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Abstract 

The current study investigates the combined response of the Darcy–Brinkman–Forch-
heimer and nonlinear thermal convection influence among other fluid parameters 
on Casson rheology (blood) flow through an inclined tapered stenosed artery with 
magnetic effect. Considering the remarkable importance of mathematical models 
to the physical behavior of fluid flow in human systems for scientific, biological, and 
industrial use, the present model predicts the motion and heat transfer of blood flow 
through tapered stenosed arteries under some underline conditions. The momentum 
and energy equations for the model were obtained and solved using the collocation 
method with the Legendre polynomial basis function. The expressions obtained for the 
velocity and temperature were graphed to show the effects of the Darcy–Brinkman–
Forchheimer term, Casson parameters, and nonlinear thermal convection term among 
others. The results identified that a higher Darcy–Brinkman number slows down the 
blood temperature, while continuous injection of the Casson number decreases both 
velocity and temperature distribution.

Keywords:  Casson fluid, Inclined stenosed artery, Magnetohdyrodyanamics (MHD) 
fluid, Collocation method, Darcy–Brinkman–Forchheimer
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Introduction
Stenosis refers to a strange narrowing in a blood vessel or other tubular organs such 
as the foramina and canal. It is also known as urethral stricture. Atherosclerosis is the 
majorly cause of stenosis, a form of the disease in which the wall of the artery devel-
ops lesions (abnormalities that can eventually lead to narrowing due to deposits of fats). 
Blood is a non-Newtonian fluid, that is, the viscosity varies with the shear rate which 
makes it a shear-thinning fluid. The study of mathematical biology and computational 
fluid mechanics has enhanced the work of researchers to inspect the mathematical and 
physical behavior of blood flow for use in medicine and other industrial applications. 
Among the novel, investigations in the area of tapered stenosed arteries include the 
work of Abubakar and Adeoye [2], and Abubakar et al. [1] study of steady blood flow 
through stenosis under the influence of a magnetic field. The influence of MHD blood 
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flow and heat transfer through an inclined porous stenosed artery with variable viscosity 
is presented by Tripathi and Kumar [19]. Chaturani and Samy [7] discussed the pulsa-
tile flow of Casson fluid through arteries (stenosed) with blood application. Bio-inspired 
peristaltic propulsion of hybrid nanofluid flow with hybrid nanoparticle aggregation was 
discussed by Bhatti et al. [6].

Recently, Sharma et al. [18] investigated the flow of blood through a multi-stenosed 
tapered artery; the study was centered on the slip flow and thermal radiation influ-
ence with the inclusion of hybrid nanoparticles (Au-Al2O3/Blood) and second law 
analysis; thus, the impact of Au and slip velocity is fully remarked. Poonam et al. [17] 
utilized the finite difference (C-N) scheme to examine the heat and mass transfer flow 
of pulsatile blood through a curved artery subject to hybrid nanoparticles (Au-Al2O3/
blood) aggregation, and Ikbar et al. [11] enumerated their model for the non-Newto-
nian flow of blood through a stenosed artery in the presence of a transverse magnetic 
field. Blood is taken into account as the third-grade non-Newtonian fluid in the work 
presented by Akbarzedeh [3]; the study revealed that the mean value of the velocity 
increases, and the amplitude of the velocity remains constant as the pressure gradient 
rises.

