
Oscillation of linear third‑order impulsive 
difference equations with variable coefficients
A. K. Tripathy* and G. N. Chhatria   

Introduction
In many applications, differential equations with impulses play a vital role [11, 15, 16, 
20]. However, many scholars have recently taken an interest in studying discrete-time 
systems since both continuous-time systems and discrete-time systems share the same 
importance in theory as well as application. More specifically, it is required to study the 
corresponding discrete-time system when studying a continuous-time system, as dis-
crete-time systems are easier to handle on computers than their continuous-time coun-
terparts [21]. In particular, Li et al. [12] have investigated the oscillatory behaviour of a 
type of third-order difference equations with impulse of the form:
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and it is not a surprise to see the extension work in [13] for nonlinear third-order differ-
ence equations

where ai,k ≤
gi,k (u)

u ≤ bi,k . It needs to be noted that the works [12, 13] are strict followers 
of the pioneer works [26, 14] in which the authors have studied

and

 respectively. We note that (E2) is the discrete analogue of (E4) (simultaneously (E3)).
The third-order delay difference equation in (E1) is a special case of the third-order dif-

ference equation

when τ = 0 . If τ  = 0 , then the equation in (E1) can be reduced to a higher order differ-
ence equation. It is not known whether the work [12] will apply to (1.1) if we need to 
attach the impulsive effect

Based on the motivation stated above, the goal of this paper is to discuss the oscillatory 
behaviour of solutions of the impulsive system

where a(l), b(l) and c(l) are real-valued functions with discrete arguments and we 
assume that there exists ǫ > 0 such that αk ≥ ǫ > 0 for k ∈ N . For our impulsive 
system, θ1, θ2, θ3, . . . are discrete moments of impulsive effect with the properties 
0 ≤ l0 < θ1 < θ2 < · · · < θk and limk→∞ θk = +∞ . By a solution of (1.1), we mean a 
real-valued function w(l) defined on l ≥ l0 which satisfy (1.1) for l ≥ l0 . If w(l0),w(l0 + 1) 
and w(l0 + 2) are given, then (1.1) admits a unique solution for l ≥ l0 . A solu-
tion w(l) of (E) is said to be oscillatory if for every n ≥ 0 , there exists l ≥ n such that 
w(l + 1)w(l) ≤ 0 ; otherwise, the solution is said to be nonoscillatory. The system (E) is 
oscillatory if all its solutions are oscillatory.

(E1)











�3V(η)+ p(η)V(η − τ ) = 0, η �= ηk
V(ηk) = akV(ηk − 1)), k ∈ N

�V(ηk) = bk�V(ηk − 1), k ∈ N

�2V(ηk) = ck�
2V(ηk − 1), k ∈ N

(E2)

{

�3V(η)+ p(η)F(V(η − τ)) = 0, η �= ηk
�iV(ηk) = gi,k

(

�iV(ηk − 1)
)

, i = 0, 1, 2, k ∈ N,

(E3)







V ′′′(t)+ p(t)V(t) = 0, t ≥ t0, t �= tk
V(t+k ) = akV(tk), V

′(t+k ) = bkV
′(tk), V

′′(t+k ) = ckV
′′(tk), k ∈ N

V(t+0 ) = V(t0), V
′(t+0 ) = V ′(t0), V

′′(t+0 ) = V ′′(t0)

(E4)







V ′′′(t)+ f (t,V(t − τ)) = 0, t ≥ t0, t �= tk
V(t+k ) = gk(V(tk)), V

′(t+k ) = hk(V
′(tk)), V

′′(t+k ) = lk(V
′′(tk)), k ∈ N

V(t) = φ(t), t ∈ [t0 − τ , t0]
,

(1.1)w(l + 3)+ a(l)w(l + 2)+ b(l)w(l + 1)+ c(l)w(l) = 0, l ≥ l0

(1.2)w(θk) = αkw(θk − 1), k ∈ N.

(E)

{

w(l + 3)+ a(l)w(l + 2)+ b(l)w(l + 1)+ c(l)w(l) = 0, l �= θk , l ≥ l0
w(θk) = αkw(θk − 1), k ∈ N,
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For more information on qualitative studies of discrete impulsive equations, see the 
work [6] in which Danca et al. studied a kind of impulsive equations

for the existence of periodic orbits, asymptotic behaviour, and chaos. In another work 
[7], Danca and Feckan studied the chaotic behaviour of a one-dimensional discrete sup-
ply and demand impulsive dynamical system

We refer the reader to some of the monographs [1, 2, 8, 10, 11, 15, 16, 20] and works 
[3–5, 9, 22] for more detailed treatments on the theory of impulsive difference equations 
and its applications.

