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Introduction
Structural failures marked by cracks and fracture are significant problems in engineer-
ing practice. If a crack occurs in a structure and no action is taken to stop its growth, 
the crack may propagate until the structure breaks up into pieces. Both theoretical and 
experimental studies leading to the arrest of crack growth are very needful.

A number of methods of arresting crack growth have been proposed. They include 
the application of patches to cracked site (Baker [1], O’ Donoghue and Zhuang [2]). The 
welding method (Ghfiri et al. [3]), the crack arrester method (Makabe et al. [4], Ayatol-
lahi et al. [5]), the stop hole method (Song and shield [6], Murdani et al. [7], Wu et al. [8], 
Kim [9]). Of particular interest in this study is the stop hole method, where a circular 
hole is drilled at the vicinity of the crack tip in an attempt to arrest crack propagation 
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by reducing the stress concentration near the crack tip. A survey of the techniques of 
evaluating the influence of the stop hole on the elastic fields show that experimental and 
numerical techniques have mostly been used while analytical methods have received less 
attention. For example, Matsumoto et al. [10], Fanni et al. [11], and Chen [12] used the 
finite element method to obtain an optimum crack breaker that gives maximum fatigue 
crack initiation life.

The endeavour in this paper is to obtain a closed form solution for the elastic fields in 
an orthotropic material containing a semi-infinite crack in the presence of a stop hole.

Formulation
Consider the problem of an infinite elastic orthotropic material containing a semi- infi-
nite crack the tip of which is referred to a moving coordinate system ( x′, y′, z′ ) space. The 
semi-infinite crack occupies the region defined by −∞ < x′ < 0 . A pair of longitudinal 
shear loads of magnitude Q  is applied along the crack surface on an interval [−a , −d] 
of length L . A circular crack breaker (stop hole) of radius b is introduced at the center of 
the orthotropic material which is at the origin of a fixed coordinate system x, y, z  . Fig-
ure 1 illustrates the configuration of the problem under consideration.

Suppose that, at time t = 0 , the crack tip starts to move with constant velocity v along 
the x′-direction and ends up at the crack breaker, attaining a displacement v t . Sup-
pose, also, that the disturbance due to the load is anti-plane so that it creates only an 
out of plane displacement and stresses in the z-direction. The problem is to investigate 
the influence of the circular stop hole on the stress intensity factor at the crack tip. This 
necessitates investigating the elastic fields at the point (x,0,0) on the boundary of the 
crack breaker.

Under anti-plane strain condition, the displacement components (u, v,w) reduce to 
(0, 0,w) where w = w

(

x′, y′, t
)

 . Consequently, the only nonzero stress components  σx′z 
and σy′z  are given by

where c44 = µxz  and c55 = µyz are the shear moduli in the x′ and y′ directions.
Accordingly, the equation of motion takes the form

(1)σx′z = c44
∂w

∂x′
, σy′z = c55

∂w

∂y′

Fig. 1  Geometry and coordinate system of cracked medium
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where ρ is the mass density of the elastic material.
Substituting the stress-displacement relations (1) into Eq. (2) and simplifying the result 

leads to the two-dimensional wave equation

where    η =
(

C44

C55

)
1
2 and c =

(

C44

ρ

)
1
2 is the wave speed.

The corresponding boundary conditions on the crack surface under anti-plane strain 
loading Q are as follows:

Solution
For a crack moving with constant velocity v in the x′-direction, it is convenient to intro-
duce the Galilean transformation

With this transformation, the wave equation becomes independent of time and Eq. (3) 
reduces to Laplace’s two-dimensional equation

In terms of polar coordinates (r, θ) which are related by.
x = r cos θ , y = r sin θ , the nonzero stresses are

and Eq. (8) becomes

subject to the boundary conditions

(2)
∂σx′z

∂x′
+

∂σy′z

∂y′
= ρ

∂2w

∂t2

(3)
∂2w

∂x′2
+

1

η2

∂2w

∂y′2
=

1

c2
∂2w

∂t2

(4)C44

∂W

∂x′
(

x′, 0
)

=
{

±Q , a ≤ x′ ≤ d

0 , otherwise

(5)
∂W

∂y′
(b, 0) = 0 , b > 0

(6)w(x, 0) = 0 , x > 0

(7)x = x′ − vt , y = ηy′ , t ′ = t

(8)∇2w
(

x, y
)

=
∂2w

∂x2
+

∂2w

∂y2
= 0

(9)σrz(r, θ) = C55

∂W

∂r
(r, θ), σθz(r, θ) = C44

1

r

∂W

∂θ
(r, θ)

