζ z)(1− ζ 2z)

}]

�= 0(z ∈ U)

(18)

(1− �)
z − ζCz2

(1− z)(1− ζ z)
+ �

z + ζ(1− (1+ ζ )C)z2

(1− z)(1− ζ z)(1− ζ 2z)

=(1− �)

[

Cz

1− z
+

(1− C)z

(1− z)(1− ζ z)

]

+
�

ζ

[

(1+ ζ )(1− C)z

(1− z)(1− ζ z)(1− ζ 2z)
−

[1− (1+ ζ )C]z

(1− z)(1− ζ z)

]

.

(19)

z +

∞
∑

k=2

{

(1− �)
[

(1− C)
(

[k]ζ − 1
)

+ 1
]

+
�

ζ
[k]ζ

[

(1− C)
(

[k + 1]ζ − (1+ ζ )
)

+ ζ
]

}

zk .
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Setting [k]ζ =
1−ζ k

1−ζ
 and [k + 1]ζ =

1−ζ k+1

1−ζ
, (19) gives

which is equivalent to

Thus (17) together with (20) lead to (16). This completes the proof of Theorem 9. �

Theorem 10 If the function f defined by (1) satisfies the inequality

then f (z) ∈ S∗
�,ζ (n,A,B).

Proof Since

then

Thus (16) holds, which ends the proof. 

Theorem 11 S∗
�,ζ (n+ 1,A,B) ⊂ S∗

�,ζ (n,A,B).

Proof Since f (z) ∈ S∗
�,ζ (n+ 1,A,B), It follows from Theorem 9, that

(22) can be written as

z +

∞
∑

k=2

[ζ(1− C)[k − 1]ζ + 1][(1− �)+ �[k]ζ ]z
k

(20)z −

∞
∑

k=2

ζ [k−1]ζ (e
−iθ+B)−(A−B)
(A−B) [(1− �)+ �[k]ζ ]z

k .

(21)
∞
∑

k=2

[[k − 1]ζ (1+ B)+ (A− B)][(1− �)+ �[k]ζ ][k]
n
ζ |ak | ≤ (A− B)

∣

∣

∣

ζ [k−1]ζ (e
−iθ+B)−(A−B)
(A−B)

∣

∣

∣
≤

[k−1]ζ (1+B)+(A−B)
(A−B)

∣

∣

∣

∣

∣

1−

∞
∑

k=2

[k]nζ
ζ [k−1]ζ (e

−iθ+B)−(A−B)
(A−B) [(1− �)+ �[k]ζ ]akz

k−1

∣

∣

∣

∣

∣

≥ 1−

∞
∑

k=2

∣

∣

∣
[k]nζ

ζ [k−1]ζ (e
−iθ+B)+(A−B)
(A−B)

∣

∣

∣
[(1− �)+ �[k]ζ ]|ak ||z|

k−1

≥ 1−

∞
∑

k=2

[k−1]ζ (1+B)+(A−B)
(A−B) [(1− �)+ �[k]ζ ][k]

n
ζ |ak | > 0 (z ∈ U).

�

(22)1−

∞
∑

k=2

[k]n+1
ζ

ζ [k−1]ζ (e
−iθ+B)+(A−B)
(A−B) [(1− �)+ �[k]ζ ]akz

k−1 �= 0
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(23) gives

which means that f (z) ∈ S∗
�,ζ (n,A,B). This completes the proof of Theorem 11. 

Conclusions
q- Derivatives and q-integrals play an important and significant role in the study of 
quantum groups and q-deformed super-algebras. Recently, q-calculus has attracted the 
attention of many researchers in the field of geometric function theory. In this paper, 
we have used q-calculus to define and study some new sub-classes of analytic functions. 
Using the convolution technique some interesting properties of these new classes have 
been derived. Also, Coefficient conditions and inclusion properties of functions in these 
classes are found. Some special cases have been discussed as applications of our main 
results.
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