Methods
The first method that has been adopted here is the method of contradiction. By making 
use of suitable impulsive inequalities, we have seen that the problem (E) under investiga-
tion does not have any nonoscillatory solutions. Once this is done, there is a conclusion. 
Secondly, we generate two linear operators from a particular set of linearly independent 
solutions of (E) . We get the results by using matrix theory and the definition of nonoscil-
latory solutions of (E).

Results
In this section, we discuss the oscillatory behaviour of solutions of the discrete impulsive 
system of third order of the form (E).

Theorem 3.1 Let a(l) < 0 , c(l) ≥ 0 and b(l) ≥ 0 for large l. Assume that

lim inf l→∞ b(l) = b ≥ 0 . If

and

hold, then (E) is oscillatory.

Proof
Suppose that w(l) is a nonoscillatory solution of (E) . So, there exists L1 > 0 such that 
w(l) > 0 for l ≥ L1 . For l  = θk , it follows from (E) that

{

V(n+ 1) = f (V(n)), n �= ni
V(ni + 1) = f (g(V(ni))), i ∈ N

V(n+ 1) =

{

f (V(n)), n �= ni
V(n)+ γ , n = ni.

(H1) lim sup
k→∞

[

1+
αk

a(θk − 3)

]

> 0,

(H2) lim sup
k→∞

[

αk +
b

a(θk − 2)

]

> 0

(H3) lim sup
k→∞

b(θk) > lim sup
k→∞

a(θk − 1)

[

a(θk)−
b

a(θk + 1)

]
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that is,

For l ≥ L1 + 1 , it follows that

Again from (E) , we can find L2 > L1 such that

for which

Let L3 = max{L1 + 1, L2} . We claim that (3.1) hold for l = θk , that is,

which is equivalent to

If possible, there is some j > k such that

that is,

a contradiction to (H1) . So, (3.1) holds for all θk ≥ L3 + 2 . Again, we have another claim 
that (3.2) hold for l = θk , that is,

which is equivalent to

If not, let there exist i > k such that

−a(l)w(l + 2) ≥ w(l + 3),

w(l + 2) ≥
−w(l + 3)

a(l)
for l ≥ L1.

(3.1)w(l + 1) ≥
−w(l + 2)

a(l − 1)
.

−a(l)w(l + 2) > b(l)w(l + 1) > bw(l + 1), l ≥ L2

(3.2)w(l + 2) >
−b

a(l)
w(l + 1) for l ≥ L2.

w(θk + 1) ≥
−w(θk + 2)

a(θk − 1)
for θk ≥ L3,

w(θk − 1) ≥
−w(θk)

a(θk − 3)
for θk ≥ L3 + 2.

w(θj − 1) <
−w(θj)

a(θj − 3)
=

−αjw(θj − 1)

a(θj − 3)
,

w(θj − 1)
[

1+
αj

a(θj − 3)

]

< 0, θj ≥ L3 + 2,

w(θk + 2) >
−b

a(θk)
w(θk + 1) for θk ≥ L3,

w(θk) >
−b

a(θk − 2)
w(θk − 1) for θk ≥ L3 + 2.
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that is,

Consequently,

a contradiction to (H2) . Thus, our claim holds for all θk ≥ L3 + 2 . Let L ≥ L3 + 2 . For 
θk ≥ L , we have

As a result,

that is,

a contradiction to (H3) . Because (3.1) and (3.2) are true for all l and θk , k ∈ N , then (H3) 
holds true for l also. This is all about the proof of the theorem. 

Example 3.2
Consider

where a(l) = −5 , b(l) = 9(2+ cos lπ
3 ) , c(l) = 2 , θk = 3k + 3 , k ∈ N and αk = 2+ 1

k+1
 . 