(10)∂2w(r, θ)

∂r2
+

1

r

∂w(r, θ)

∂r
+

1

r2
∂2w

∂θ2
= 0, r ≥ b , −π < θ < π
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Let

Be a holomorphic function which may be expressed in terms a new set of polar coordi-
nates     (ϒ ,∅)  as

Then, using the holomorphic function defined in Eqs. (13), (10), (11) and (12) transforms 
to

Subject to the boundary condition

Solution of the transformed problem

Applying Mellin integral transform of W (ϒ ,φ) defined by W (s,φ) =
∞
∫

0

W (ϒ ,φ)ϒ s−1∂ϒ

,to eqns. (15–18), the differential equation derived is

The solution of Eq. (19), subject to the boundary conditions (16–18) is

(11)
∂w

∂θ
(r,±π) =















±rQ

c44
a ≤ r ≤ d

0 Otherwise ( r < a , r > d

(12)
∂w(b, θ)

∂r
= 0

(13)ξ(z) =
1

2

(

z

b
+

b

z

)

− 1 , z = reiθ

(14)ξ(z) = ϒeiφ = ϒ cosφ + iϒ sin φ = u(r, θ)+ iv(r, θ)

(15)
(

∂2

∂ϒ2
+

1

ϒ

∂

∂ϒ
+

1

ϒ2

∂2

∂φ2

)

W (ϒ ,φ) = 0 ϒ > 0, 0 ≤ φ ≤ π

(16)∂W (ϒ ,π)

∂φ
=



































bQϒ

c44

�

(ϒ − 1)
√
ϒ(ϒ − 2)

+ 1

�

, α < ϒ < β , α =
1

2

�

d

b
+

b

d
+ 2

�

,β =
1

2

�

d

b
+

b

d
+ 2

�

0 otherwise

(17)
∂W

∂φ
(ϒ ,φ) = 0 0 ≤ φ ≤ π

(18)W (ϒ , 0) = 0 ϒ > 0

(19)
d2

dφ2
W (s,φ)+ s2W (s,φ) = 0, −

1

2
< Res < 0

(20)W (s,φ) =
bQ

c44
M(β ,α; s)

sin φs

s cosπs
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where

The inverse Mellin transform of  W (s,φ) is W (ϒ ,φ) = 1
2π i

e+i∞
∫

e−i∞
W (s,φ)ϒ−sds , hence

Evaluating the integrals in (21) term by term using the convergent series, Nnadi [13]

where the coefficients are defined by

For the first term, we have

For the second term,

For the third term,

Hence,

Inserting Eq. (28) into (22), we obtain

(21)M(β ,α; s) =
τ

∫

σ

(

ϒ s

(

1−
2

ϒ

)− 1
2

−ϒ s− 1

(

1−
2

ϒ

)− 1
2

+ϒ s

)

∂ϒ

(22)W (ϒ ,φ) =
bQ

c44

1

2π i

e+i∞
∫

e−i∞

M(β ,α; s)
sin φs

s cosπs
ϒ−sds

(23)(1− t)−
1
2 =

∞
∑

k=0

ck t
k , |t| < 1,

(24)ck =
(2k)!

22k(k!)2

(25)

β
∫

α

ρs

(

1−
2

ϒ

)− 1
2

∂ϒ =
∞
∑

k=0

ck2
k

β
∫

α

ϒ s−k∂ϒ

=
∞
∑

k=0

ck2
k

[

ρs−k+1

s − k + 1

]β

α

=
∞
∑

k=0

ck2
k

[

βs−k+1 − αs−k+1

s − k + 1

]

(26)

β
∫

α

ϒ s− 1

(

1−
2

ϒ

)− 1
2

∂ϒ =
∞
∑

k=0

ck2
k

β
∫

α

ϒ s−k−1∂ϒ

=
∞
∑

k=0

ck2
k

[

ϒ s−k

s − k

]β

α

=
∞
∑

k=0

ck2
k

[

βs−k − αs−k

s − k

]

(27)
β
∫

α

ϒ s∂ϒ =
[

ϒ s+1

s + 1

]β

α

=
βs+1

s + 1
−

αs+1

s + 1

(28)

M(β ,α; s) =
∞
∑

k=0

ck2
k

[

βs−k+1 − αs−k+1

s − k + 1

]

−
∞
∑

k=0

ck2
k

[

βs−k − αs−k

s − k

]

+
[

βs+1

s + 1
−

αs+1

s + 1
−
]
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Term by term evaluation of the three terms in Eq. (27) yields

Inserting Eq. (30) into (29), we obtain

where

The first part of Eq. (31) represents the displacement field for  ϒ < β and the second 
part of the same equation represents the displacement field for ϒ < α.

