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Abstract 

A new lifetime distribution has been defined. This distribution is obtained from a 
transformation of a random variable with beta distribution and is called here the 
kagebushin-beta distribution. Some mathematical properties such as mode, quantile 
function, ordinary and incomplete moments, mean deviations over the mean and 
median and the entropies of Rényi and Shannon are demonstrated. The maximum 
likelihood method is used to obtain parameter estimates. Monte Carlo simulations are 
carried out to verify the accuracy of the maximum likelihood estimators. Applications 
to real data showed that the kagebushin-beta model can be better than the Weibull, 
gamma and exponentiated exponential distributions.
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Introduction
A random variable Y having beta distribution has cumulative distribution function (cdf ) 
and probability density function (pdf) given by

and

respectively, where a > 0 and b > 0 are shape parameters and 
B(a, b) =

1
0 za−1(1− z)b−1dz denotes the beta function.

Taking the transformation X = − log Y  , the cdf and pdf of X are given by

(1)H(y; a, b) =
1

B(a, b)

∫ y

0
za−1(1− z)b−1dz, y ∈ (0, 1)

h(y; a, b) =
1

B(a, b)
ya−1(1− y)b−1, y ∈ (0, 1),

F(x; a, b) = 1−
1

B(a, b)

∫ e−x

0
za−1(1− z)b−1dz, x ∈ (0,∞)
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and

respectively. Here, we refer to a as a scale parameter and b as a shape parameter. The 
random variable X with pdf (2) is said to have kagebushin-beta (KB) distribution and is 
denoted as X ∼ KB(a, b).

The beta function admits the following relation

where Ŵ(p) =
∫∞
0 zp−1e−zdz denotes the gamma function. Under these results, for 

b = 1 , the Equation (2) becomes

that corresponds to the pdf of the exponential distribution. Thus, the KB distribution 
has the exponential distribution as special case.

Figure 1 displays plots of the density function of X, for some values of the parameters.
This paper is organized as follows. In Sect.  Properties, mathematical properties and 

entropy measures are described. In Sect. Estimation, the maximum likelihood method and 
Monte Carlo simulations are presented. In Sect. Applications, applications to real data are 
considered. Section Conclusions concludes the paper.

Properties
The first derivative of the log-density (2) is

The mode is obtained by solution of η(x) = 0 . So, the mode of X is

(2)f (x; a, b) =
1

B(a, b)
e−ax(1− e−x)b−1, x ∈ (0,∞),

B(a, b) =
Ŵ(a)Ŵ(b)

Ŵ(a+ b)
and aŴ(a) = Ŵ(a+ 1),

f (x; a, 1) = ae−ax, x ∈ (0,∞),

η(x) =
d

dx
log f (x; a, b) = −a+

(b− 1)e−x

1− e−x
.
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Fig. 1  Some pdfs of the KB distribution
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By inverting F(x; a, b) = u , the quantile function of X is

where Q1(·; a, b) is the inverse function of the Equation (1). Using the quantile function, 
the random variable

has density function (2), where V is a uniform random variable over the interval (0, 1).
The rth moment of X is obtained as

Consider the following convergent expansion in power series

Using the expansion above, the rth moment of X can be written as

Taking w = (a+ k)x , we have

So, the rth moment of X is given by

For s > 0 , the rth incomplete moment of X is obtained as

Taking t = (a+ k)x , we have

mode(X) =

{

0, b ≤ 1,

− log
(

a
a+b−1

)

, otherwise.

F−1(u; a, b) = − logQ1(1− u; a, b), u ∈ (0, 1),

(3)X = − logQ1(1− V ; a, b) or X = − logQ1(V ; a, b)

µr = E[Xr] =
1

B(a, b)

∫ ∞

0
xre−ax(1− e−x)b−1dx.

(1− e−x)b−1 =

∞
∑

k=0

(−1)k
(

b− 1
k

)

e−kx.

µr =
1

B(a, b)

∞
∑

k=0

(−1)k
(

b− 1
k

)
∫ ∞

0
xre−(a+k)xdx.