Indeed, lim inf l→∞ b(l) = 9 > 0 . From (H1) , (H2) and (H3) , we get

and

w(θi) ≤
−b

a(θi − 2)
w(θi − 1),

αiw(θi − 1) = w(θi) ≤
−b

a(θi − 2)
w(θi − 1).

w(θi − 1)
[

αi +
b

a(θi − 2)

]

≤ 0, θi ≥ L3 + 2,

0 ≥ w(θk + 3)+ a(θk)w(θk + 2)+ b(θk)w(θk + 1)+ αkc(θk)w(θk − 1)

≥
−b

a(θk + 1)
w(θk + 2)+ a(θk)w(θk + 2)−

b(θk)w(θk + 2)

a(θk − 1)
.

−b

a(θk + 1)
+ a(θk)−

b(θk)

a(θk − 1)
≤ 0,

b(θk) ≤ −a(θk − 1)
[ b

a(θk + 1)
− a(θk)

]

,

�

{

w(l + 3)− 5w(l + 2)+ 9(2+ cos lπ
3 )w(l + 1)+ 2w(l) = 0, l �= θk

w(θk) = αkw(θk − 1), k ∈ N,

lim sup
k→∞

(

1−
2k + 2

5k + 5

)

=
3

5
> 0,

lim sup
k→∞

(

1

1+ k
−

1

5

)

=
1

5
> 0,
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 respectively. Clearly, all conditions of Theorem  3.1 are satisfied for the given system. 
Hence, the system is oscillatory.

In particular, consider the nonimpulsive difference equation

It is not difficult to see that (3.3) is oscillatory because (H3) holds, that is, a2 < 2b . A 
graphical illustration is given in Fig. 1. So, it remains oscillating after the imposition of 
proper impulse controls.

Theorem 3.3 Let a(l) > 0 , b(l) < 0 and c(l) ≥ 0 for large l. Assume that

lim inf l→∞ c(l) = c ≥ 0 . If

and

hold, then (E) oscillatory.

27 = lim sup
k→∞

b(θk) > lim sup
k→∞

a(θk − 1)

(

a(θk)−
b

a(θk + 1)

)

= 16,

(3.3)w(l + 3)− 5w(l + 2)+ 18w(l + 1)+ 2w(l) = 0, l ≥ l0.

(H4) lim sup
k→∞

[

1+
αka(θk − 2)

b(θk − 2)

]

> 0,

(H5) lim sup
k→∞

[

αk +
c

b(θk − 1)

]

> 0

(H6) lim sup
k→∞

c(θk) > lim sup
k→∞

b(θk − 1)

a(θk − 1)

[

b(θk)−
ca(θk)

b(θk + 1)

]

Fig. 1 Solution of Eq. (3.3) for l ∈ (0, 80) with initial conditions w(l0) = 1 , w(l0 + 1) = 3 and w(l0 + 2) = 4
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Proof
Suppose on the contrary, w(l) is a nonoscillatory solution of (E) . So, there exists L1 > 0 
such that w(l) > 0 for l ≥ L1 . For l  = θk , it follows from (E) that

that is,

which is equivalent to

Also, from (E) we have for l ≥ L2

which reduces to

Let L3 = max{L1 + 1, L2} . We claim that (3.4) holds for l = θk , that is,

that is,

If not, let there exist j > k such that

that is,

a contradiction to (H4) . So, our claim holds for all θk ≥ L3 + 1 . Next, we claim that (3.5) 
holds for l = θk , that is,

which is equivalent to

−b(l)w(l + 1) > a(l)w(l + 2),

w(l + 1) >
−a(l)

b(l)
w(l + 2), l ≥ L1,

(3.4)w(l) >
−a(l − 1)

b(l − 1)
w(l + 1) for l ≥ L1 + 1.

−b(l)w(l + 1) > c(l)w(l) > cw(l)

(3.5)w(l + 1) >
−c

b(l)
w(l), l ≥ L2.

w(θk) >
−a(θk − 1)

b(θk − 1)
w(θk + 1) for θk ≥ L3,

w(θk − 1) >
−a(θk − 2)

b(θk − 2)
w(θk) for θk ≥ L3 + 1.

w(θj − 1) ≤
−a(θj − 2)

b(θj − 2)
w(θj) =

−αja(θj − 2)

b(θj − 2)
w(θj − 1),

w(θj − 1)
[

1+
αja(θj − 2)

b(θj − 2)

]

≤ 0, θj ≥ L3 + 1,

w(θk + 1) >
−c

b(θk)
w(θk) for θk ≥ L3,
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Otherwise, there exists i > k such that

that is,

As a result,

a contradiction to (H5) . Thus, (3.5) holds true for all θk ≥ L3 + 1 . Let L = L3 + 1 . For 
θk ≥ L , we have

that is,

a contradiction to (H6) . Since (3.4) and (3.5) are true for all l and θk , k ∈ N , then (H6) 
holds true for l also. Hence, the theorem is proved. 