Evaluating the integrals  I(
j)

β and I
(j)
α , j = 1, 2, 3 using residue theory and Jordan 

lemma,
we obtain the first part of Eq. (31) (i.e., the displacement field for  ϒ < β ) as

(29)W (ϒ ,φ) =
bQ

c44

(

I
(1)
αβ − I

(2)
αβ + I

(3)
αβ

)

(30)

M(β ,α; s) =
∞
∑

k=0

ck2
k

[

βs−k+1 − αs−k+1

s − k + 1

]

−
∞
∑

k=0

ck2
k

[

βs−k − αs−k

s − k

]

+
[

βs+1

s + 1
−

αs+1

s + 1
−
]

(31)W (ϒ ,φ) =
bQ

c44

{

I
(1)
β − I

(2)
β + I

(3)
β

}

−
bQ

c44

{

I (1)α − I (2)α + I (3)α

}

(32)I
(1)
β =

∞
∑

k=0

ck2
kβ1−k 1

2π i

e+i∞
∫

e−i∞

sin φs

(s − k + 1)s cosπs

(

ϒ

β

)−s

ds

(33)I
(1)
α =

∞
∑

k=0

ck2
kα1−k 1

2π i

e+i∞
∫

e−i∞

sin φs

(s − k + 1)s cosπs

(

ϒ

α

)−s

ds

(34)I
(2)
β =

∞
∑

k=0

ck2
kβ−k 1

2π i

e+i∞
∫

e−i∞

sin φs

(s − k)s cosπs

(

ϒ

β

)−s

ds

(35)I
(2)
α =

∞
∑

k=0

ck2
kα−k 1

2π i

e+i∞
∫

e−i∞

sin φs

(s − k)s cosπs

(

ϒ

α

)−s

ds

(36)I
(3)
β = β

1

2π i

e+i∞
∫

e−i∞

sin φs

(s + 1)s cosπs

(

ϒ

β

)−s

ds

(37)I
(3)
α = α

1

2π i

e+i∞
∫

e−i∞

sin φs

(s + 1)s cosπs

(

ϒ

α

)−s

ds
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Also, the second part of Eq. (31) (i. e. the displacement field] for ϒ < α ) is obtained as 

(38)

bQ

c44

�

I
(1)
β − I

(2)
β + I

(3)
β

�

=
bQ

c44















−2 sin φϒ +
2β

π

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

3
2
− n

��

n− 1
2

�

+
�

c12
1 − c22

2
� 1

πβ

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

n+ 1
2

��

n− 1
2

�

+
�

c12
1 − c22

2
� 1

πβ

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

n+ 1
2

��

n− 1
2

�

+
�

c32
3 − c42

4
� 1

πβ3

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

n+ 5
2

��

n− 1
2

�

+
�

c42
4 − c52

5
� 1

πβ4

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

n+ 7
2

�

�

n− 1
2

�

+
�

c52
5 − c62

6
� 1

πβ5

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

n+ 9
2

��

n− 1
2

�

+
�

c62
6 − c72

7
� 1

πβ6

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ

�

ϒ
β

�n− 1
2

�

n+ 11
2

��

n− 1
2

� + ...















(39)

bQ

c44

�

I
(1)
α − I

(2)
α + I

(3)
α

�

=
bQ

c44











−2 sin φϒ +
2α

π

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ
�

ϒ
α

�n− 1
2

�

3
2
− n

��

n− 1
2

�

+
�

c12
1 − c22

2
� 1

πα

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ
�

ϒ
α

�n− 1
2

�

n+ 1
2

��

n− 1
2

�

+
�

c22
2 − c32

3
� 1

πα2

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ
�

ϒ
α

�n− 1
2

�

n+ 3
2

��

n− 1
2

�

+
�

c32
3 − c42

4
� 1

πα3

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ
�

ϒ
α

�n− 1
2

�

n+ 5
2

��

n− 1
2

�

+
�

c42
4 − c52

5
� 1

πα4

∞
�

n=1

(−1)n+1 sin

�

n− 1
2

�

φ
�

ϒ
α

�n− 1
2

�

n+ 7
2

�

�

n− 1
2

� + ...