I =

∫ ∞

0
xre−(a+k)xdx

=
1

(a+ k)r+1

∫ ∞

0
wre−wdw

=
Ŵ(r + 1)

(a+ k)r+1
.

µr =
1

B(a, b)

∞
∑

k=0

(−1)k
(

b− 1
k

)

Ŵ(r + 1)

(a+ k)r+1
.

mr(s) =
1

B(a, b)

∫ s

0
xre−ax(1− e−x)b−1dx

=
1

B(a, b)

∞
∑

k=0

(−1)k
(

b− 1
k

)
∫ s

0
xre−(a+k)xdx.
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where γ (p, x) =
∫ x
0 zp−1e−zdz denotes the lower incomplete gamma function.

Then, the rth incomplete moment of X is given by

An entropy is a measure of variation or uncertainty of a random variable. Two popular 
entropy measures are the Rényi and Shannon entropies. For ρ > 0 and ρ  = 1 , the Rényi 
entropy of a random variable having pdf f (·) with support in (a, b) is given by

For KB distribution, the Rényi entropy is

Setting v = e−x , we have

Thus, the Rényi entropy of X becomes

The Shannon entropy is given by Is = E[− log f (X)] . So, for KB distribution, the Shan-
non entropy is

From the maximum likelihood method, we can show that E[X] = ψ(a+ b)− ψ(a) 
and E[log(1− e−X)] = ψ(b)− ψ(a + b) , where ψ(p) = d log Ŵ(p)/dp is the digamma 
function.

Thus, the Shannon entropy is of X is

J =

∫ s

0
xre−(a+k)xdx

=
1

(a+ k)r+1

∫ (a+k)s

0
tre−tdt

=
γ (r + 1, (a+ k)s)

(a+ k)r+1
,

(4)mr(s) =
1

B(a, b)

∞
∑

k=0

(−1)k
(

b− 1
k

)

γ (r + 1, (a+ k)s)

(a+ k)r+1
.

IR(ρ) =
1

1− ρ
log

(

∫ b

a
f (x)ρdx

)

.

IR(ρ) =
1

1− ρ
log

(

1

B(a, b)ρ

∫ ∞

0
e−aρx(1− e−x)(b−1)ρdx

)

.

L =

∫ ∞

0

e
−aρx(1− e

−x)(b−1)ρ
dx

=

∫ 1

0

vaρ−1(1− v)(b−1)ρdv

= B(aρ, (b− 1)ρ + 1).

IR(ρ) =
1

1− ρ
log

(

B(aρ, (b− 1)ρ + 1)

B(a, b)ρ

)

.

IS = log B(a, b)+ aE[X] − (b− 1)E[log(1− e−X)].

IS = log B(a, b)+ aψ(a+ b)− aψ(a)− (b− 1)[ψ(b)− ψ(a+ b)].
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Thus, we see that for KB distribution, the Rényi and Shannon entropies can be easily 
computed.

The mean deviations of X about the mean and about the median are given as

and

respectively, where µ1 = E[X] and ω = F−1(0.5; a, b) and m1(·) is defined in (4).

Estimation
Let the random variables Xi, · · · ,Xn ∼ KB(a, b) with observed values xi, · · · , xn . From 
Equation (2), the log-likelihood for (a, b)⊤ is given by

The components of the score vector U(a, b) = (Ua,Ub)
⊤ of L(a, b) are given by

The maximum likelihood estimates (MLEs) of a and b, say â and b̂ , are the simultaneous 
solutions of Ua = Ub = 0 , which has no closed forms. Thus, this problem can be solved 
via iteractive numerical methods, such that Newton--Raphson algorithmic. Statistical 
packages such as R [1] and Ox [2] can be used for this purpose.