Example 3.4
Consider

where a(l) = 2+ 1
2l

 , b(l) = −4 , c(l) = 5
(

1+ 1
l2

)

 , θk = 2k + 3 , k ∈ N and 

αk = 3k
2(k+1)

= 1+ k−2
2(k+1)

 .  Indeed, lim inf l→∞ c(l) = 5 . From (H4) , (H5) and (H6) , we get

and

w(θk) >
−c

b(θk − 1)
w(θk − 1) for θk ≥ L3 + 1.

w(θi) ≤
−c

b(θi − 1)
w(θi − 1),

αiw(θi − 1) = w(θi) ≤
−c

b(θi − 1)
w(θi − 1).

w(θi − 1)
[

αi +
c

b(θi − 1)

]

≤ 0, θi ≥ L3 + 1,

0 > a(θk)w(θk + 2)+ b(θk)w(θk + 1)+ c(θk)w(θk)

>
−ca(θk)

b(θk + 1)
w(θk + 1)+ b(θk)w(θk + 1)−

c(θk)a(θk − 1)

b(θk − 1)
w(θk + 1),

−ca(θk)

b(θk + 1)
+ b(θk)−

c(θk)a(θk − 1)

b(θk − 1)
< 0,

�

{

w(l + 3)+ a(l)w(l + 2)− 4w(l + 1)+ c(l)w(l) = 0, l �= θk
w(θk) = αkw(θk − 1), k ∈ N,

lim sup
k→∞

(

1−
24k2 + 15k

32k2 + 48k + 16

)

=
1

4
> 0,

lim sup
k→∞

(

3k

2k + 2
−

5

4

)

=
1

4
> 0,
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 respectively. Therefore, all conditions of Theorem 3.3 are satisfied here for the given sys-
tem. Thus, the system is oscillatory.

In particular, consider the nonimpulsive difference equation

It is not difficult to see that (3.6) is oscillatory because (H6) holds, that is, b2 < 2ac . A 
graphical illustration is given in Fig. 2. So, it remains oscillating after the imposition of 
proper impulse controls.

Theorem 3.5 Let a(l) ≥ 0 , b(l) < 0 and c(l) ≥ 0 for large l. Assume that

and

hold. Then, (E) is oscillatory.

5 = lim sup
k→∞

c(θk) > lim sup
k→∞

(

16(4k + 4)

(8k + 9)
−

(4k + 4)(40k + 65)

(4k + 6)(8k + 9)

)

= 3,

(3.6)w(l + 3)+ 2w(l + 2)− 4w(l + 1)+ 5w(l) = 0, n ≥ n0.

(H7) lim sup
k→∞

[

1+
αka(θk − 2)

b(θk − 2)

]

> 0,

(H8) lim sup
k→∞

[

αk +
c(θk − 1)

b(θk − 1)

]

> 0

(H9) lim sup
k→∞

b(θk) > lim sup
k→∞

[

a(θk)c(θk + 1)

b(θk + 1)
+

a(θk − 1)c(θk)

b(θk − 1)

]

Fig. 2 Solution of Eq. (3.6) for l ∈ (0, 80) with initial conditions w(l0) = 2 , w(l0 + 1) = 1 and w(l0 + 2) = 1
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Proof
On contrary, we assume that w(l) is a nonoscillatory solution of (E) . Then, there exists 
L1 > 0 such that w(l) > 0 for l ≥ L1 . From (E) and for l  = θk , we have

that is,

Also for l ≥ L2 , we have that

that is,

Let L3 = max{L1, L2} . Now, we claim that (3.7) hold for l = θk , that is,

that is,

If not, there exists j > k such that

and hence

a contradiction to (H7) . Therefore, our claim holds. Also, we have another claim that 
(3.8) holds for i = θk , that is,

which is equivalent to

Suppose there exists i > k such that

−b(l)w(l + 1) > a(l)w(l + 2),

(3.7)w(l + 1) >
−a(l)

b(l)
w(l + 2) for l ≥ L1.