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Results and discussion
Stress field near the crack‑tip

We investigate the tip of the crack for the stress field, using the solution obtained above.
The tip is at the origin and is approached as ϒ → 0 . The asymptotic value of the dis-

placement field is obtained as

We introduce local polar coordinates (R,ψ) at the intersection of the crack breaker 
boundary and the x-axis that are related to the coordinates (ϒ ,∅)  through

Then, by the conformality condition W (ρ,φ) = w(R,ψ) , the asymptotic displacement 
becomes

where

Now,

Hence, the near crack-tip stress field is given by

Equation  (46) shows that the near crack-tip stress field is directly proportional to 
mode III stress intensity factor, KIII and inversely proportional to the radius of the 
circular hole, b.

Effect of size of the circular hole on the stress field

The result (47) means that the larger the radius of the circular hole, the less the stress 
concentration factor. In effect, crack growth would be delayed, or even prevented. The 
relationship between the stress field and the radius of the crack breaker is illustrated 
graphically in Fig. 2. The graph shows that the larger the radius of the crack breaker, 

(40)W (ϒ ,φ) =
4bQ

πc44

(

H(β)
√
β

−
H(α)
√
α

)

sin
φ

2
ϒ

1
2

(41)where
H(η)
√
η

=
√
η +

sin−1
(

2
η

)
1
2

√
2

+
√
η

(

1−
2

η

)
1
2

−
√
2c , (η = α, β)

(42)ϒ
1
2 sin

φ

2
=

1
√
2

R

b
sinψ as ϒ → 0, R → 0

(43)w(R,ψ) =
4bQ

πc44

(

H(β)
√
β

−
H(α)
√
α

)

1
√
2

R

b
sinψ =

kIII√
π

1

c44

R

b
sinψ

(44)KIII =
2
√
2 bQ
√
π

(

H(β)
√
β

−
H(α)
√
α

)

(45)
∂w(R,ψ)

∂ψ
=

KIII√
π

1

c44

R

b
cosψ ,

(46)σψz(R,ψ) = c44
1

R

∂w(R,ψ)

∂ψ
=

kIII

b
√
π
cosψ



Page 9 of 11Emenogu et al. Journal of the Egyptian Mathematical Society           (2022) 30:13 	

the lower the stress values at the crack tip. The physical implication is that placing a 
large circular hole at the crack tip would contribute to an extension of the life of the 
material. This result agrees with the numerical results found in [10, 11] and [12].

Effect of load application interval length on the stress intensity factor

A parametric study is introduced to investigate the effect of the length L of interval 
of application of the load and the radius of the crack breaker, on the stress intensity 
factor.

Using Eqs. (41) and (45), we obtain the normalized stress intensity factor

As we vary the length,L , of the interval [−α,−β] and substituting the corresponding 
values of β , α in Eq. (47), plotting k111Q  with bL to have.

Conclusion
In this paper, the influence of a circular crack breaker on mode III deformation behav-
iour of a semi-infinite crack in a homogeneous elastic orthotropic material subjected 
to longitudinal shear loads is studied. The novelty of constructing a holomorphic 
function that mapped the circular hole into a straight line with the edge terminat-
ing at the origin as shown in Fig. 3, enabled the use of integral transform method to 
obtain an analytic solution of the displacement, leading to closed-form expression for 
the mode-III stress intensity factor,K111.

The results show that the larger the radius of the circular hole, the less the stress 
concentration factor. In effect, crack growth would be delayed, or even prevented and, 
thus, the life of the material would be extended. Further, the stress intensity factor 

(47)

K111

Q
=

2L
√
2

√
π







β − α
√
β +

√
α
+

1
√
2
sin−1







�

2
β

�

2
α
(β−α)

2

�

α
2
− 1+

�

β
2
− 1






+

β − α
√
β − 2+

√
α − 2







b

L

Fig. 2  Variation of σψz(R,ψ) with b
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was shown in Fig. 4 to increase with increasing length of interval of load application. 
Our analytical results agree with numerical results found in the literature.

As analytical solutions in closed form are desirable for accurate analysis and design 
due to their many advantages over numerical solutions, this study significantly con-
tributes to the theory of antiplane crack propagation and arrest. It provides a theo-
retical basis for considering the use of a circular crack breaker for crack arrest [14], 
and the results serve as a benchmark for the purpose of judging the accuracy and 
efficiency of various numerical methods [15]. This study will be immensely useful to 
industries where orthotropic material such as fibre-reinforced composites have many 
applications in technology [16, 17].
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