The Fisher expected information matrix is

in which

where ψ ′(p) = d2 log Ŵ(p)/dp2 is the trigamma function.
Under general regularity conditions, we have the result

ϕ1(µ
1) =

∫ 1

0

|x − µ1|f (x; a, b)dx

= 2µ1F(µ1
, a, b)− 2m1(µ

1)

ϕ2(ω) =

∫ 1

0

|x − ω|f (x; a, b)dx,

=µ1 − 2m1(ω),

L(a, b) = −n log B(a, b)− a

n
∑

i=1

xi + (b− 1)

n
∑

i=1

log(1− e−xi).

Ua = nψ(a+ b)− nψ(a)−

n
∑

i=1

xi,

Ub = nψ(a+ b)− nψ(b)+

n
∑

i=1

log(1− e−xi).

K(a, b) = −

[

Uaa Uab

Uba Ubb

]

,

Uaa = nψ ′(a+ b)− nψ ′(a),

Uab = Uba = nψ ′(a+ b),

Ubb = nψ ′(a+ b)− nψ ′(b),
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where K(a, b)−1 is the inverse matrix of K(a, b) and a∼ denotes asymptotic distribution. 
This multivariate normal approximation for (â, b̂) can be used for construing approxi-
mate confidence intervals for the model parameters. The LR statistics can be used for 
testing hypotheses on these parameters.

Simulation study

To show the accuracy of MLEs for the two parameters of the KB model, Monte Carlo 
simulations with 15, 000 replications were performed. Two scenarios are considered and 
the sample sizes chosen are n = {25, 50, 75, 100, 200, 400} . The random numbers are gen-
erated using Equation (3). The true parameters are: a = 1.9 and b = 1.5 in scenario 1 
and a = 4.5 and b = 2.5 in scenario 2. The simulations were carried out using the matrix 
programming language Ox [2].

Tables 1 and 2 list the average estimates (AEs), biases and mean squared errors (MSEs), 
for scenarios 1 and 2, respectively. As expected, the MLEs converge to the true param-
eters and the biases and MSEs decrease when the sample size n increases.

((â, b̂)− (a, b))
a
∼ N2(0,K(a, b)−1),

Table 1  Monte Carlo simulation results for scenario 1

Par n = 25 n = 50

AE Bias MSE AE Bias MSE

a 2.13855 0.23855 0.47691 2.01349 0.11349 0.17800

b 1.67733 0.17733 0.27864 1.58523 0.08524 0.10471

Par n = 75 n = 100

AE Bias MSE AE Bias MSE

a 1.97501 0.07501 0.11092 1.95472 0.05472 0.07862

b 1.55656 0.05656 0.06435 1.54096 0.04097 0.04573

Par n = 200 n = 400

AE Bias MSE AE Bias MSE

a 1.92778 0.02778 0.03657 1.91222 0.01222 0.01752

b 1.52129 0.02129 0.02155 1.50967 0.00967 0.01013

Table 2  Monte Carlo simulation results for scenario 2

Par n = 25 n = 50

AE Bias MSE AE Bias MSE

a 5.09265 0.59265 2.85719 4.78259 0.28259 1.06584

b 2.80695 0.30695 0.80707 2.64745 0.14745 0.30248

Par n = 75 n = 100

AE Bias MSE AE Bias MSE

a 4.68684 0.18684 0.66211 4.63623 0.13623 0.46898

b 2.59784 0.09785 0.18606 2.57095 0.07095 0.13207

Par n = 200 n = 400

AE Bias MSE AE Bias MSE

a 4.56945 0.06945 0.21822 4.53067 0.03067 0.10410

b 2.53680 0.03680 0.06208 2.51663 0.01663 0.02919
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Applications
In this section, we compare the results of fitting of the KB distribution with three oth-
ers well-known distributions, for two datasets.

The data are:

•	 (Dataset 1) The data refer to remission times (in months) of 128 bladder cancer 
patients. These data were also analyzed by [3].

•	 (Dataset 2) The data consist of the waiting time between 64 consecutive eruptions of 
the Kiama Blowhole [4].