−b(l)w(l + 1) > c(l)w(l),

(3.8)w(l + 1) >
−c(l)

b(l)
w(l) for l ≥ L2

w(θk + 1) >
−a(θk)

b(θk)
w(θk + 2) for θk ≥ L3,

w(θk − 1) >
−a(θk − 2)

b(θk − 2)
w(θk) for θk ≥ L3 + 2.

w(θj − 1) ≤
−a(θj − 2)

b(θj − 2)
w(θj) =

−αja(θj − 2)

b(θj − 2)
w(θj − 1)

w(θj − 1)
[

1+
αja(θj − 2)

b(θj − 2)

]

≤ 0, θj ≥ L3 + 2,

w(θk + 1) >
−c(θk)

b(θk)
w(θk) for θk ≥ L3

w(θk) >
−c(θk − 1)

b(θk − 1)
w(θk − 1) for θk ≥ L3 + 1.
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that is,

Consequently,

gives a contradiction to (H8) . Thus, (3.8) holds for all θk ≥ L3 + 1 . Let L = L3 + 1 . For all 
θk ≥ L , we have

implies that

θk ≥ L , a contradiction to (H9) . This is all about the proof. 

Theorem 3.6 Let a(l) < 0 , b(l) ≥ 0 and c(l) ≥ 0 for large l. Assume that

and

hold. Then, (E) is oscillatory.

Proof
On contrary, let w(l) be a nonoscillatory solution of (E) . Then, there exists L1 > 0 such 
that w(l) > 0 for l ≥ L1 . From (E) and for l  = θk , we have

that is,

w(θi) ≤
−c(θi − 1)

b(θi − 1)
w(θi − 1),

αiw(θi − 1) = w(θi) ≤
−c(θi − 1)

b(θi − 1)
w(θi − 1).

w(θi − 1)
[

αi +
c(θi − 1)

b(θi − 1)

]

≤ 0 for θi ≥ L3 + 1

0 > a(θk)w(θk + 2)+ b(θk)w(θk + 1)+ c(θk)w(θk)

>
−a(θk)c(θk + 1)

b(θk + 1)
w(θk + 1)+ b(θk)w(θk + 1)−

c(θk)a(θk − 1)

b(θk − 1)
w(θk + 1)

−a(θk)c(θk + 1)

b(θk + 1)
+ b(θk)−

c(θk)a(θk − 1)

b(θk − 1)
< 0

�

(H10) lim sup
k→∞

[

1+
αk

a(θk − 3)

]

> 0,

(H11) lim sup
k→∞

[

αk +
b(θk − 2)

a(θk − 2)

]

> 0

(H12) lim sup
k→∞

c(θk + 1)

a(θk + 1)a(θk − 1)
> lim sup

k→∞

[

b(θk + 1)

a(θk + 1)
+

b(θk)

a(θk − 1)
− a(θk)

]

−a(l)w(l + 2) ≥ w(l + 3),

(3.9)w(l + 1) >
−w(l + 2)

a(l − 1)
for n ≥ L1 + 1.
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Similarly, we can find L2 > 0 such that

that is,

Let L3 = max{L1 + 1, L2} . We claim that (3.9) hold for l = θk , that is,

that is,

If not, there exists j > k such that

that is,

a contradiction to (H10) . Therefore, (3.9) holds for all θk ≥ L3 . Next, we claim that (3.10) 
holds for l = θk , that is,

that is,

for θk ≥ L3 + 3 . Suppose the claim is not true. Then, there exists i > k such that

that is,

As a result,

−a(l)w(l + 2) ≥ c(l)w(l)+ b(l)w(l + 1), l ≥ L2,

(3.10)w(l + 3) ≥
−c(l + 1)

a(l + 1)
w(l + 1)−

b(l + 1)

a(l + 1)
w(l + 2) for l ≥ L2

w(θk + 1) >
−w(θk + 2)

a(θk − 1)
for θk ≥ L3,

w(θk − 1) >
−w(θk)

a(θk − 3)
for θk ≥ L3 + 2.

w(θj − 1) ≤
−w(θj)

a(θj − 3)
=

−αjw(θj − 1)

a(θj − 3)
,

w(θj − 1)
[

1+
αj

a(θj − 3)

]