Mandal et al. [15] developed and discussed a two-dimensional mathematical model 
for the study of body acceleration external effect on non-Newtonian blood flow in a 
stenosed artery, and the blood is characterized by the generalized power-law model. 
Hayat et  al. [10] considered Darcy–Brinkman–Forchheimer flow with Cattaneo–
Christov homogeneous–heterogeneous, therein, MHD effects are considered on the 
flow of blood in the stenosed artery. Bio-inspired peristaltic propulsion of hybrid 
nanofluid flow nanoparticles subject to magnetic effects is carried out by Bhatti and 
Abdelsalam [6], and their focus demonstrated how Ta-NPs can be employed for the 
removal of unwanted reactive oxygen species in both small and large animals as well 
as in biomedical systems. Krishna [12, 13] studied the effect of heat and mass flux 
conditions on the magnetohydrodynamics flow of Casson fluid over a curved stretch-
ing surface. Mustafa [16] investigate the pipe flow of Eyring-Powell fluid enumerating 
its impact on flow and heat transfer. Mustafa [20] as well study the second law phe-
nomena in thermal transport through the metallic porous channel; in the study, the 
impact of Brinkman–Darcy model is enumerated, to mention but a few among the 
numerous investigations. Hemodynamic characteristics of gold nanoparticle blood 
flow through a tapered stenosed vessel with variable nanofluid viscosity were dis-
cussed by Elnaqeeb et al [8]. Beckermann et al. [4] presented the numerical study of a 
porous enclosure medium with non-Darcian natural convection influence. The work 
enumerated that Forchheimer’s extension must be included for Prandtl number less 
than one. In related work, Bhargava et  al. [5] explore the finite element analysis for 
drug diffusion and transient pulsatile magneto-hemodynamic non-Newtonian flow in 
a porous channel.

Numerical methods have been the simplest and most approachable way of obtain-
ing an approximate solution to systems of highly nonlinear equations of which the 
collocation method is one of them. The current investigation utilized one of the 
orthogonal polynomials called the Legendre polynomial combined with the col-
location method. Among the studies that have used this approach include Mallawi 
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et al. [14] solution to the nonlinear differential equation was solved by computational 
means of Legendre collocation points. Guner and Yalcinbas [9] worked on the Leg-
endre collocation method for solving a nonlinear differential equation, to mention 
but just a few. Motivated by all the above-mentioned research, this article presents 
the effects of the non-Darcian porous medium and quadratic thermal convection 
behavior on equations governing the blood flow through an inclined tapered sten-
osed artery. The model of the nonlinear equations has been solved numerically using 
the Legendre collocation method with the aid of Wolfram Mathematica 11.3 under 
the defined boundary conditions. MAPLE 18 generated the codes are used to show 
the effects of the Darcy–Brinkman–Forchheimer term, Casson parameters, nonlinear 
thermal convection term, and variation in inclination angle of the blood flow in the 
inclined stenosed artery graphically.

Problem formulation
The flow of blood is taken to be flowing in a cylindrical form of the narrow artery, in an 
axial direction, as shown in Fig. 1. Let ( r , θ , and z ) be the polar coordinate system (cylindri-
cal), and let ũ , ṽ and w̃ be the velocity components in the r , θ , and z directions. We con-
sider magnetohydrodynamics (MHD) Newtonian fluid of density ρ and variable viscosity µ 
flowing through a porous material in a tube having a finite length L . The stenosed artery is 
inclined at the angle γ from the vertical axis with outside applied radiation qr and magnetic 
field M.

The governing equations for the model are as follows:
Continuity equation

Momentum equation (r-direction)

Momentum equation (z-direction)

(1)
∂ũ
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+
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Fig. 1  Geometry of the inclined stenosed artery
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Energy equation

where b
∗v2

k1
 is the Darcy–Forchheimer’s term, ũ , ṽ , and w̃ are the velocity components 

in the radial and axial directions, respectively. σ1 is the electrical conductivity, k is the 
thermal conductivity, and Cp is the specific heat at constant pressure. The differential 
equation for the radiative flux qr is given in the following equation:

where σ is the Stefan–Boltzmann constant. With the assumption of thin blood, αv≪1. 
Then, T0 is the blood temperature at the stenosed region and T is the local temperature 
of the blood, then (5) can be solved to

The variable viscosity of the flow of blood is expressed by the formula:

where h(r̃) = H
[
1−

(
r̃
d0

)m]
  and Hr = �H in which � is having a numerical value of 2.5 

and H is the maximum hematocrit at the center of the artery, m is the parameter that 
decides the exact shape of the blood velocity profile and Hr is the hematocrit parameter. 
The geometry illustration of the stenosis located at the point, z with its maximum height, 
δ is defined by the following formula:

where d
(
z̃
)
 is the radius of the narrow artery in the stenotic region with d

(
z̃
)
= d0 + ξ z̃,  

In (8), n is the shape parameter which determines the shape of the constriction profile. 
The value n = 2 results in symmetrically shaped stenosis, and for nonsymmetric steno-
sis case n considers the values n ≥ 2 . ξ is the narrowed parameter defined by ξ = tanϕ , 
where ϕ is known as narrowed artery and ξ as the narrowing parameter which is defined 
by the case of converging, and d0 is the radius of the non-narrowed artery.