We compare the KB model (2) with the Weibull, gamma and exponentiated expo-
nential [5] distributions. The pdfs of the Weibull (W), gamma (G) and exponentiated 
exponential (EE) distributions are

and

respectively, where � > 0 is scale parameter and β > 0 is shape parameter. Note that for 
β = 1 , all these pdfs become the density function of the exponential distribution.

The goodness-of-fit measures adopted are: Cramér-von Mises ( W ∗ ), Anderson Dar-
ling ( A∗ ), Akaike information criterion (AIC), consistent Akaike information crite-
rion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information 
criterion (HQIC) for model comparisons. The lower the value of these statistics, more 
evidence we have for a good fit. The graphical analysis is also important to identify 
the best fitted model. All the computations were done using the Ox language [2].

Tables 3 and 5 list the MLEs with standard errors in parentheses (SEs) for datasets 1 
and 2, respectively. Note that, in both applications, all MLEs of all models are signifi-
cant, since their standard errors are low, when compared to the respective MLE.

fw(x; �,β) = β�βxβ−1 e−(�x)β , x > 0,

fg(x; �,β) =
�
β

Ŵ(β)
xβ−1 e−�x, x > 0

fee(x; �,β) = β�e−�x(1− e−�x)β−1, x > 0,

Table 3  MLEs and SEs for dataset 1

Model Estimates

KB(a, b) 0.1138 1.5442

(0.0106) (0.3307)

W(�,β) 0.1046 1.0478

(0.0093) (0.0676)

G(�,β) 0.1252 1.1725

(0.0173) (0.1308)

EE(�,β) 0.1212 1.2180

(0.0136) (0.1488)
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The information criteria for datasets 1 and 2 are presented in Tables 4 and 6 , respec-
tively. In both datasets, all information criteria point to the KB distribution as the best 
model, followed later by the EE distribution.

Figures 2 and 3 show the estimated pdfs and cdfs for datasets 1 and 2, respectively, 
considering the two best fitted models.

Conclusions
A new lifetime distribution has been defined. This distribution is obtained from a trans-
formation of a random variable with beta distribution and is called here the kagebushin-
beta distribution. Some mathematical properties such as mode, quantile function, 
ordinary and incomplete moments, mean deviations over the mean and median and the 
entropies of Rényi and Shannon are demonstrated.

The method used to estimate the parameters was maximum likelihood. Fisher’s 
expected information matrix has closed form. Monte Carlo simulations showed that the 
maximum likelihood estimators of the new model are valid, being in accordance with 
the asymptotic theory.

The usefulness of the kagebushin-beta model is shown with applications to real data. 
The results of these applications showed that the kagebushin-beta model is better than 
the Weibull, gamma and exponentiated exponential distributions.

Table 4  Information criteria for dataset 1

Model W
∗

A
∗ CAIC AIC BIC HQIC

KB 0.0847 0.5939 829.0001 828.9041 834.6082 831.2217

W 0.1148 0.8636 832.2698 832.1738 837.8778 834.4913

G 0.1050 0.7902 830.8316 830.7356 836.4396 833.0531

EE 0.0985 0.7409 830.2512 830.1552 835.8592 832.4728

Table 5  MLEs and SEs for dataset 2

Model Estimates

KB(a, b) 0.0304 637.4722

(0.0038) (20.9722)

W(�,β) 0.0231 1.2745

(0.0024) (0.1203)

G(�,β) 0.0407 1.6208

(0.0077) (0.2623)

EE(�,β) 0.0350 1.7315

(0.0051) (0.3199)

Table 6  Information criteria for dataset 2

Model W
∗

A
∗ CAIC AIC BIC HQIC

KB 0.0774 0.4566 582.9394 582.7427 587.0605 584.4437

W 0.1310 1.0864 597.9970 597.8003 602.1180 599.5012

G 0.1220 0.9850 595.9955 595.7988 600.1166 597.4998

EE 0.1206 0.9580 595.5288 595.3320 599.6498 597.0330
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Fig. 2  Estimated a pdfs and b cdfs for data 1
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