≤ 0, θj ≥ L3 + 2,

w(θk + 3) >
−c(θk + 1)

a(θk + 1)
w(θk + 1)−

b(θk + 1)

a(θk + 1)
w(θk + 2) for θk ≥ L3,

w(θk) >
−c(θk − 2)

a(θk − 2)
w(θk − 2)−

b(θk − 2)

a(θk − 2)
w(θk − 1)> −

b(θk − 2)

a(θk − 2)
w(θk − 1)

w(θi) ≤ −
b(θi − 2)

a(θi − 2)
w(θi − 1),

αiw(θi − 1) ≤
−b(θi − 2)

a(θi − 2)
w(θi − 1).

w(θi − 1)
[

αi +
b(θi − 2)

a(θi − 2)

]

≤ 0 for θi ≥ L3 + 3,
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a contradiction to (H11) . Thus, (3.10) holds true for all θk ≥ L3 + 3 . Let L = L3 + 3 . 
Therefore, from (E) and for all θk ≥ L , we see that

Consequently,

for θk ≥ L , a contradiction to (H12) . This is all about the proof. 

Example 3.7
Consider

where a(l) = −3 , b(l) = 2 , c(l) = 12l , θk = 3k , k ∈ N and αk = 2+ 1
3k

 . From (H10) , (H11) 
and (H12) , we get

and

 respectively. Theorem  3.6 is applicable to the given system, and showing that it is 
oscillatory.

In particular, consider the nonimpulsive difference equation

It is not difficult to see that (3.11) is oscillatory because (H12) holds, that is, c > 2ab− a3 . 
A graphical illustration is given in Fig. 3. So, it remains oscillating after the imposition of 
proper impulse controls.

0 > w(θk + 3)+ a(θk)w(θk + 2)+ b(θk)w(θk + 1)

>

[

−b(θk + 1)

a(θk + 1)
+

c(θk + 1)

a(θk + 1)a(θk − 1)

]

w(θk + 2)+ a(θk)w(θk + 2)

−
b(θk)

a(θk − 1)
w(θk + 2).

−b(θk + 1)

a(θk + 1)
+

c(θk + 1)

a(θk + 1)a(θk − 1)
+ a(θk)−

b(θk)

a(θk − 1)
< 0

�

{

w(l + 3)− 3w(l + 2)+ 2w(l + 1)+ 12lw(l) = 0, l �= θk
w(θk) = αkw(θk − 1), k ∈ N,

lim sup
k→∞

(

1−
2× 3k + 1

3× 3k

)

=
1

3
> 0,

lim sup
k→∞

(

2−
2

3
+

1

3k

)

=
4

3
> 0,

5

3
= lim sup

k→∞

[

b(θk + 1)

a(θk + 1)
+

b(θk)

a(θk − 1)
− a(θk)

]

< lim sup
k→∞

c(θk + 1)

a(θk + 1)a(θk − 1)
→ ∞,

(3.11)w(l + 3)− 3w(l + 2)+ 2w(l + 1)+ 12w(l) = 0, n ≥ n0.
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Next, we are going to present some new results, and for this, we need the following 
lemma.

Lemma 3.8 Suppose there exists l0 ≥ 0 such that a(l) < 0 , b(l) < 0 and c(l) < 0 for 
l ≥ l0 . If w(l) is a solution of

with the initial conditions w(l0) ≥ 0 , w(l0 + 1) ≥ 0 , w(l0 + 2) ≥ 0 such that 
w(l0)+ w(l0 + 1)+ w(l0 + 2) > 0 for some l0 ≥ 0 , then w(l) > 0 for l ≥ l1 = l0 + 3.

Proof
Upon the application of initial conditions to

it is easy to see recursively that w(l) > 0 for l ≥ l1 = l0 + 3 when l  = θk . Assume that 
l = θk for l ∈ N . Let θ1 ≥ l1 + 1 . Then, w(θ1) = α1w(θ1 − 1) > 0 . Since θ2 − 1 and θ3 − 1 
are nonimpulsive points, then w(θ2) = α2w(θ2 − 1) > 0 and w(θ3) = α3w(θ3 − 1) > 0 . 
Due to

and proceeding recursively, it is easy to see that w(θk) > 0 for k ∈ N . Hence, the lemma 
is proved. �

Theorem 3.9 Let a(l) < 0 , b(l) < 0 and c(l) < 0 for l ≥ l0 . Then, (E) admits two oscil-
latory solutions.