The parameter η is defined as

(3)

ρ

[
ũ
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ũ

r̃

)2

+

(
∂ ṽ
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where δ is the maximum height of the stenosis located at

Method of solution
To non-dimensionalize the obtained governing equations, we introduce the non-dimen-
sional variables as follows:

where Pr, Z , N , Re , θ , Z Gr M , Ec and GN, respectively, represent the Prandtl 
number, porosity parameter, radiation absorption parameter, Reynolds number, temper-
ature parameter, Grashof number, magnetic field parameter, Eckert number, and non-
linear thermal convection. In the case of aortic stenosis δd0≪1 and the other additional 
conditions,

assuming the following approximation:

To non-dimensionalize the continuity equation, we substitute the non-dimensional 
quantities in (11) into (1) to obtain:

Since δ
d0

=1,

To non-dimensionalize the momentum equation ( r-direction), substitute (11) into 
(2) to obtain:
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Also, since δ
d0

=1 , ∂w
∂z = 0,

Also, substituting the non-dimensional variables in (11) and (7) into the momentum 
equation (z-direction):

where GN =
α2T0
α1

 is the nonlinear thermal convection.
Also, using the non-dimensional variables in Eq. (11), the energy equation becomes

where Br = Ec Pr Brinkman number ( Br ) is a dimensionless number used to study vis-
cous flow. The corresponding boundary conditions are

and the no-slip boundary conditions (assuming that at a solid boundary, the fluid will 
have zero velocity relative to the boundary) at the artery wall

where h(z) is defined by

With the use of the Legendre collocation method, we have to define some functions. 
Let Pn(x) be the Legendre polynomial function of degree n . We recall that P(x) is the 
solution (eigenfunction) of the Sturm–Liouville problem as follows:

Equation (24) satisfies the recursive relations:
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The set of Legendre polynomials from a [− 1,1] orthogonal set is

where δm,n is the Kronecker delta function. To apply the Legendre polynomial to the 
problem with a semi-infinite domain, we introduce algebraic mapping

the boundary value problem is solved within the region [0, h ] in place of [0,∞ ), whereas 
the scaling parameter is taken to be sufficiently large enough to evaluate the thickness of 
the boundary layer. Therefore, the real solutions f (ς) and θ(ς) are expressed as the basis 
of the Legendre polynomial function as

Hence,

where P0(ς) , P1(ς) , P2(ς),…,Pn(ς) are generated from recursive relation in (26) and

Hence, substituting Eq. (31) into (30)

for h = 6 and N = 6, Eqs. (32–33) become
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− 1, [−1, 1] → [0, h],
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)
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)
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We assumed that w(r) and θ(r) are the Legendre base trial functions, defined by

where aj and bj are constants to be determined and Pj
(
2r
h
− 1

)
 is the shifted Legendre 

function from [−1, 1] to [0, h] . Substituting (36) into the boundary conditions in (21) and 
(22), respectively, we have

Residues Dw

(
r, aj , bj

)
 and Dθ

(
r, aj , bj

)
 are derived from the above (39) and (40) 

accordingly.
The residues are minimized close to zero using the collocation method as follows:

The above procedure sought the unknown constant coefficients aj , and bj which are 
then substituted in Eq. (36) as the required solution.

Results and discussion
Mathematica 11.3 is used to obtain the numerical results for the temperature and velocity 
variation. The parameters used include the inclination of the angle (γ ) of the artery, Cas-
son parameter (β) , porosity parameter (Z) , the height of the stenosis (δ) , Darcy–Brink-
man–Forchheimer term (Fs) , and nonlinear thermal convection term (Gn) . The following 
various parameters were used in the plotting of the graphs.z = 0.5, δ = 0.1,N = 1.5,

γ = π
3 , a = 0.25, b = 1, ξ = 0.002, Ec = 1,Pr = 2, Gr = 2, n = 2, h = 0.92, ∂P

∂z = 3,

Hr = 1andd0 = 1.
Figure  2a shows the effects of variation of inclination angle ( γ ) parameters on the 

velocity profile. There is an increase in the velocity of the blood flow in the artery as the 
angle of inclination ( γ ) values increase.