w(l + 3)+ a(l)w(l + 2)+ b(l)w(l + 1)+ c(l)w(l) = 0

w(l + 3) = −a(l)w(l + 2)− b(l)w(l + 1)− c(l)w(l),

w(θk+3) = −a(θk)w(θk+2)− b(θk)w(θk+1)− c(θk)w(θk),

Fig. 3 Solution of Eq. (3.11) for l ∈ (0, 80) with initial conditions w(l0) = 1 , w(l0 + 1) = 4 and w(l0 + 2) = 2
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Proof
Let us assume that u0(l) , u1(l) and u2(l) be the solutions of (1.1) such that

where i, j = 0, 1, 2 and l0 ≥ 0 . Firstly, we consider the case when l  = θk . Indeed,

As a result, the solutions resulting from ui(l0 + j) for i, j = 0, 1, 2 are linearly independ-
ent. According to Lemma 3.8, ui(l) > 0 for l ≥ l0 + 3 and i = 0, 1, 2 . It is possible to 
select nonzero real numbers d0n, d2n, e1n and e2n for each n ≥ l0 + 3 such that

where d20n + d22n = 1 = e21n + e22n . So, the preceding system is orthogonal. As a result, the 
solutions are linearly independent for n ≥ l0 + 3 . For l ≥ l0 , define

Then, Tn(l) and T n(l) are solutions of (1.1) with Tn(n) = 0 and T n(n) = 0 . Since each of 
the sequence {d0n}, {d2n}, {e1n} and {e2n} is bounded, then there exists a {nk} ⊂ {n} such 
that

as nk → ∞ . Of course, d20 + d22 = 1 = e21 + e22 . Setting

we notice that T(l) and T (l) are nontrivial solutions of (1.1).

If {T (l)} is nonoscillatory, then we may assume that T (l) > 0 for l ≥ L1 > l0 + 3 . For 
0 < ǫl < T (l) , there exists L1 > 0 such that

that is, 0 < T (l)− ǫl < Tnk (l) for nk ≥ Ll . Hence, for nk > max{L1, Ll} , it follows that 
Tnk (nk) > 0 , which is a contradiction to the fact that Tnk (nk) = 0 . Thus, T(l) is oscil-
latory. Similar argument we apply to T (l) . Indeed, these two solutions are linearly 
independent.

ui(l0 + j) =

{

1 i = j
0 i �= j,

u0(l0) = 1 u1(l0) = 0 u2(l0) = 0;

u0(l0 + 1) = 0 u1(l0 + 1) = 1 u2(l0 + 1) = 0;

u0(l0 + 2) = 0 u1(l0 + 2) = 0 u2(l0 + 2) = 1.

d0nu
0(n)+ d2nu

2(n) = 0

e1nu
1(n)+ e2nu

2(n) = 0,

Tn(l) = d0nu
0(l)+ d2nu

2(l)

T
n(l) = e1nu

1(l)+ e2nu
2(l).

d0nk → d0, d2nk → d2, e1nk → e1, e2nk → e2

T (l) = d0u
0(l)+ d2u

2(l)

T (l) = e1u
1(l)+ e2u

2(l),

∣

∣Tnk (l)− T (l)
∣

∣ < ǫl for nk > Ll ,
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Next, we consider the case when l = θk . Since (1.1) takes to a similar mapping for l = θk , 
then without loss of generality, we can assume an impulsive perturbation at each step. 
Using (1.2) in (1.1), we have

that is,

which is of the form

where A(θk) =
αk+3a(θk )

αk+2
< 0 , B(θk) =

αk+3b(θk )
αk+1

< 0 and C(θk) =
αk+3c(θk )

αk
< 0 . Let us 

assume that v0(θk) , v1(θk) and v2(θk) are the solutions of (3.12) such that

where i, j = 0, 1, 2 and θk0 ≥ l1 > l0 . Proceeding as above, we can show that T (θk) and 
T (θk) are oscillatory solutions; of course, these two solutions are linearly independent. 
Hence, our theorem is proved. �

Theorem 3.10 Let a(l) > 0 , b(l) > 0 and c(l) < 0 for l ≥ l0 . Then, (E) has a nonoscilla-
tory solution.

Proof
For any positive integer i, let wi(l) be a solution of (E) such that

Let l  = θk . Indeed, wi(l) > 0 for l ∈ {0, 1, . . . , i − 1} due to

Let {T 1(l),T 2(l),T 3(l)} be a basis for the solution space of (1.1). For any solution wi(l) is 
therefore, we can write

with d21i + d22i + d23i = 1 . Since the sequence {dji} , j = 1, 2, 3 is bounded, then there exists 
a subsequence ik of {i} such that djik → dj as k → ∞ . Set

Since wik (l) → w(l) as k → ∞ , then it follows that w(l) > 0 for l ≥ l0 . In this way, we 
find that w(l) is a positive solution of (1.1).

1

αk+3

w(θk+3)+
a(θk)

αk+2

w(θk+2)+
b(θk)

αk+1

w(θk+1)+
c(θk)

αk
w(θk) = 0,

w(θk+3)+
αk+3a(θk)

αk+2

w(θk+2)+
αk+3b(θk)

αk+1

w(θk+1)+
αk+3c(θk)

αk
w(θk) = 0

(3.12)w(θk+3)+ A(θk)w(θk+2)+ B(θk)w(θk+1)+ C(θk)w(θk) = 0,

vi(θk0+j) =

{

1 i = j
0 i �= j,

wi(i) = 0,wi(i + 1) = 0,wi(i + 2) > 0.

−c(l)wi(l) = wi(l + 3)+ a(l)wi(l + 2)+ b(l)wi(l + 1).

wi(l) = d1iT
1(l)+ d2iT

2(l)+ d3iT
3(l)

w(l) = d1T
1(l)+ d2T

2(l)+ d3T
3(l).
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Next, we consider the case when l = θk . Because (1.1) leads to a similar mapping for 
l = θk , without loss of generality, we assume impulsive perturbation at each step. There-
fore, using (1.2) in (1.1), we have (3.12) noticing that A(θk) =

αk+3a(θk )
αk+2

 , B(θk) =
αk+3b(θk )

αk+1
 

and C(θk) =
αk+3c(θk )

αk
 . Ultimately, A(θk) > 0 , B(θk) > 0 and C(θk) < 0 for k ∈ N . For a 

positive integer l, let vi(θk) be a solution of (3.12) such that

Therefore, vi(θk+j) > 0 for j ∈ {0, 1, . . . , i − 1} . Let {T 1(l), T 2(l), T 3(l)} be a basis of the 
solution space of (1.1) for which it is seldom to write

with e21i + e22i + e23i = 1 . Proceeding as above we can show that w(θk) is a positive solu-
tion of (3.12). Therefore, w(l) is a positive solution (3.12) for all l and θk , k ∈ N . This com-
pletes the proof of the theorem. 

Discussion
In the first part of the main results (Theorem 3.1–3.6), we have used the method of con-
traction. Upon use of limiting behaviour of coefficients and impulsive inequalities, we 
are able to prove the main finding. For the proof of the next results (Theorem 3.9, 3.10), 
Lemma 3.8 plays a major role. First, we constructed two operators using appropriate 
solutions of (E) . By applying the properties of linear algebra, it was then possible to get 
oscillatory solutions of (E) . Although the method adopted here is simple, the research 
findings presented in this paper are also simpler and easily verifiable. Some numerical 
examples are presented to verify the obtained results.

Conclusion
The oscillation theory of third-order differential/difference equations has significantly 
advanced in the last few decades, as evidenced in the literature, see, e.g. [17–19, 23–25]. 
As we discussed in the introduction part, discrete-time systems are more computer-
friendly than their continuous-time counterparts, so we have considered the third-order 
difference equations in a closed form rather than the usual discrete analogue. On the 
other hand, owing to many natural and man-made factors, the intrinsic growth of physi-
cal/biological processes usually undergoes some discrete changes of relatively short 
duration at fixed times. Often, such changes are characterised mathematically in the 
form of impulses [12–14, 26]. Therefore, in this work, we have studied a general class 
of third-order linear difference equations (1.1) under the influence of discrete moments 
of impulsive effects (1.2). Unlike most of the works in the literature, we do not require 
monotonic properties of nonoscillatory solutions to study (E) . In fact, this effort rep-
resents a new step in the literature of impulsive difference equations. For interested 
readers, this work can be extended to the nonlinear counterpart of (E) . We conclude 
this work by noticing that the system remains oscillating after the imposition of proper 
impulse controls.

vi(θk+i) = 0, vi(θk+i+1) = 0, vi(θk+i+2) > 0.

vi(θk) = e1iT
1(θk)+ e2iT

2(θk)+ e3iT
3(θk)

�
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