Figure 2b displays the graphical features of the introduced nonlinear thermal convec-
tion parameter ( GN ) on the velocity profile. It is seen from Fig. 2b that the velocity pro-
file decreases with the increasing values of the nonlinear thermal convection parameter 
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)
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N∑
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h
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= 0 ,

for δ
(
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=

{
1, t = tj
0, otherwise,

(39)
∫ 1
0 Dwδ
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)
dr = Df

(
rj , ak , bk

)
= 0, for j = 1, 2, . . .N − 1

(40)
∫ 1
0 Dθ δ

(
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)
dr = Dθ

(
rj , ak , bk

)
= 0, for j = 1, 2, ..N − 1
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( GN ). Figure 2c depicts the effect of the scale of the Casson parameter (β); it shows that 
as it increases from 0.2 to 1.0, velocity increases at the arterial wall.

Figure 3a shows the effects of variation of the inclination angle parameter (γ), on the 
temperature profile. There is an increase in the temperature of the blood flow in the 
artery as the inclination angle ( γ ) values increase.

From Fig. 3b, it is clear that as the value of the nonlinear thermal convection parameter 
increases, the temperature profile decreases, respectively. It is observed through these fig-
ures that velocity and temperature achieve their maximum value at the wall of the artery and 
attain the minimum value at the middle of the artery for the nonlinear thermal convection 
parameter. From Fig. 3c, it is seen that as the value of the Casson parameter (β) increases, 
the temperature profile decreases at the arterial wall and this takes place maybe because of 
the viscous nature of the fluid which decreases with increasing values of temperature.

Fig. 2  Influence of Inclination angle (γ ) , nonlinear thermal convection term ( GN ), and Casson parameter on 
the velocity profile
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Conclusion
In this paper, we studied the Casson rheological flow of blood in an inclined stenosed 
artery with a non-Darcian porous medium and quadratic thermal convection. The col-
location method with Legendre polynomial basis functions was used to solve the nonlin-
ear governing equations. From the velocity and temperature profiles, it concluded that: 
(i) as the angle of inclination parameter (γ) increases both the blood flow velocity and 
temperature increase, (ii) with an increase in the value of nonlinear thermal convection 
parameter (Gn) the velocity and the temperature of the blood flow also increase, and (iii) 
the increase in Casson parameter (β) gives a decrease on both velocity and temperature 
of the blood flow.

Appendix 1
Also, on substituting (38) into the governing Eq. (20), we obtain

Fig. 3  Influence of a inclination angle (γ ) , b nonlinear thermal convection ( GN ), c Casson parameter, and d 
Darcy–Brinkman–Forchheimer on the temperature profile
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List of symbols
ũ , ṽ and w̃ 	�Velocity components in the r , θ , and z directions
ρ 	� Variable viscosity
γ  	� Inclined at the angle
µ 	� Variable viscosity
L 	� Tube length
qr 	� Applied radiation
M 	� Magnetic field
σ1 	� Electrical conductivity
k 	� Thermal conductivity
Cp 	� Specific heat at constant pressure
T0 	� Blood temperature at the stenosed region
T	� Local temperature of the blood
H	� Maximum hematocrit at the center of the artery
Hr 	� Hematocrit parameter
d
(
z̃
)
 	� Radius of the narrow artery in the stenotic region

d0 	� Radius of the non-narrowed artery
δ 	� Maximum height of the stenosis
Pr 	� Prandtl number
Z 	� Porosity parameter
N  	� Radiation absorption parameter
Re 	� Reynolds number
θ 	� Dimensionless temperature parameter
Gr 	� Grashof number
Ec 	� Eckert number
GN 	� Nonlinear thermal convection parameter
f  	� Dimensionless fluid velocity
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